CSE 486/586 Distributed Systems
Distributed Hash Tables

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Last Time

« Evolution of peer-to-peer

— Central directory (Napster)

— Query flooding (Gnutella)

— Hierarchical overlay (Kazaa, modern Gnutella)
« BitTorrent

— Focuses on parallel download

— Prevents free-riding

CSE 486/586

Today’s Question

* How do we organize the nodes in a distributed
system?
* Uptothe 90’s
— Prevalent architecture: client-server (or master-slave)
— Unequal responsibilities
* Now
— Emerged architecture: peer-to-peer
— Equal responsibilities
« Today: studying peer-to-peer as a paradigm

CSE 486/586 3

What We Don’t Want

» Cost (scalability) & no guarantee for lookup

Memory Lookup #Messages
Latency for a lookup
Napster | O(1) o) o)
(O(N)@server)
Gnutella |O(N) O(N) O(N)
(worst case) (worst case) | (worst case)

» Napster: cost not balanced, too much for the server-
side

» Gnutella: cost still not balanced, just too much, no
guarantee for lookup . o0 co0

What We Want
* Functionality: lookup-response
E.g., Gnutella
CSE 486/586
What We Want

) ¥« What data structure provides lookup-response?

» Hash table: data structure that associates keys with

values hash [Toploindex| Values
keys function hashes
00
John Smith
—= 01
S
Lisa Smith =
03
= 04
Sam Doe
05
Sandra Dee ¢
15

* Name-value pairs (or key-value pairs)
— E.g., “http://www.cnn.com/foo.html” and the Web page
- E.g., “BritneyHitMe.mp3” and “12.78.183.2"

CSE 486/586

Hashing Basics

« Hash function

— Function that maps a large, possibly variable-sized datum
into a small datum, often a single integer that serves to
index an associative array

— In short: maps n-bit datum into k buckets (k << 2")

— Provides time- & space-saving data structure for lookup
* Main goals:

— Low cost

— Deterministic

— Uniformity (load balanced)
« E.g., mod

— k buckets (k << 2"), data d (n-bit)

—b=dmod k

— Distributes load uniformly only when data is distributed

uniforml
Y CSE 486/586 7

DHT: Goal

* Let’s build a distributed system with a hash table
abstraction!

o, ¥

lookup(key) mup] ey [valucuap- value

o 0N

CSE 486/586 8

Where to Keep the Hash Table

.

Server-side - Napster
Client-local > Gnutella

What are the requirements (think Napster and
Gnutella)?

— Deterministic lookup

.

.

— Low lookup time (shouldn’t grow linearly with the system
size)

— Should balance load even with node join/leave
What we'll do: partition the hash table and distribute
them among the nodes in the system

We need to choose the right hash function

We also need to somehow partition the table and
distribute the partitions with minimal relocation of
partitions in the presence of join/leave

CSE 486/586 9

.

.

.

Where to Keep the Hash Table

» Consider problem of data partition:
— Given document X, choose one of k servers to use
— Key can be the filename and value can be the document
itself.
» Two-level mapping
— Hashing: Map one (or more) key(s) to a hash value (the
distribution should be balanced)
— Partitioning: Map a hash value to a server (each server load
should be balanced even with node join/leave)
* Let’s look at a simple approach and think about pros
and cons.
— Hashing with mod, and partitioning with buckets

CSE 486/586 10

Using Basic Hashing and Bucket

Partitioning?

» Hashing: Suppose we use modulo hashing
— Number servers 1.k

7. Partitioning: Place X on server i = (X mod k)
— Problem? Data may not be uniformly distributed

Mod Table Index Values
keys hashes
00 Server 0
John Smith
= oL Server 1
-
Lisa Smith - »
03 [
s | 04 []
amses 05 — L4
Sind e s —

CSE 486/586 11

Using Basic Hashing and Bucket
Partitioning?
» Place X on server | = uniform_hash (X) mod k

» Problem?
— What happens if a server fails or joins (k > k*=1)?
— Answer: (Almost) all entries get remapped to new

nodes!
Hash + Table Index Values
keys Mod hashes
00 : Server 0
John Smith
—== 01 Server 1
Lisa Smith -
03 [
_— | o = o
am 05 — L4
S Dee s —_
CSE 486/586 12

CSE 486/586 Administrivia

* PA2-B due on Friday next week, 3/13
* (In class) Midterm on Wednesday (3/11)

— 1-page cheat sheet (front and back)

» Mid-semester course evaluation is up. Please
participate.

