CSE 486/586 Distributed Systems
Global States

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

 Ordering of events

— Many applications need it, e.g., collaborative editing,
distributed storage, etc.

* Logical time
— Lamport clock: single counter
— Vector clock: one counter per process

— Happens-before relation shows causality of events

CSE 486/586

Today’s Topic

» Global snapshots
« An “application” of logical time

» Today’s topic will deepen your understanding about
causality and the abstract view of distributed
systems.

CSE 486/586

Today’s Question
» Example question: who has the most friends on

Facebook?

» Challenges to answering this question?

— It changes!
v/

* What do we need?

— A snapshot of the social network graph at a particular time

CSE 486/586

Today’s Question

« Distributed debugging

-—
@ ° Both waiting ... @

Deadlock!

* How do you debug this?
— Log in to one machine and see what happens
— Collect logs and see what happens
— Taking a global snapshot!

CSE 486/586

What is a Snapshot?

« Single process snapshot

« Just a snapshot of the local state, e.g., memory dump, stack
trace, etc.

« For the sake of this lecture, let's say a log of events.

« When we capture a snapshot, we want to be able to trace
the causality (e.g., important for debugging).

snapshot
e e;‘ ! 2 e®

el ©

P1 . * 14

« Let's say we're logging all events.

« The above snapshot (a dump of log messages) will include
e.®and e4'. This allows us to trace the causality of events.

« How to do this for a multiple processes?
CSE 486/586

Ideal: Instantaneous Snapshot

» Process snapshots and network messages at time t

e ef 2 1 e
P1 \\ ew\ /
e q
N
1
1
P3 &0 e !832

» The most general multi-process snapshot that can
explain all causality

« Causality across processes
* Messages caused by send events
« But we can’t quite do it due to imperfect clock sync.

» We do it thru logical spapshets.

How to Do It? Definitions Acut

e e
-~

. NA N

« For a process P;, where events e?, e/, ... occur,
« history(P) = hi = <ew, et ...>
« prefix history(PK) = h¥ = <ei0, eit,ek >
« SF:Pi’s state immediately after k' event

For a set of processes Py, ...,P;,:

* Global history: H = i (hi)

« Global state: S = U (S#)

* Acut CcH=hr" uh®? U... uhe

« The frontier of C ={ef, i=1,2, ... n}
CSE 486/586

Consistent States

« Acut Cis consistent if and only if
+ Ve.c(iff »ethenfeC)
* Aglobal state S is consistent if and only if

« it corresponds to a consistent cut

| Inconsistent cut | | Consistent cut |

CSE 486/586 9

CSE 486/586 Administrivia

* PA2-A deadline: This Friday
» PA1: some hiccups, getting delayed
» Please come and ask questions during office hours.

CSE 486/586

10

The Snapshot Algorithm: Assumptions

.

There is a communication channel between each

pair of processes (@each process: N-1 in and N-1
out)

Communication channels are unidirectional and
FIFO-ordered (important point)

No failure, all messages arrive intact, exactly once
Any process may initiate the snapshot
Snapshot does not interfere with normal execution

Each process is able to record its state and the state
of its incoming channels (no central collection)

.

.

.

.

.

CSE 486/586 11

Reminder: Clock-Sync’d Snapshot

* Instantaneous snapshot
— Process snapshots and network messages at time t
— We can'’t quite do it due to imperfect clock sync.

CSE 486/586

Chandy and Lamport’s Snapshot:
Basic Idea

Goal: taking a consistent (not instantaneous) global
snapshot

Any process can initiate a snapshot-taking process

by taking a local snapshot and sending a message
called a marker.

Upon receiving a marker, a process takes a local
snapshot of its own.

» How do we capture network messages?
— Insight: messages in flight will eventually arrive.

P1

P2

CSE 486/586 13

Chandy and Lamport’s Snapshot:

Basic Idea

» Each process that has taken a snapshot also starts
recording incoming messages

— Since those messages were in the network when the
snapshot was being taken.

— If every process does this, we will capture all messages in
flight, recording messages destined to each process.

— Note: every process needs to to this for every other process.
« Tricky part: the algorithm has a mechanism to stop
recording incoming messages at some point.

P1 . <
1
1

CSE 486/586 14

Chandy and Lamport’s Snapshot:
Basic Idea

* Reminder: which messages do we want to record?

— Messages that were in the network at the time of taking a
snapshot

» How do we record just those messages?
— Insight: we can mark the end of relevant messages.

« After taking a local snapshot, each process sends a
message saying that it's done sending all messages
relevant to the snapshot.

— In fact, we don’t need a different message type, we use the
same marker message.

P1

P2 L

CSE 486/586 15

Chandy and Lamport’s Snapshot

» Marker broadcast & recording

— The initiator broadcasts a “marker” message to everyone
else

— If a process receives a marker for the first time, it takes a
local snapshot, starts recording all incoming messages, and
broadcasts a marker again to everyone else.

— A process stops recording for each channel, when it
receives a marker for that channel.
P1
P2

P3

CSE 486/586 16

The Snapshot Algorithm

1. Marker sending rule for initiator process Po
< After Py has recorded its own state

« for each outgoing channel C, send a marker message
onC

2. Marker receiving rule for a process Py
on receipt of a marker over channel C
« if P, has not yet recorded its own state
« record P«'s own state
« record the state of C as “empty”
« for each outgoing channel C, send a marker on C
« turn on recording of messages over other incoming channels
* else
« record the state of C as all the messages received over C
since P« saved its own state; stop recording state of C
CSE 486/586 17

Exercise

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32
3- P1 receives Marker over C21, sets state(C21) = {a}

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23
5- P2 receives Marker over C32, sets state(C32) = {b}

6- P3 receives Marker over C23, sets state(C23) = {}
7- P1 receives Marker over C31, sets state(C31) = {}

CSE 486/586 18

One Provable Property

» The snapshot algorithm gives a consistent cut
¢ Meaning,
— Suppose g;is an eventin P;, and e; is an eventin P;
— Ife; > ej, and gjis in the cut, then g is also in the cut.

» Proof sketch: proof by contradiction

— Suppose g;is in the cut, but e; is not.
— Since e; > e; there must be a sequence M of messages
that leads to the relation.

— Since e is not in the cut (our assumption), a marker
should’ve been sent before e;, and also before all of M.

— Then Pymust've recorded a state before e;, meaning, e;is
not in the cut. (Contradiction)

CSE 486/586 19

Summary

* Global states
— A union of all process states

— Consistent global state vs. inconsistent global state
» The “snapshot” algorithm
« Take a snapshot of the local state
« Broadcast a “marker” msg to tell other processes to record
« Start recording all msgs coming in for each channel until
receiving a “marker”
« Outcome: a consistent global state

CSE 486/586 20

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta at UIUC.

CSE 486/586 21

