CSE 486/586 Distributed Systems
Cache Coherence

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Storage to Memory

» We've looked at storage consistency.

» The same consistency models are equally applicable
to memory.

— Think multiple threads accessing the same memory
addresses

» But a memory system can have another form of
consistency mainly for managing caches. We'll look
at this today.

— In a multi-core system, there are many caches, and they
need to be synchronized.

CSE 486/586

Caching Basics: CPU-Memory
Bottleneck

A
\ 4

CPU Memory

Performance of high-speed computers is usually
limited by memory bandwidth & latency

e Latency (time for a single access)
Memory access time >> Processor cycle time
Problematic

e Bandwidth (number of accesses per unit time)
Increase the bus size, etc.
Usually OK

COE 486/586 3

Physical Size Affects Latency

Memory Hierarchy

® S;\;g{l, ® Big, Slow
CPU Memory Memory
(RF, SRAM) (DRAM)

holds frequently used data

e capacity: Register << SRAM << DRAM (cost)

e latency: Register << SRAM << DRAM (size)

e bandwidth: on-chip >> off-chip (delays)
On a data access:

if data e fast memory = low latency access (SRAM)
If data ¢ fast memory = long latency access (DRAM)

CSE 486/586 5

CPU
CPU
all
emory Big Memory
« Signals have
further to travel
« Fan out to more
locations
CSE 486/586
Inside a Cache
Address Address
Processor Main
CACHE Memory
7 Data . .. Data
copy of mam copy of main
memory.-* memory ..
location 10 location 101 ™.,
100 |Byte] Byt -=-- |)—) Line
b= 304 8&: I
Address £848 -
Tag 416 |
—
Q —— [1> oata Block

CSE 486/586

Cache Read

Look at Processor Address, search cache tags to find match. Then
either

Found in cache Not in cache
a.k.a. HIT a.k.a. MISS
Return copy Read block of data from
of data from Main Memory
cache
Wait ...

Return data to processor

and update cache

(Use a replacement algorithm

to select a line to replace)
CSE 486/586

Cache Write
e Cache hit:

— write through: write both cache & memory

— write back: write cache only, memory is written only when
the entry is evicted

» Cache miss:
— no write allocate: only write to main memory
— write allocate (aka fetch on write): fetch into cache

» Common combinations:
— write through and no write allocate
— write back with write allocate

CSE 486/586 8

Administrivia

» PA3 grading still going on

« This Friday, no recitation, undergrad office hours
from 2 pm — 4 pm & general office hours from 4 pm —
5pm

COE 486/586 9

Memory Coherence in SMPs

CPU-1 CPU-2

A 100 cache-1 A 100 cache-2

=TT TER—

A 100 memory

Suppose CPU-1 updates A to 200.
write-back: memory and cache-2 have stale values
write-through: cache-2 has a stale value

5
/Do these stale values matter?

What kind of guarantee do you get?

COE 486/586

Cache Coherence

* A cache coherence protocol ensures that all writes
by one processor are eventually visible to other
processors

— i.e., updates are not lost

— You can consider this a hardware-based update propagation
mechanism for distributed caches.

e Hardware support is required such that
- only one processor at a time has write permission
for a location
- no processor can load a stale copy of the location
after a write

CSE 486/586

Cache Coherence

* A memory system is coherent if:

A read by a processor P to a location X that follows a
write by P to X, with no writes of X by another
processor occurring between the write and the read
by P, always returns the value written by P.

A read by a processor to location X that follows a
write by another processor to X returns the written
value if the read and write are sufficiently separated
in time and no other writes to X occur between the
two accesses.

Writes to the same location are serialized; that is, two
writes to the same location by any two processors
are seen in the same order by all processors.
(Coherence provides per-location sequential
consistency).

CSE 486/586 12

One Design: Snoopy Cache

A 100 cache-1 A 100 cache-2

A 100 memory

+ Cache controllers work together to maintain cache
coherence.

» Cache controllers send commands to the bus.

» Each cache controller snoops on the bus traffic to
catch various commands and follow them.

CSE 486/586 13

Snoopy Cache Coherence Protocol

» Each cache line has a state:
— M (modified): no other cache has a copy and the processor can
write to it.

— S (shared): other caches might have a copy as well.

— | (invalid): the data is no longer valid.
+ Ifacachelineis in S, then only read is possible.
« If a cache line is in M, then write is possible as well.
» Writing to a cache line

— Ifit's M, the cache controller does the write.

— Ifitis not M, it sends an invalidation request to other caches,
switches the state to M, and does the write.

— Other cache controllers switch the state to I.
* Reading a memory address
— Ifit's a hit, read it.
— Ifit's not a hit, read it from memory, and other cache controllers
switch the state to S.

CSE 486/586 14

(

Cache State Transition Diagram
The MSI protocol

Each cache line has state bits M: Modified

S: Shared
I l l Address tag I I: Invalid
‘state
bits Write miss
(P1 gets line from memory, Py reads
Other processor reads, or writes
(P1 writes back)
Read miss Other processor

P1 gets line frongmemory) intent to write

Other processor
intent to write

Read by an

processor Cache state in

processor Py

15

COE 486/586

Two Processor Example

(Reading and writing the same cache line)

P: reads
P reads Py P2 reads, or writes
P writes P1 writes back s
P2 reads Write miss
.
P2 writes o
L P2 intent to write
P1 reads o _Q@(\
P1 writes Read v
miss
P2 writes ..
P: writes P intent to write
P P2 reads
2 P: reads,
P2 writes backs == or writes
/ Write miss
o
” . ‘(\“0 P intent to write
2
&
REA0 gy P
miss LR NN NN NN
P intent to write

COE 486/586

Observations

P1 reads

Other processor reads or writes

P1 writes back Write miss

Other processor
intent to write

Other processor
intent to write

processor
* 2 bits used for 3 states

— There’s room for one more state
« Sindicates that sharing is possible, but not definite.

— From S to M, there’s always invalidation requests, even when

it's not actually shared. 17
CSE 486/586

MESI: An Enhanced MSI protocol

increased performance for private data

Each cache line has a tag M: Modified Exclusive =
E: Exclusive but unmodified

I]] Address tag I S: Shared
State I: Invalid
it
bits Write misg
) P1 write P1 read
P1 write Read miss,
or read not shared

Other processor readq
P, writes baci

Other processor
intent to write

Read miss, \
shared writes back

Read by an Other processor

processor intent to write Cache state in

processor Py
CSE 486/586 !

Scalable Approach: Directories

» Every memory block has associated directory
information

— keeps track of copies of cached blocks and their states

— on a miss, find directory entry, look it up, and communicate
only with the nodes that have copies if necessary

— in scalable networks, communication with directory and
copies is through network transactions

— Many alternatives for organizing directory information

« k processors.

Interconnection Network k presence-bits, 1 dirty-bit
« With each cache-block in cache:

« With each cache-block in memory:

Summary

+ Cache coherence
— Making sure that caches do not contain stale copies.

* Snoopy cache coherence
— MSI
- MESI

* Directory-based
— Uses a directory per memory block

CSE 486/586 20

Memory Directory 1 valid bit, and 1 dirty (owner) bit
presence bi't: di:ty bit »
CSE 486/586
Acknowledgements

» These slides heavily contain material developed and
copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)
* And also by:
- Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

* MIT material derived from course 6.823
» UCB material derived from course CS252

COE 486/586 21

