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Last Time
• Gossiping

– Multicast
– Failure detection
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Today’s Question
• How do we organize the nodes in a distributed 

system?
• Up to the 90’s

– Prevalent architecture: client-server (or master-slave)

– Unequal responsibilities

• Now
– Emerged architecture: peer-to-peer
– Equal responsibilities

• Today: studying peer-to-peer as a paradigm (not just 
as a file-sharing application, but will still use file-
sharing as the main example)

– Learn the techniques and principles
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Motivation: Distributing a Large File
• A client-server architecture can do it…
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Motivation: Distributing a Large File
• …but sometimes not good enough.

– Limited bandwidth
– One server can only serve so many clients.

• Increase the upload rate from the server-side?
– Higher link bandwidth at the one server

– Multiple servers, each with their own link
– Requires deploying more infrastructure

• Alternative: have the receivers help
– Receivers get a copy of the data
– And then redistribute the data to other receivers

– To reduce the burden on the server
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Motivation: Distributing a Large File
• Peer-to-peer to help
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Challenges of Peer-to-Peer
• Peers come and go

– Peers are intermittently connected
– May come and go at any time
– Or come back with a different IP address

• How to locate the relevant peers?
– Peers that are online right now
– Peers that have the content you want

• How to motivate peers to stay in system?
– Why not leave as soon as download ends?
– Why bother uploading content to anyone else?

• How to download efficiently?
– The faster, the better
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Locating Relevant Peers
• Evolution of peer-to-peer

– Central directory (Napster)

– Query flooding (Gnutella)

– Hierarchical overlay (Kazaa, modern Gnutella)

• Design goals
– Scalability

– Simplicity

– Robustness

– Plausible deniability
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The First: Napster
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1. Query

2. All servers search their lists (ternary tree algo.)

4. ping candidates
5. download from best host

The First: Napster
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The First: Napster
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• Server’s directory continually updated
– Always know what file is currently available
– Point of vulnerability for legal action

• Peer-to-peer file transfer
– No load on the server
– Plausible deniability for legal action (but not enough)

• Proprietary protocol
– Login, search, upload, download, and status operations
– No security: cleartext passwords and other vulnerability

• Bandwidth issues
– Suppliers ranked by apparent bandwidth & response time

• Limitations:
– Decentralized file transfer, but centralized lookup
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The Second: Gnutella
• Complete decentralization
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The Second: Gnutella
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The Second: Gnutella
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The Second: Gnutella
• Advantages

– Fully decentralized

– Search cost distributed

– Processing per node permits powerful search semantics

• Disadvantages

– Search scope may be quite large

– Search time may be quite long

– High overhead, and nodes come and go often
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The Third: KaAzA
• Middle ground between 

Napster & Gnutella
• Each peer is either a 

group leader (super 
peer) or assigned to a 
group leader

– TCP connection between 
peer and its group leader

– TCP connections between 
some pairs of group 
leaders

• Group leader tracks the 
content in all its children
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The Third: KaZaA
• A supernode stores a directory listing 

(<filename,peer pointer>), similar to Napster servers
• Supernode membership changes over time
• Any peer can become (and stay) a supernode, 

provided it has earned enough reputation
– Kazaalite: participation level (=reputation) of a user between 

0 and 1000, initially 10, then affected by length of periods of 
connectivity and total number of uploads

– More sophisticated reputation schemes invented, especially 
based on economics

• A peer searches by contacting a nearby supernode
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CSE 486/586 Administrivia
• PA2-B is due on 3/13 (Friday).

– Right before Spring break
– Don’t copy!

• Midterm is on 3/11 (Wednesday).
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Now: BitTorrent
• Key motivation: popular content

– Popularity exhibits temporal locality (Flash Crowds)

– E.g., Slashdot/Digg effect, CNN Web site on 9/11, release of 

a new movie or game

• Bram Cohen (the inventor) attended UB.

• Focused on efficient fetching, not searching

– Distribute same file to many peers

– Single publisher, many downloaders

• Preventing free-loading
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Key Feature: Parallel Downloading
• Divide large file into many pieces

– Replicate different pieces on different peers
– A peer with a complete piece can trade with other peers
– Peer can (hopefully) assemble the entire file

• Allows simultaneous downloading
– Retrieving different parts of the file from different peers at 

the same time
– And uploading parts of the file to peers
– Important for very large files

• System Components
– Web server
– Tracker

– Peers
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Tracker
• Infrastructure node

– Keeps track of peers participating in the torrent

• Peers register with the tracker
– Peer registers when it arrives
– Peer periodically informs tracker it is still there

• Tracker selects peers for downloading
– Returns a random set of peers
– Including their IP addresses
– So the new peer knows who to contact for data

• Can be “trackerless” using DHT
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Chunks
• Large file divided into smaller pieces

– Fixed-sized chunks
– Typical chunk size of 256 Kbytes

• Allows simultaneous transfers
– Downloading chunks from different neighbors

– Uploading chunks to other neighbors
• Learning what chunks your neighbors have

– Periodically asking them for a list

• File done when all chunks are downloaded
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BitTorrent Protocol
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BitTorrent Protocol
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BitTorrent Protocol
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BitTorrent Protocol
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BitTorrent Protocol
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BitTorrent Protocol
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BitTorrent Protocol
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Chunk Request Order
• Which chunks to request?

– Could download in order

– Like an HTTP client does

• Problem: many peers have the early chunks
– Peers have little to share with each other

– Limiting the scalability of the system

• Problem: eventually nobody has rare chunks
– E.g., the chunks near the end of the file

– Limiting the ability to complete a download

• Solutions: random selection and rarest first
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Rarest Chunk First
• Which chunks to request first?

– The chunk with the fewest available copies

– I.e., the rarest chunk first

• Benefits to the peer
– Avoid starvation when some peers depart

• Benefits to the system
– Avoid starvation across all peers wanting a file

– Balance load by equalizing # of copies of chunks
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Preventing Free-Riding
• Vast majority of users are free-riders

– Most share no files and answer no queries

– Others limit # of connections or upload speed

• A few “peers” essentially act as servers
– A few individuals contributing to the public good

– Making them hubs that basically act as a server
• BitTorrent prevent free riding

– Allow the fastest peers to download from you

– Occasionally let some free loaders download
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Preventing Free-Riding
• Peer has limited upload bandwidth

– And must share it among multiple peers

• Prioritizing the upload bandwidth: tit for tat
– Favor neighbors that are uploading at highest rate

• Rewarding the top four neighbors
– Measure download bit rates from each neighbor
– Reciprocates by sending to the top four peers
– Recompute and reallocate every 10 seconds
– (Gaming is possible: Just be #4)

• Optimistic unchoking
– Randomly try a new neighbor every 30 seconds
– So new neighbor has a chance to be a better partner
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BitTorrent Today
• Significant fraction of Internet traffic

– Estimated at 30%

– Though this is hard to measure

• Problem of incomplete downloads
– Peers leave the system when done

– Many file downloads never complete

– Especially a problem for less popular content

• Still lots of legal questions remains
• Further need for incentives
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Summary
• Evolution of peer-to-peer

– Central directory (Napster)

– Query flooding (Gnutella)

– Hierarchical overlay (Kazaa, modern Gnutella)

• BitTorrent
– Focuses on parallel download

– Prevents free-riding

• Next: Distributed Hash Tables
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