
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Remote Procedure Call

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recall?

2

TCP UDP

IP

Device Drivers

Network Interface

OS

App

Socket API

CSE 486/586

Socket API

3

socket()

bind()

listen()

accept()

read()

write()

Server

block

process

request

Client

socket()

connect()

write()

establish

connection

send request

read()

send response

CSE 486/586

What’s Wrong with Socket API?
• Low-level read/write
• Communication oriented
• Same sequence of calls, repeated many times
• Etc, etc…
• Not programmer friendly

4

CSE 486/586

Another Abstraction
• RPC (Remote Procedure Call)

– Goal: it should appear that the programmer is calling a local 
function

– Mechanism to enable function calls between different 
processes

– First proposed in the 80’s

• Examples
– Sun RPC
– Java RMI
– CORBA

• Other examples that borrow the idea
– XML-RPC
– Android Bound Services with AIDL
– Google Protocol Buffers

5 CSE 486/586

RPC
• Client
int main (…)
{

…
rpc_call(…);
…

}

• Server
…

void rpc_call(…) {
…

}

…

6



C 2

CSE 486/586

Local Procedure Call
• E.g., x = local_call(“str”);
• The compiler generates code to transfer necessary 

things to local_call
– Push the parameters to the stack
– Call local_call

• The compiler also generates code to execute the 
local call.

– Assigns registers
– Adjust stack pointers
– Saves the return value

– Calls the return instruction

7 CSE 486/586

Remote Procedure Call
• Give an illusion of doing a local call
• Closer to the programmers

– Language-level construct, not OS-level support

• What are some of the challenges?
– How do you know that there are remote calls available?
– How do you pass the parameters?
– How do you find the correct server process?
– How do you get the return value?

8

CSE 486/586

Stub, Marshalling, & Unmarshalling
• Stub functions: local interface to make it appear that 

the call is local.
• Marshalling: the act of taking a collection of data 

items (platform dependent) and assembling them into 
the external data representation (platform 
independent).

• Unmarshalling: the process of disassembling data 
that is in external data representation form, into a 
locally interpretable form.

9 CSE 486/586

RPC Process

10

Client Process

Client Function

Client Stub

Socket API

Server Process

Server Function

Server Stub

Socket API

Marshalling/unmarshalling

CSE 486/586

CSE 486/586 Administrivia
• Will post mid-semester grades this week
• PA3 is due this Friday.

11 CSE 486/586

Invocation Semantics Due to 
Failures
• Local calls do not fail.
• Remote calls might fail.
• Programmers should deal with this.

– No transparency here

12



C 3

CSE 486/586

Failure Modes of RPC

Execute

Reply

correct 
function

Execute,
Crash

Request

Crash

Request

Request

Execute

Reply

Execute

Reply

crash 
before 
reply 

crash 
before 
execution

lost 
request

Channel 
fails 
during 
reply 

Client 
machine 
fails 
before 
receiving 
reply 

13 CSE 486/586

Invocation Semantics
• Local procedure call: exactly-once
• Remote procedure call:

– 0 times: server crashed or server process died before 
executing server code

– 1 time: everything worked well, as expected
– 1 or more: excess latency or lost reply from server and client 

retransmission

• When do these make sense?
– Idempotent functions: OK to run any number of times
– Non-idempotent functions: cannot do it

• What we can offer
– At least once
– At most once

14

CSE 486/586

Invocation Semantics
• Design choices that you can make (depends on what 

your server function does---idempotent or non-
idempotent)

15

Fault tolerance measures Invocation 
semantics

Retransmit request 
message

Duplicate 
filtering

Re-execute procedure 
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit old reply At-most-once

At-least-once

Maybe

CSE 486/586

How Do You Generate Stubs?
• Ever heard of C/C++, Java, Python syntax for RPC?

– None!

• Language compilers don’t generate client and server 
stubs.

• Common solution: use a separate language and a 
pre-compiler

16

CSE 486/586

Interface Definition Language (IDL)
• Allow programmers to express remote procedures, 

e.g., names, parameters, and return values.
• Pre-compilers take this and generate stubs, 

marshalling/unmarshalling mechanisms.
• Similar to writing function definitions

17 CSE 486/586

Example: SUN XDR

18

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs {

FileIdentifier f;

FilePointer position;

Length length;

};

program FILEREADWRITE {

version VERSION {

void WRITE(writeargs)=1;

Data READ(readargs)=2;

}=2;

} = 9999;



C 4

CSE 486/586

Stub Generation

19

Interface 
Specification

Stub 
Generator

Server
Stub

Common
Header

Client 
Stub

Client
Source 

RPC
LIBRARY

Server
Source 

Compiler / Linker

RPC
LIBRARY

Client
Program 

Server

Program

Compiler / Linker

e.g., in SUN XDR e.g., rpcgen

gcc

.o, .exe

.o, .exe

.c

.c

.c

.c

.h

gcc

CSE 486/586

How Do You Find the Server 
Process?
• Solution 1

– Central DB (the first solution proposed)

• Solution 2
– Local DB with a well-known port (SUN RPC)

20

CSE 486/586

Local DB with Well-Known Port

21

Client
Program 

Server
procedureServer

Stub

Client 
Stub

Network 
Code

Port Mapper
SERVER

CLIENT
Finding An RPC:

RPCs live on specific hosts at 
specific ports.
Port mapper on the host maps 
from RPC name to port#

When a server process is 
initialized, it registers its RPCs
(handle) with the port mapper
on the server
A client first connects to port 
mapper (daemon on standard 
port) to get this handle
The call to RPC is then made 
by connecting to the 
corresponding port

CSE 486/586

How to Pass Parameters?
• Pass by value: no problem

– Just copy the value

• What about pointers/references?

– Need to copy the actual data as well

– Marshall them at the client and unmarshall them at the 

server

– Pass the local pointers/references

• What about complex data structures? struct, class, 

etc.

– Need to have a platform independent way of representing 

data

22

CSE 486/586

External Data Representation
• Commonly called serialization
• Communication between two heterogeneous 

machines
– Different byte ordering (big-endian & little-endian)
– Different sizes of integers and other types
– Different floating point representations
– Different character sets
– Alignment requirements

• Used in general contexts, not just in RPCs
• Many protocols exist

– Java serialization, Google ProtoBuf, etc.

23 CSE 486/586

Example: Remote Method Invocation 
(RMI)

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B's class
& dispatcher

remote
client server

Process P1 (�client�) Process P2 (�server�)

24



C 5

CSE 486/586

Summary 
• RPC enables programmers to call functions in 

remote processes.
• IDL (Interface Definition Language) allows 

programmers to define remote procedure calls.
• Stubs are used to make it appear that the call is 

local.
• Semantics

– Cannot provide exactly once 

– At least once

– At most once

– Depends on the application requirements

25 CSE 486/586 26

Acknowledgements
• These slides contain material developed and 

copyrighted by Indranil Gupta (UIUC).


