
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Reliable Multicast --- 1

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Last Time
• Global states

– A union of all process states

– Consistent global state vs. inconsistent global state

• The “snapshot” algorithm
• Take a snapshot of the local state

• Broadcast a “marker” msg to tell other processes to record

• Start recording all msgs coming in for each channel until
receiving a “marker”

• Outcome: a consistent global state

2

CSE 486/586

Today’s Question
• How do a group of processes communicate?
• Unicast (best effort or reliable)

– One-to-one: Message from process p to process q.
– Best effort: message may be delivered, but will be intact
– Reliable: message will be delivered

• Broadcast
– One-to-all: Message from process p to all processes
– Impractical for large networks

• Multicast
– One-to-many: “Local” broadcast within a group g of

processes (e.g., m processes out of n total processes)

• What are the issues?
– Processes crash (we assume crash-stop)
– Messages get delayed

3 CSE 486/586

Why: Examples

4

CSE 486/586

Why: Examples
• Akamai’s Configuration Management System (called

ACMS)
– A core group of 3-5 servers.

– Continuously multicast to each other the latest updates.
– After an update is reliably multicast within this group, it is

then sent out to all the (1000s of) servers Akamai has all
over the world.

• Air Traffic Control System
– Commands by one ATC need to be ordered (and reliable)

multicast out to other ATC’s.

• Newsgroup servers
– Multicast to each other in a reliable and ordered manner.

5 CSE 486/586

The Interface

6

Application
(at process p)

MULTICAST PROTOCOL

send

multicast

Incoming
messages

deliver

multicast

One process p

receive

C 2

CSE 486/586

Basic Multicast (B-multicast)
• A straightforward way to implement B-multicast is to

use a reliable one-to-one send (unicast) operation:
– B-multicast(g,m): for each process p in g, send(p,m).

– receive(m): B-deliver(m) at p.

• Guarantees?
– All processes in g eventually receive every multicast

message…

– … as long as the sender doesn’t crash

– This guarantee is not so good.

• What guarantees do we want?

7 CSE 486/586

What: Properties to Consider
• Often times, a distributed system cares about at least

two categories of properties.
• Liveness: guarantee that something good will happen

eventually
– For the initial state, there is a reachable state where the

predicate becomes true.
– “Guarantee of termination” is a liveness property

• Safety: guarantee that something bad will never
happen

– For any state reachable from the initial state, the predicate is
false.

– Deadlock avoidance algorithms provide safety

• It is important to think about liveness and safety in
your system & context.

– Liveness and safety are used in many other CS contexts.
8

CSE 486/586

What: Reliable Multicast Goals
• These are refined from liveness and safety categories for

the context of reliable multicast.
• Integrity: A correct (i.e., non-faulty) process p delivers a

message m at most once.
– “Non-faulty”: doesn’t deviate from the protocol & alive
– Safety or liveness?

• Agreement: If a correct process delivers message m, then
all the other correct processes in group(m) will eventually
deliver m.

– Property of “all or nothing.”
• Validity: If a correct process multicasts (sends) message
m, then it will eventually deliver m itself.

– Guarantees liveness to the sender.
• Validity and agreement together ensure overall liveness: if

some correct process multicasts a message m, then, all
correct processes deliver m too.

9 CSE 486/586

Reliable Multicast Overview
• Keep a history of messages for at-most-once delivery
• Everyone repeats multicast upon a receipt of a

message.
– Why? For agreement & validity.
– Even if the sender crashes, as long as there is one process

that receives, it’s all good since that process is going to
repeat.

10

CSE 486/586

Reliable R-Multicast Algorithm

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m);
(p∈ g is included as destination)

On B-deliver(m) at process q with g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p):

B-multicast(g,m);
R-deliver(m)

R-multicast

B-multicast

reliable unicast

“USES”

“USES”

11 CSE 486/586

Reliable R-Multicast Algorithm

On initialization
Received := {};

For process p to R-multicast message m to group g
B-multicast(g,m);
(p∈ g is included as destination)

On B-deliver(m) at process q with g = group(m)
if (m ∉ Received):

Received := Received ∪ {m};
if (q ≠ p):

B-multicast(g,m);
R-deliver(m)

Integrity

Validity
Agreement

12

C 3

CSE 486/586

CSE 486/586 Administrivia
• PA1 grading is done.

– Grades will be posted today after my office hours.
– Will accept re-grading requests from next week, just during

that week.
– Come to see a TA during the following hours and only the

following hours:
» Tuesdays 1pm - 4pm
» Wednesdays 2pm - 5pm
» Thursdays 9 am - 12 pm
» Fridays 9am - 12pm

– Bring your laptop for re-grading. If you don’t have a laptop,
write a private Piazza post and ask what to do.

• PA2A due this Friday

13 CSE 486/586

Ordered Multicast Problem

• Assume a delivery mechanism: deliver as soon as
you receive

– What is the order of delivery at each process?
– Will this mess up anything?

14

P1

P2

P3

M1

M2

CSE 486/586

Example: Bulletin Board

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

• What is the ideal ordering that you want?

• What are the important orderings that you must have?
15

• Authors are message senders.

• The delivery order determines the display order.

