CSE 486/586 Distributed Systems
Remote Procedure Call

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recall?

Socket API 1‘

P

Device Drivers

Network Interface

CSE 486/586

Socket API
Server

i socketv() 1

! bind() '

! v ! Client
1 listen() 1

. socket()

1 I cstablish

« accept() -

1 | 1 connection _’ connect()

send request

read()

process
request
send response

write() ‘> =l

CSE 486/586

/” What's Wrong with Socket API?

 Low-level read/write

» Communication oriented

» Same sequence of calls, repeated many times
« Etc, etc...

* Not programmer friendly

CSE 486/586

Another Abstraction

* RPC (Remote Procedure Call)

— Goal: it should appear that the programmer is calling a local
function

— Mechanism to enable function calls between different
processes

— First proposed in the 80’s
* Examples
— Sun RPC
— Java RMI
— CORBA
« Other examples that borrow the idea
— XML-RPC
— Android Bound Services with AIDL
— Google Protocol Buffers

CSE 486/586

RPC

* Client » Server
int main (...)

{

void rpc_call(...) {
rpc_call(...); <
}

CSE 486/586

Local Procedure Call

* E.g., x =local_call(“str”);
« The compiler generates code to transfer necessary
things to local_call
— Push the parameters to the stack
— Call local_call
« The compiler also generates code to execute the
local call.
— Assigns registers
— Adjust stack pointers
— Saves the return value

— Calls the return instruction

CSE 486/586

Remote Procedure Call

» Give an illusion of doing a local call
« Closer to the programmers
— Language-level construct, not OS-level support
* What are some of the challenges?
— How do you know that there are remote calls available?
— How do you pass the parameters?
— How do you find the correct server process?
— How do you get the return value?

CSE 486/586

Stub, Marshalling, & Unmarshalling

« Stub functions: local interface to make it appear that
the call is local.

» Marshalling: the act of taking a collection of data
items (platform dependent) and assembling them into
the external data representation (platform
independent).

» Unmarshalling: the process of disassembling data
that is in external data representation form, into a
locally interpretable form.

CSE 486/586 9

RPC Process

Client Process

Client Function

Server Function

Server Stub

()

: Socket API

Client Stub

Marshalling/unmarghalling

Socket API

CSE 486/586

Server Process

10

CSE 486/586 Administrivia

» Will post mid-semester grades this week
» PA3 is due this Friday.

CSE 486/586 11

Invocation Semantics Due to
Failures

* Local calls do not fail.

» Remote calls might fail.

» Programmers should deal with this.
— No transparency here

CSE 486/586

Failure Modes of RPC

correct lost
function request

Channel
\ fails
durin

crash uring

before

\ reply

o Client
fails
crash
o
execution > Iving
reply

CSE 486/586 13

reply

Invocation Semantics

« Local procedure call: exactly-once

» Remote procedure call:

— 0 times: server crashed or server process died before
executing server code

— 1 time: everything worked well, as expected

— 1 or more: excess latency or lost reply from server and client
retransmission

) ¥« When do these make sense?

— Idempotent functions: OK to run any number of times
— Non-idempotent functions: cannot do it
» What we can offer
— At least once
— At most once

CSE 486/586 14

Invocation Semantics

« Design choices that you can make (depends on what
your server function does---idempotent or non-
idempotent)

Fault tolerance measures Invm‘a[_mn
semantics
Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
No Not applicable Not applicable Maybe
Yes No Re-execute procedure At-least-once
Yes Yes Retransmit old reply ~ At-most-once
CSE 486/586 15

How Do You Generate Stubs?
 Ever heard of C/C++, Java, Python syntax for RPC?

— Nonel!

» Language compilers don’t generate client and server
stubs.

» Common solution: use a separate language and a
pre-compiler

CSE 486/586 16

Interface Definition Language (IDL)

« Allow programmers to express remote procedures,
e.g., names, parameters, and return values.

» Pre-compilers take this and generate stubs,
marshalling/unmarshalling mechanisms.

« Similar to writing function definitions

CSE 486/586 17

Example: SUN XDR

const MAX = 1000;
struct readargs {
typedef int Fileldentifier; Fileldentifier f:

typedef int FilePointer; FilePointer position;

typedef int Length; Length length;
struct Data {
int length;

char buffer[MAX]; program FILEREADWRITE {

b version VERSION {

struct writeargs {

Fileldentifier f;

void WRITE(writeargs)=1;

Data READ(readargs)=2;
FilePointer position; 1=2;

Data data; 2 = 9999; 18

3 CSE 486/586

Stub Generation

Compiler / Linker

gce

.0, .exe

Interface Stub
Specification Generator

e.g., in SUNXDR e.g., rpcgen

Common] RPC
UGS LIBRARY

Client Client c
Stub Source
.0, .exe |
Compiler / Linker gcg|
CSE 486/586 19

How Do You Find the Server
Process?
« Solution 1
— Central DB (the first solution proposed)
« Solution 2
— Local DB with a well-known port (SUN RPC)

CSE 486/586 20

Local DB with Well-Known Port

Einding An RPC:
CLIENT
RPCs live on specific hosts at
Tt specific ports.
P Port mapper on the host maps
e from RPC name to port#
Code
When a server process is
initialized, it registers its RPCs
I (handle) with the port mapper
on the server
mapper (daemon on standard
port) to get this handle

Server The call to RPC is then made

procedure by connecting to the

A client first connects to port

corresponding port

CSE 486/586 21

&

How to Pass Parameters?

« Pass by value: no problem
— Just copy the value

» What about pointers/references?
— Need to copy the actual data as well

— Marshall them at the client and unmarshall them at the
server

— Pass the local pointers/references
» What about complex data structures? struct, class,
etc.

— Need to have a platform independent way of representing
data

CSE 486/586

External Data Representation

» Commonly called serialization

« Communication between two heterogeneous
machines
— Different byte ordering (big-endian & little-endian)
— Different sizes of integers and other types
— Different floating point representations
— Different character sets
— Alignment requirements
» Used in general contexts, not just in RPCs
» Many protocols exist
— Java serialization, Google ProtoBuf, etc.

CSE 486/586 23

Example: Remote Method Invocation
(RMI)

Process P1 (“client”) Process P2 (“server”)

client server

object A proxy for

Remote Communication Communication Remote reference
reference module module module module

remote
object B

skeleton
& dispatcher
Jfor B's clasy/

Request

)

Reply

CSE 486/586 24

Summary

* RPC enables programmers to call functions in
remote processes.

IDL (Interface Definition Language) allows

programmers to define remote procedure calls.

« Stubs are used to make it appear that the call is
local.

» Semantics

— Cannot provide exactly once

— At least once

— At most once

— Depends on the application requirements

CSE 486/586 25

Acknowledgements

» These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586

