
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Global States

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
• Ordering of events

– Many applications need it, e.g., collaborative editing,

distributed storage, etc.

• Logical time
– Lamport clock: single counter

– Vector clock: one counter per process

– Happens-before relation shows causality of events

2

CSE 486/586

Today’s Topic
• Global snapshots
• An “application” of logical time
• Today’s topic will deepen your understanding about

causality and the abstract view of distributed
systems.

3 CSE 486/586

Today’s Question
• Example question: who has the most friends on

Facebook?
• Challenges to answering this question?

– It changes!

• What do we need?
– A snapshot of the social network graph at a particular time

4

CSE 486/586

Today’s Question
• Distributed debugging

• How do you debug this?
– Log in to one machine and see what happens
– Collect logs and see what happens
– Taking a global snapshot!

5

P0 P1 P2

Deadlock!

Both waiting…

CSE 486/586

What is a Snapshot?
• Single process snapshot

• Just a snapshot of the local state, e.g., memory dump, stack
trace, etc.

• For the sake of this lecture, let’s say a log of events.
• When we capture a snapshot, we want to be able to trace

the causality (e.g., important for debugging).

• Let’s say we’re logging all events.
• The above snapshot (a dump of log messages) will include

e1
0 and e1

1. This allows us to trace the causality of events.
• How to do this for a multiple processes?

6

P1
e10 e11 e12 e13

snapshot

C 2

CSE 486/586

Ideal: Instantaneous Snapshot
• Process snapshots and network messages at time t

• The most general multi-process snapshot that can
explain all causality

• Causality across processes
• Messages caused by send events

• But we can’t quite do it due to imperfect clock sync.
• We do it thru logical snapshots. 7

P1

P2

P3

e10 e11
e12 e13

e20

e21

e22

e30 e31 e32

CSE 486/586

How to Do It? Definitions

• For a process Pi , where events ei
0, ei

1, … occur,
• history(Pi) = hi = <ei0, ei1, … >
• prefix history(Pik) = hik = <ei0, ei1, …,eik >
• Sik : Pi ’s state immediately after kth event

• For a set of processes P1 , …,Pi , …. :
• Global history: H = Èi (hi)
• Global state: S = Èi (Siki)
• A cut C Í H = h1c1 È h2c2 È… È hncn

• The frontier of C = {eici, i = 1,2, … n}
8

P1

P2

P3

e10 e11
e12 e13

e20

e21

e22

e30 e31 e32

A cut

CSE 486/586

Consistent States
• A cut C is consistent if and only if

• "e Î C (if f ® e then f Î C)

• A global state S is consistent if and only if
• it corresponds to a consistent cut

9

P1

P2

P3

e10 e11 e12 e13

e20

e21

e22

e30 e31 e32

Inconsistent cut Consistent cut

CSE 486/586

CSE 486/586 Administrivia
• PA2-A deadline: This Friday

• PA1: some hiccups, getting delayed

• Please come and ask questions during office hours.

10

CSE 486/586

The Snapshot Algorithm: Assumptions
• There is a communication channel between each

pair of processes (@each process: N-1 in and N-1

out)

• Communication channels are unidirectional and

FIFO-ordered (important point)

• No failure, all messages arrive intact, exactly once

• Any process may initiate the snapshot

• Snapshot does not interfere with normal execution

• Each process is able to record its state and the state

of its incoming channels (no central collection)

11 CSE 486/586

Reminder: Clock-Sync’d Snapshot
• Instantaneous snapshot

– Process snapshots and network messages at time t
– We can’t quite do it due to imperfect clock sync.

12

P1

P2
a b

C 3

CSE 486/586

Chandy and Lamport’s Snapshot:
Basic Idea
• Goal: taking a consistent (not instantaneous) global

snapshot
• Any process can initiate a snapshot-taking process

by taking a local snapshot and sending a message
called a marker.

• Upon receiving a marker, a process takes a local
snapshot of its own.

• How do we capture network messages?
– Insight: messages in flight will eventually arrive.

13

P1

P2
a

b
M

CSE 486/586

Chandy and Lamport’s Snapshot:
Basic Idea
• Each process that has taken a snapshot also starts

recording incoming messages
– Since those messages were in the network when the

snapshot was being taken.
– If every process does this, we will capture all messages in

flight, recording messages destined to each process.
– Note: every process needs to to this for every other process.

• Tricky part: the algorithm has a mechanism to stop
recording incoming messages at some point.

14

P1

P2
a

b
M

CSE 486/586

Chandy and Lamport’s Snapshot:
Basic Idea
• Reminder: which messages do we want to record?

– Messages that were in the network at the time of taking a
snapshot

• How do we record just those messages?
– Insight: we can mark the end of relevant messages.

• After taking a local snapshot, each process sends a
message saying that it’s done sending all messages
relevant to the snapshot.

– In fact, we don’t need a different message type, we use the
same marker message.

15

P1

P2
a

b
M M

CSE 486/586

Chandy and Lamport’s Snapshot
• Marker broadcast & recording

– The initiator broadcasts a “marker” message to everyone
else

– If a process receives a marker for the first time, it takes a
local snapshot, starts recording all incoming messages, and
broadcasts a marker again to everyone else.

– A process stops recording for each channel, when it
receives a marker for that channel.

16

P1

P2

P3

a

b

M M
M

M

M

M

CSE 486/586

The Snapshot Algorithm
1. Marker sending rule for initiator process P0

• After P0 has recorded its own state
• for each outgoing channel C, send a marker message

on C
2. Marker receiving rule for a process Pk

on receipt of a marker over channel C
• if Pk has not yet recorded its own state

• record Pk’s own state
• record the state of C as “empty”
• for each outgoing channel C, send a marker on C
• turn on recording of messages over other incoming channels

• else

• record the state of C as all the messages received over C
since Pk saved its own state; stop recording state of C

17 CSE 486/586

Exercise

18

P1

P2

P3

e10

e20

e23

e30

e13

a

b

M

e11,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e21,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e14

3- P1 receives Marker over C21, sets state(C21) = {a}

e32,3,4

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e24

5- P2 receives Marker over C32, sets state(C32) = {b}

e31

6- P3 receives Marker over C23, sets state(C23) = {}

e13

7- P1 receives Marker over C31, sets state(C31) = {}

C 4

CSE 486/586

One Provable Property
• The snapshot algorithm gives a consistent cut
• Meaning,

– Suppose ei is an event in Pi, and ej is an event in Pj

– If ei à ej, and ej is in the cut, then ei is also in the cut.

• Proof sketch: proof by contradiction
– Suppose ej is in the cut, but ei is not.

– Since ei à ej, there must be a sequence M of messages
that leads to the relation.

– Since ei is not in the cut (our assumption), a marker
should’ve been sent before ei, and also before all of M.

– Then Pj must’ve recorded a state before ej, meaning, ej is
not in the cut. (Contradiction)

19 CSE 486/586

Summary
• Global states

– A union of all process states

– Consistent global state vs. inconsistent global state

• The “snapshot” algorithm
• Take a snapshot of the local state

• Broadcast a “marker” msg to tell other processes to record

• Start recording all msgs coming in for each channel until
receiving a “marker”

• Outcome: a consistent global state

20

CSE 486/586 21

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta at UIUC.

