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Socket API
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What’s Wrong with Socket API?
• Low-level read/write
• Communication oriented
• Same sequence of calls, repeated many times
• Etc, etc…
• Not programmer friendly
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Another Abstraction
• RPC (Remote Procedure Call)

– Goal: it should appear that the programmer is calling a local 
function

– Mechanism to enable function calls between different 
processes

– First proposed in the 80’s

• Examples
– Sun RPC
– Java RMI
– CORBA

• Other examples that borrow the idea
– XML-RPC
– Android Bound Services with AIDL
– Google Protocol Buffers
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RPC
• Client
int main (…)
{

…
rpc_call(…);
…

}

• Server
…

void rpc_call(…) {
…

}

…
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Local Procedure Call
• E.g., x = local_call(“str”);
• The compiler generates code to transfer necessary 

things to local_call
– Push the parameters to the stack
– Call local_call

• The compiler also generates code to execute the 
local call.

– Assigns registers
– Adjust stack pointers
– Saves the return value

– Calls the return instruction
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Remote Procedure Call
• Give an illusion of doing a local call
• Closer to the programmers

– Language-level construct, not OS-level support

• What are some of the challenges?
– How do you know that there are remote calls available?
– How do you pass the parameters?
– How do you find the correct server process?
– How do you get the return value?
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Stub, Marshalling, & Unmarshalling
• Stub functions: local interface to make it appear that 

the call is local.
• Marshalling: the act of taking a collection of data 

items (platform dependent) and assembling them into 
the external data representation (platform 
independent).

• Unmarshalling: the process of disassembling data 
that is in external data representation form, into a 
locally interpretable form.
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RPC Process
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CSE 486/586 Administrivia
• Will post mid-semester grades this week
• PA3 is due this Friday.
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Invocation Semantics Due to 
Failures
• Local calls do not fail.
• Remote calls might fail.
• Programmers should deal with this.

– No transparency here

12



C 3

CSE 486/586

Failure Modes of RPC
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Invocation Semantics
• Local procedure call: exactly-once
• Remote procedure call:

– 0 times: server crashed or server process died before 
executing server code

– 1 time: everything worked well, as expected
– 1 or more: excess latency or lost reply from server and client 

retransmission

• When do these make sense?
– Idempotent functions: OK to run any number of times
– Non-idempotent functions: cannot do it

• What we can offer
– At least once
– At most once
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Invocation Semantics
• Design choices that you can make (depends on what 

your server function does---idempotent or non-
idempotent)
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How Do You Generate Stubs?
• Ever heard of C/C++, Java, Python syntax for RPC?

– None!

• Language compilers don’t generate client and server 
stubs.

• Common solution: use a separate language and a 
pre-compiler
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Interface Definition Language (IDL)
• Allow programmers to express remote procedures, 

e.g., names, parameters, and return values.
• Pre-compilers take this and generate stubs, 

marshalling/unmarshalling mechanisms.
• Similar to writing function definitions
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Example: SUN XDR
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const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

int length;

char buffer[MAX];

};

struct writeargs {

FileIdentifier f;

FilePointer position;

Data data;

};

struct readargs {

FileIdentifier f;

FilePointer position;

Length length;

};

program FILEREADWRITE {

version VERSION {

void WRITE(writeargs)=1;

Data READ(readargs)=2;

}=2;

} = 9999;
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Stub Generation
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How Do You Find the Server 
Process?
• Solution 1

– Central DB (the first solution proposed)

• Solution 2
– Local DB with a well-known port (SUN RPC)
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Local DB with Well-Known Port
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Finding An RPC:

RPCs live on specific hosts at 
specific ports.
Port mapper on the host maps 
from RPC name to port#

When a server process is 
initialized, it registers its RPCs
(handle) with the port mapper
on the server
A client first connects to port 
mapper (daemon on standard 
port) to get this handle
The call to RPC is then made 
by connecting to the 
corresponding port

CSE 486/586

How to Pass Parameters?
• Pass by value: no problem

– Just copy the value

• What about pointers/references?

– Need to copy the actual data as well

– Marshall them at the client and unmarshall them at the 

server

– Pass the local pointers/references

• What about complex data structures? struct, class, 

etc.

– Need to have a platform independent way of representing 

data
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External Data Representation
• Commonly called serialization
• Communication between two heterogeneous 

machines
– Different byte ordering (big-endian & little-endian)
– Different sizes of integers and other types
– Different floating point representations
– Different character sets
– Alignment requirements

• Used in general contexts, not just in RPCs
• Many protocols exist

– Java serialization, Google ProtoBuf, etc.
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Example: Remote Method Invocation 
(RMI)

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication
modulemodulereference module module

for B's class
& dispatcher

remote
client server

Process P1 (�client�) Process P2 (�server�)
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Summary 
• RPC enables programmers to call functions in 

remote processes.
• IDL (Interface Definition Language) allows 

programmers to define remote procedure calls.
• Stubs are used to make it appear that the call is 

local.
• Semantics

– Cannot provide exactly once 

– At least once

– At most once

– Depends on the application requirements
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