CSE 486/586 Distributed Systems
Consensus

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recap: Finger Table

+ Finding a <key, value> using fingers

CSE 486/586

¥ Let’s Consider This...

Amazon EC2 Service Level Agreement

Effective Date: October 23, 2008

This Amazon EC2 Service Level Agreement (*SLA") is a policy governing the use of the Amazon Elastic Compute Cloud
(*Amazon EC2") under the terms of the Amazon Web Services Customer Agreement (the “AWS Agreement”) between
Amazon Web Services, LLC ("AWS”, “us” or “we") and users of AWS' services ("you"). This SLA applies separately to
each account using Amazon EC2. Unless otherwise provided herein, this SLA is subject to the terms of the AWS
Agreement and capitalized terms will have the meaning specified in the AWS Agreement. We reserve the right to change
the terms of this SLA in accordance with the AWS Agreement.

Service Commitment
AWS will blesassiamake Amazon EC2 available with an Annual Uptime Percentage (defined

below) of at least 99.95% during the Service Year§In the event Amazon EC2 does not meet the Annual Uptime
Percent: 7 ive a Service Credit as described below.

Definitions

“Service Year” is the preceding 365 days from the date of an SLA claim.

“Annual Uptime ge” is calculated by from 100% the of 5 minute periods during
the Service Year in which Amazon EC2 was in the state of "Region Unavailable.” If you have been using
Amazon EC2 for less than 365 days, your Service Year is still the preceding 365 days but any days prior to your
use of the service will be deemed to have had 100% Region Availability. Any downtime occurring prior to a

successful Service Credit claim cannot be used for future claims. Annual Uptime Percentage measurements
exclude downtime resulting directly or indirectly from any Amazon EC2 SLA Exclusion (defined below).

“Region Unavailable” and "Region Unavailability” means that more than one Availability Zone in which you are
running an instance, within the same Region, is “Unavailable” to you.

“Unavailable” means that all of your running instances have no external connectivity during a five minute

One Reason: Impossibility of
Consensus

+ Q: Should Steve give an A to everybody taking CSE
486/5867?

+ Input: everyone says either yes/no.
+ Output: an agreement of yes or no.

* Bad news

— Asynchronous systems cannot guarantee that they will
reach consensus even with one faulty process.

* Many consensus problems

— Reliable, totally-ordered multicast (what we saw already)
— Mutual exclusion, leader election, etc. (what we will see)
— Cannot reach consensus.

CSE 486/586

The Consensus Problem

* N processes
» Each process p has
— input variable x, : initially either 0 or 1
— output variable y, : initially b (b=undecided) — can be
changed only once
+ Consensus problem: Design a protocol so that either
— all non-faulty processes set their output variables to 0
— Or all non-faulty processes set their output variables to 1

— There is at least one initial state that leads to each outcomes
1 and 2 above

CSE 486/586 5

Assumptions (System Model)

* Processes fail only by crash-stopping
+ Synchronous system: bounds on

— Message delays

— Max time for each process step

— e.g., multiprocessor (common clock across processors)
» Asynchronous system: no such bounds

— E.g,, the Internet

CSE 486/586

Example: State Machine Replication

» Run multiple copies of a state machine
+ For what?
— Reliability
+ All copies agree on the order of execution.

» Many mission-critical systems operate like this.
— Air traffic control systems, Warship control systems, etc.

CSE 486/586 7

First: Synchronous Systems

Every process starts with an initial input value (0 or
1).

Every process keeps the history of values received
so far.

» The protocol proceeds in rounds.

At each round, everyone multicasts the history of
values.

+ After all the rounds are done, pick the minimum.

CSE 486/586 8

First: Synchronous Systems

+ For a system with at most f processes crashing, the
algorithm proceeds in f+1 rounds (with timeout),
using basic multicast (B-multicast).

» Values';: the set of proposed values known to
process p=P; at the beginning of round r.

* Initially Values?; = {} ; Values’; = {vi=x,}

for round r = 1 to f+1 do
multicast (Values";)
Values ™1; « Values’;
for each V; received
Values m1; = Values™!; U V;
end
end
Yp=d; = minimum(Values™!;)
CSE 486/586 9

Why Does It Work?

+ Assume that two non-faulty processes differ in their
final set of values - proof by contradiction

+ Suppose p; and p; are these processes.

Assume that p; possesses a value v that p; does not
possess.

Intuition: p;must have consistently missed v in all
rounds. Let's backtrack this.

— = In the last round, some third process, pi, sent v to p;, and
crashed before sending v to p;.

— = Any process sending v in the penultimate round must
have crashed; otherwise, both py and p; should have
received v.

— = Proceeding in this way, we infer at least one crash in
each of the preceding rounds.

