
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Concurrency Control --- 3

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap
• Strict execution of transactions?

– Delay both their read and write operations on an object until 
all transactions that previously wrote that object have either 
committed or aborted

• Two phase locking?
– Growing phase
– Shrinking phase

• Strict two phase locking?
– Release locks only at either commit() or abort()

2

CSE 486/586

CSE 486/586 Administrivia
• PA3 deadline: 4/8 (Friday)
• PA2-B & Midterm grades on UBLearns
• I will post midterm (letter) grades to show you where 

you are at this point.

3 CSE 486/586

Distributed Transactions
• Transactions that invoke operations at multiple 

servers

4

T

A

Y

Z

B

C

D

T

T
1

T
2

T11

T12

T21

T22

A

B

C

D

F

H

K

Flat Distributed Transaction Nested Distributed Transaction

X

CSE 486/586

Coordinator and Participants
• Coordinator

– In charge of begin, 
commit, and abort

• Participants
– Server processes 

that handle local 
operations

5

T

A

Y

Z

B

C

D

X

join

join

join

Coordinator
Participant

Participant

Participant

Coordinator & Participants
CSE 486/586

Atomic Commit Problem
• Atomicity principle requires that either all the 

distributed operations of a transaction complete, or 
all abort.

• At some stage, client executes commit(). Now, 
atomicity requires that either all participants 
(remember these are on the server side) and the 
coordinator commit or all abort.

• What problem statement is this?
• Consensus

• Failure model
• Arbitrary message delay & loss
• Crash-recovery with persistent storage

6



C 2

CSE 486/586

Atomic Commit
• We need to ensure safety in real-life implementation.

• Never have some agreeing to commit, and others agreeing 
to abort.

• First cut: one-phase commit protocol. The 
coordinator communicates either commit or abort, to 
all participants until all acknowledge.

• What can go wrong?
• Does not allow participant to abort the transaction, e.g., 

under deadlock.
• Doesn’t work well with failures (e.g., when a participant 

crashes before receiving this message). Need to have some 
extra mechanism.

7 CSE 486/586

Two-Phase Commit (Handling Abort)
• First phase

• Coordinator collects a vote (commit or abort) from each 
participant (which stores partial results in permanent storage 
before voting). 

• Second phase
• If all participants want to commit, coordinator multicasts 

commit message
• If any participant has aborted, coordinator multicasts abort 

message to all participants

8

CSE 486/586

Two-Phase Commit
• Communication

9

canCommit?

Yes
doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)
prepared to commit

committed

statusstepstatus

CSE 486/586

Dealing with Failures
• To deal with server crashes

• Each participant saves tentative updates into permanent 
storage, right before replying yes/no in first phase. 
Retrievable after crash recovery.

• To deal with canCommit? loss
• May abort after a timeout

• To deal with Yes/No loss, the coordinator aborts the 
transaction after a timeout (pessimistic). It must 
announce doAbort to those who sent in their votes.

• To deal with doCommit loss
• The participant may wait for a timeout, send a getDecision

request (retries until reply received) – cannot abort after 
having voted Yes but before receiving doCommit/doAbort!

10

CSE 486/586

Problems with 2PC
• It’s a blocking protocol.
• Scalability issues

11 CSE 486/586

Summary
• Increasing concurrency

– Non-exclusive locks

– Two-version locks

– Hierarchical locks

• Distributed transactions
– One-phase commit cannot handle failures & abort well

– Two-phase commit mitigates the problems of one-phase 
commit

– Two-phase commit has its own limitation: blocking

12



C 3

CSE 486/586 13

Acknowledgements
• These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC).