CSE 486/586

Ordered Multicast Problem

• We can have different delivery mechanisms.
– We don’t have to deliver as soon as we receive a message.

• Three meaningful types of ordering
– FIFO, Causal, Total

16

P1

P2

P3

M1

M2

CSE 486/586

FIFO Ordering
• Preserving the process (sender) order
• The message delivery order at each receiving

process should preserve the message sending order
from each sender. But each process can deliver in a
different order overall.

• For example,
– P1: m0, m1, m2
– P2: m3, m4, m5
– P3: m6, m7, m8

– Now, each process will receive & deliver all, from m0 to m8.

• FIFO?
– P1: m0, m3, m6, m1, m4, m7, m2, m5, m8
– P2: m0, m4, m6, m1, m3, m7, m2, m5, m8
– P3: m6, m7, m8, m0, m1, m2, m3, m4, m5

17 CSE 486/586

Causal Ordering
• Preserving the happened-before relations
• The message delivery order at each receiving

process should preserve the happened-before
relations across all processes. But each process can
deliver in a different order overall.

• For example,
– P1: m0, m1, m2
– P2: m3, m4, m5
– P3: m6, m7, m8
– Cross-process happened-before: m0 à m4, m5 à m8

• Causal?
– P1: m0, m3, m6, m1, m4, m7, m2, m5, m8
– P2: m0, m4, m1, m7, m3, m6, m2, m5, m8
– P3: m0, m1, m2, m3, m4, m5, m6, m7, m8

18

C 4

CSE 486/586

Total Ordering
• Every process delivers all messages in the same

order.
• For example,

– P1: m0, m1, m2
– P2: m3, m4, m5
– P3: m6, m7, m8

• Total?
– P1: m7, m1, m2, m4, m5, m3, m6, m0, m8
– P2: m7, m1, m2, m4, m5, m3, m6, m0, m8
– P3: m7, m1, m2, m4, m5, m3, m6, m0, m8

• Total?
– P1: m7, m1, m2, m4, m5, m3, m6, m0, m8
– P2: m7, m2, m1, m4, m5, m3, m6, m0, m8
– P3: m7, m1, m2, m4, m5, m3, m6, m8, m0

19 CSE 486/586

Ordered Multicast
• FIFO ordering: If a correct process issues

multicast(g,m) and then multicast(g,m’), then every
correct process that delivers m’ will have already
delivered m.

• Causal ordering: If multicast(g,m) à multicast(g,m’)
then any correct process that delivers m’ will have
already delivered m.

– Typically, à defined in terms of multicast communication
only

• Total ordering: If a correct process delivers message
m before m’ (independent of the senders), then any
other correct process that delivers m’ will have
already delivered m.

20

CSE 486/586

Total, FIFO and Causal Ordering

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

•Totally ordered messages
T1 and T2.

•FIFO-related messages F1
and F2.

•Causally related messages
C1 and C3

•Total ordering does not
imply causal ordering.

• Causal ordering implies
FIFO ordering

• Causal ordering does not
imply total ordering.

• Hybrid mode: causal-total
ordering, FIFO-total
ordering.

21 CSE 486/586

Display From Bulletin Board Program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

What is the most appropriate ordering for this application?
(a) FIFO (b) causal (c) total

22

CSE 486/586

Providing Ordering Guarantees (FIFO)

• Look at messages from each process in the order
they were sent:

– Each process keeps a sequence number for each of the
other processes.

» E.g., in a system with 3 processes, P1 keeps (x, y, z): x for P1,
y for P2, & z for P3 (note: this is not a vector clock)

» Each of x, y, & z indicates the sequence # of the last message
from the corresponding process, delivered by P1.

– When a message is received, if message # is:
» as expected (next sequence), accept
» higher than expected, buffer in a queue
» lower than expected, reject

23 CSE 486/586

Hold-back Queue for Arrived Multicast
Messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

24

C 5

CSE 486/586

Implementing FIFO Ordering
• Spg: the number of messages p has sent to g.
• Rqg: the sequence number of the latest group-g

message p has delivered from q.
• For p to FO-multicast m to g

– p increments Sp
g by 1.

– p “piggy-backs” the value Sp
g onto the message.

– p B-multicasts m to g.

• At process p, Upon receipt of m from q with
sequence number S:

– p checks whether S= Rq
g+1. If so, p FO-delivers m and

increments Rq
g

– If S > Rq
g+1, p places the message in the hold-back queue

until the intervening messages have been delivered and S=
Rq

g+1.

25 CSE 486/586

Example: FIFO Multicast

P1

P2

P3

0 0 0

Physical Time

1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

1 1 2 2 1

1

Reject:
1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0

Buffer
2>0 +1

Accept:
1 = 0 + 1

2 0 0

Accept
Buffer

2 =1 + 1

Accept
1 = 0 + 1

Sequence Vector0 0 0

(do NOT be confused with vector timestamps)

“Accept” = Deliver

26

1

CSE 486/586

Summary
• Reliable Multicast

– Reliability
– Ordering
– R-multicast

• Ordered Multicast
– FIFO ordering
– Total ordering
– Causal ordering

• Next: continue on multicast

27 CSE 486/586 28

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