— - But we have assumed at most f crashes can occur and

there are f+1 rounds ==> contradiction.
CSE 486/586 10

Second: Asynchronous Systems

* Messages have arbitrary delay, processes arbitrarily
slow
Impossible to guarantee consensus even with a
single process failure

— Insight: a slow process is indistinguishable from a crashed

process

Impossibility applies to any protocol that claims to
solve consensus

+ Proved in a now-famous result by Fischer, Lynch and
Patterson, 1983 (FLP)

— Stopped many distributed system designers dead in their
tracks

— A lot of claims of “reliability” vanished overnight

CSE 486/586 11

4

Are We Doomed?

+ Asynchronous systems (i.e., systems with arbitrary
delays) cannot guarantee that they will reach
consensus even with one faulty process.

+ Key word: “guarantee”

— Does not mean that processes can never reach a
consensus if one is faulty

— Allows room for reaching agreement with some probability
greater than zero

— In practice many systems reach consensus.
» How to get around this?

— Two key things in the result: faulty processes & arbitrary
delays

CSE 486/586 12

Techniques to Overcome
Impossibility
+ Technique 1: masking faults (crash-stop)

— For example, use persistent storage and keep local
checkpoints

— Then upon a failure, restart the process and recover from
the last checkpoint.

— This masks fault, but may introduce arbitrary delays.
» Technique 2: using failure detectors

— For example, if a process is slow, mark it as a failed
process.

— Enforce crash-stop: Actually kill it somehow, or discard all
the messages from that point on (fail-silent)

— This effectively turns an asynchronous system into a
synchronous system

— Failure detectors might not be 100% accurate and requires a
long timeout value to be reasonably accurate.

CSE 486/586 13

CSE 486/586 Administrivia
» PA2-B due on Friday next week (3/15)

— Please do not use someone else’s code!

» Midterm on Wednesday (3/13)

— Cheat sheet allowed (letter-sized, front-and-back, 1-page)

CSE 486/586 14

Recall

» Each process p has a state
— program counter, registers, stack, local variables
— input register xp : initially either 0 or 1
— output register yp : initially b (b=undecided)
» Consensus Problem: Design a protocol so that either
— all non-faulty processes set their output variables to 0
— Or non-faulty all processes set their output variables to 1
— (No trivial solutions allowed)

CSE 486/586 15

Proof of Impossibility: Reminder

+ State machine
— Forget real time, everything is in steps & state transitions.

— Equally applicable to a single process as well as distributed
processes

+ A state (S1) is reachable from another state (SO0) if
there is a sequence of events from SO to S1.

» There an initial state with an initial set of input values.

CSE 486/586 16

send(p’,m)
receive(p’)

may return null

| Global Message Buffer |

“Network”

CSE 486/586 17

Different Definition of “State”

+ State of a process

+ Configuration: = Global state. Collection of states,
one per process; and state of the global buffer
+ Each Event consists atomically of three sub-steps:
— receipt of a message by a process (say p), and
— processing of message, and

— sending out of all necessary messages by p (into the global
message buffer)

* Note: this event is different from the Lamport events
+ Schedule: sequence of events

CSE 486/586 18

Configuration C

Event ¢'=(p’,m)

Schedule s=(¢’,e”)

Event e"=(p”,m”)

Equivalent
CSE 486/586 1

State Valencies

* Let config. C have a set of decision values V
reachable from it
— If|V] = 2, config. C is bivalent

— If[V] = 1, config. C is said to be 0-valent or 1-valent, as is
the case

+ Bivalent means that the outcome is unpredictable
(but still doesn’t mean that consensus is not
guaranteed). Three possibilities:

— Unanimous 0
— Unanimous 1
—0'sand 1’s

CSE 486/586

20

Guaranteeing Consensus

+ If we want to say that a protocol guarantees
consensus (with one faulty process & arbitrary
delays), we should be able to say the following:

+ Consider all possible input sets (i.e., all initial
configurations).

+ For each input set (i.e., for each initial configuration),
the protocol should produce either 0 or 1 even with
one failure for all possible execution paths (runs).

—le.,no“0’s and 1's”
» The impossibility result: We can’t do that.
— l.e., there is always a run that will produce “0’s and 1’s”.

CSE 486/586 21

Lemma 1

Schedules are commutative |

Schedule sl Schedule s2

1s] and s2
1
1=can each be applied

1
1to C
1

The Theorem

* Lemma 2: There exists an initial configuration that is
bivalent

» Lemma 3: Starting from a bivalent config., there is
always another bivalent config. that is reachable

+ Insight: It is not possible to distinguish a faulty node
from a slow node.

» Theorem (Impossibility of Consensus): There is
always a run of events in an asynchronous
distributed system (given any algorithm) such that
the group of processes never reaches consensus
(i.e., always stays bivalent)

CSE 486/586 23

”
1*involve -
'_. e m e \ s2 \ V4 sl
disjoint sets of
receiving processes coE smase
Summary

» Consensus: reaching an agreement
* Possible in synchronous systems

» Asynchronous systems cannot guarantee.

— Asynchronous systems cannot guarantee that they will
reach consensus even with one faulty process.

CSE 486/586

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586

