
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Concurrency Control --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
• Question: How to support transactions?

– Multiple transactions share data.

• Complete serialization is correct
– Use a lock to serialize transactions.

• But performance and abort are two issues.
– For performance: Interleaving transactions

2

CSE 486/586

Handling Abort()
• For serialized transactions, abort() can be done if we

use temporary memory.
• When commit() is invoked at the end of each

transaction, we make the final outcomes permanent
and visible to other transactions.

Transaction T1 Transaction T2
begin() begin()

balance = b.getBalance() bal = b.getBalance()
b.setBalance = (balance*1.1) b.setBalance(bal*1.1)
a.withdraw(balance* 0.1) c.withdraw(bal*0.1)
commit() commit()

3

100 200 300a: b: c:

CSE 486/586

Handling Abort() with Interleaving
• What can go wrong?

4

Transaction V:
a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100);

b.deposit(100)

total = a.getBalance()

total = total+b.getBalance()
total = total+c.getBalance()
...

CSE 486/586

Strict Executions of Transactions
• Problem of interleaving for abort()

– Other transactions could have used intermediate results.

• In order to handle abort(),
– we need to avoid making intermediate states visible before

commit, just in case we need to abort.
– This means that transactions should delay both their read

and write operations on a shared object,
– until all transactions that previously wrote to that object have

either committed or aborted

• This is called strict execution.
• Thus, correctness criteria for transactions:

– Serial equivalence
– Strict execution

5 CSE 486/586

Story Thus Far
• Question: How to support transactions?

– With multiple transactions sharing data

• First strategy: Complete serialization

– One transaction at a time with one big lock

– Correct, but at the cost of performance

• How to improve performance?

– Let’s see if we can interleave different transactions.

• Problem: Not all interleavings produce a correct

outcome

– Serial equivalence & strict execution must be met.

• Now, how do we meet the requirements?

– Overall strategy: using more and more fine-grained locking

– No silver bullet. Fine-grained locks have their own

implications.
6

C 2

CSE 486/586

Using Exclusive Locks
• Exclusive Locks (Avoiding One Big Lock)

Transaction T1 Transaction T2
begin()

balance = b.getBalance() begin()

balance = b.getBalance()

b.setBalance = (balance*1.1)

a.withdraw(balance* 0.1)

commit()

b.setBalance = (balance*1.1)

c.withdraw(balance*0.1)

commit()

7

Lock
B

Lock
A

UnLock
B

UnLock
A Lock

C
UnLock

B
UnLock

C

…

WAIT
on B

Lock
B

…

CSE 486/586

How to Acquire/Release Locks
• Can’t do it naively

• Serially equivalent?
• Strict execution?

8

Transaction T1 Transaction T2
x= a.read()
a.write(20)

y = b.read()
b.write(30)

b.write(x)
a.write(10)

Lock
A

UnLock
A

Lock
B

UnLock
BLock

B

UnLock
B

Lock
A

UnLock
A

CSE 486/586

Using Exclusive Locks
• Two phase locking

– To satisfy serial equivalence

– First phase (growing phase): new locks are acquired

– Second phase (shrinking phase): locks are only released

– A transaction is not allowed to acquire any new lock, once it
has released any one lock

• Strict two phase locking
– To further satisfy strict execution, i.e., to handle abort() &

failures

– Locks are only released at the end of the transaction, either
at commit() or abort(), i.e., the second phase is only
executed at commit() or abort().

• The first example shown before does both. But the
second example does neither.

9 CSE 486/586

CSE 486/586 Administrivia
• Midterm re-grading: This Friday 4 pm – 6 pm during

my office hours

10

CSE 486/586

Story Thus Far
• Question: How to support transactions?

– With multiple transactions sharing data
– One big lock works since it’s complete serialization.
– But performance suffers and it cannot handle abort().

• Interleaving for improved performance
– Serial equivalence

• Abort() for interleaving
– Strict execution

• Now, how do we meet the requirements?
– Overall strategy: using locks
– We looked at exclusive locks.
– We’ll look at two more schemes.

11 CSE 486/586

Can We Do Better?
• What we saw was “exclusive” locks.
• Non-exclusive locks: break a lock into a read lock

and a write lock
• Allows more concurrency

– Read locks can be shared (no harm to share)
– Write locks should be exclusive

12

C 3

CSE 486/586

Non-Exclusive Locks
non-exclusive lock compatibility

Lock already Lock requested
set read write

none OK OK
read OK WAIT
write WAIT WAIT

• A read lock said to be promoted to a write lock when
the transaction needs write access.

• A read lock shared with other transactions’ read
lock(s) cannot be promoted. Transaction waits for
other read locks to be released.

• Cannot demote a write lock to read lock during
transaction – violates the strict 2P principle

13 CSE 486/586

Example: Non-Exclusive Locks

Transaction T1 Transaction T2

begin()
balance = b.getBalance() begin()

… balance = b.getBalance()
… b.setBalance =balance*1.1

Commit

14

R-Lock
B

…

R-
Lock

B

Cannot Promote lock on B, Wait

Promote lock on B

CSE 486/586

A Problem

• What happens in the example below?
Transaction T1 Transaction T2

begin()
balance = b.getBalance() begin()

balance = b.getBalance()
b.setBalance =balance*1.1

b.setBalance=balance*1.1

15

R-Lock
B

…

R-Lock
B

Cannot Promote lock on B, Wait

Cannot Promote lock on B, Wait

…

CSE 486/586

Deadlock Conditions
• Necessary conditions

– Non-sharable resources (locked objects)
– No lock preemption
– Hold & wait or circular wait

16

T U

Wait
for

Held by

Held byWait
for

A
B T

U

Wait
for

Held by

Held byWait
for

A
B

V
W

...

...

Wait
for

Wait
for

Held by

Held by

Hold & Wait Circular Wait

CSE 486/586

Preventing Deadlocks
• Acquiring all locks at once

• Acquiring locks in a predefined order

• Not always practical:

– Transactions might not know which locks they will need in

the future

• One strategy: timeout

– If we design each transaction to be short and fast, then we

can abort() after some period of time.

17 CSE 486/586

• Three types of locks: read lock, write lock, commit
lock

– Acquiring a commit lock only happens at commit().
– Transaction cannot get a read or write lock if there is a

commit lock
– Read and write (from different transactions) can go

concurrently.

• What can go wrong with this?
– Read-write conflicts (but no write-write conflict)

Even More: Two-Version Locking

lock compatibility
Lock already Lock requested

set read write commit
none OK OK OK
read OK OK WAIT
write OK WAIT WAIT
commit WAIT WAIT WAIT

18

C 4

CSE 486/586

Two-Version Locking
• Allow writing tentative versions of objects

– Letting other transactions read from the previously
committed version

– Optimistic writes: this works well if there’s little chance of

read-write conflicts.

• At commit(),
– Promote all the write locks of the transaction into commit

locks

– If any objects have outstanding read locks, transaction must
wait until the transactions that set these locks have
completed and locks are released

19 CSE 486/586

Two-Version Locking
• This allows for more concurrency than read-write

locks.
• Writing transactions risk waiting when commit
• Read operations wait only if another transaction is

committing the same object
• Read operations of one transaction can cause a

delay in the committing of other transactions

20

CSE 486/586

Summary
• Strict Execution

– Delaying both their read and write operations on an object
until all transactions that previously wrote that object have
either committed or aborted

• Strict execution with exclusive locks
– Strict 2PL

• Increasing concurrency
– Non-exclusive locks
– Two-version locks
– Etc.

21 CSE 486/586 22

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