 No office hours with Steve today.
* PA2-A grades are posted. Re-grading this week.

CSE 486/586 13

Chord DHT

« A distributed hash table system using consistent
hashing

» Organizes nodes in a ring

» Maintains neighbors for correctness and shortcuts for
performance
* DHT in general
— DHT systems are “structured” peer-to-peer as opposed to
“unstructured” peer-to-peer such as Napster, Gnutella, etc.

— Used as a base system for other systems, e.g., many
“trackerless” BitTorrent clients, Amazon Dynamo, distributed
repositories, distributed file systems, etc.

* It shows an example of principled design.

CSE 486/586 14

Chord Ring: Global Hash Table

Represent the hash key space as a virtual ring
— A ring representation instead of a table representation.

Use a hash function that evenly distributes items
over the hash space, e.g., SHA-1

Map nodes (buckets) in the same rjgg
Used in DHTs, memcached, etc. a0 .ee

.

.

.

.

Id space

represented

as aring.

Hash(name) > object_id
Hash(IP_address) - node_id

CSE 486/586

Chord: Consistent Hashing

« Partitioning: Maps data items to its “successor” node

» Advantages
— Even distribution

— Few changes as
nodes come and go...

Hash(name) - object_id
Hash(IP_address) = node_id

CSE 486/586 16

Chord: When nodes come and go...

» Small changes when nodes come and go

— Only affects mapping of keys mapped to the node that
comes or goes

Hash(name) - object_id
Hash(IP_address) = node_id

CSE 486/586 17

Chord: Node Organization

» Maintain a circularly linked list around the ring
— Every node has a predecessor and successor

» Separate join and leave protocols

pred

node
suce

CSE 486/586 18

Chord: Basic Lookup
Lookup
lookup (id):
if (id > pred.id &&
id <= my.id)
return my.id;
else
return succ.lookup(id);

. bject ID
» Route hop by hop via successors node

— O(n) hops to find destination id

CSE 486/586 19

Chord: Efficient Lookup --- Fingers

« jth entry at peer with id n is first peer with:
- id>= n+2'(mod2™)

Finger Table at N80

T N114
80 + 25 80 + 26

0 96 N20O
1 96 N9G
2 96 80+ 24
3 96 80 +23
4 96 B§0++22‘

80 + 20
5 114
6 20

CSE 486/586 20

Finger Table

« Finding a <key, value> using fingers

CSE 486/586 21

Chord: Efficient Lookup --- Fingers

lookup (id):
if (id > pred.id &&
id <= my.id)
return my.id;
else
// fingers() by decreasing distance
for finger in fingers():
if id >= finger.id
return finger.lookup(id);
return succ.lookup(id);

» Route greedily via distant “finger” nodes
— O(log n) hops to find destination id

CSE 486/586

Chord: Node Joins and Leaves

* When a node joins
— Node does a lookup on its own id
— And learns the node responsible for that id
— This node becomes the new node’s successor

— And the node can learn that node’s predecessor (which will
become the new node’s predecessor)

= Monitor

— If doesn’t respond for some time, find new
* Leave

— Clean (planned) leave: notify the neighbors

— Unclean leave (failure): need an extra mechanism to handle
lost (key, value) pairs, e.g., as Dynamo does.

CSE 486/586 23

Summary
« DHT

— Gives a hash table as an abstraction

— Partitions the hash table and distributes them over the
nodes

— “Structured” peer-to-peer
e Chord DHT
— Based on consistent hashing
— Balances hash table partitions over the nodes
— Basic lookup based on successors
— Efficient lookup through fingers

CSE 486/586 24

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta (UIUC), Michael
Freedman (Princeton), and Jennifer Rexford
(Princeton).

CSE 486/586

