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Storage to Memory 
• We’ve looked at storage consistency.

• The same consistency models are equally applicable 
to memory.

– Think multiple threads accessing the same memory 
addresses

• But a memory system can have another form of 
consistency mainly for managing caches. We’ll look 
at this today.

– In a multi-core system, there are many caches, and they 

need to be synchronized.

2

CSE 486/586 3

Caching Basics: CPU-Memory 
Bottleneck

MemoryCPU

Performance of high-speed computers is usually
limited by memory bandwidth & latency

• Latency (time for a single access)
Memory access time >> Processor cycle time
Problematic

• Bandwidth (number of accesses per unit time)
Increase the bus size, etc.
Usually OK
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Physical Size Affects Latency
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Small 
Memory

CPU

Big Memory

CPU

• Signals have 
further to travel

• Fan out to more 
locations
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Memory Hierarchy

Small,
Fast 

Memory
(RF, SRAM)

• capacity: Register << SRAM << DRAM    (cost)
• latency: Register << SRAM << DRAM    (size)
• bandwidth: on-chip >> off-chip         (delays)

On a data access:
if data Î fast memory Þ low latency access (SRAM)
If data Ï fast memory Þ long latency access (DRAM)

CPU
Big, Slow 
Memory
(DRAM)

A B

holds frequently used data
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Inside a Cache
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Cache Read

Look at Processor Address, search cache tags to find match.  Then 
either

Found in cache
a.k.a.  HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait … 

Return data to processor
and update cache
(Use a replacement algorithm
to select a line to replace)
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Cache Write
• Cache hit:

– write through: write both cache & memory
– write back: write cache only, memory is written only when 

the entry is evicted

• Cache miss:
– no write allocate: only write to main memory
– write allocate (aka fetch on write):  fetch into cache

• Common combinations:
– write through and no write allocate
– write back with write allocate
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Administrivia
• PA3 grading still going on
• This Friday, no recitation, undergrad office hours 

from 2 pm – 4 pm & general office hours from 4 pm –
5 pm
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Memory Coherence in SMPs

Suppose CPU-1 updates A to 200.  
write-back:  memory and cache-2 have stale values
write-through:  cache-2 has a stale value

Do these stale values matter?
What kind of guarantee do you get?

cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2A 100

memoryA 100
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Cache Coherence
• A cache coherence protocol ensures that all writes 

by one processor are eventually visible to other 
processors

– i.e., updates are not lost
– You can consider this a hardware-based update propagation 

mechanism for distributed caches.

• Hardware support is required such that
– only one processor at a time has write permission 

for a location
– no processor can load a stale copy of the location 

after a write
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Cache Coherence
• A memory system is coherent if:
• A read by a processor P to a location X that follows a 

write by P to X, with no writes of X by another 
processor occurring between the write and the read 
by P, always returns the value written by P.

• A read by a processor to location X that follows a 
write by another processor to X returns the written 
value if the read and write are sufficiently separated 
in time and no other writes to X occur between the 
two accesses.

• Writes to the same location are serialized; that is, two 
writes to the same location by any two processors 
are seen in the same order by all processors.

• (Coherence provides per-location sequential 
consistency).
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One Design: Snoopy Cache

• Cache controllers work together to maintain cache 
coherence.

• Cache controllers send commands to the bus.
• Each cache controller snoops on the bus traffic to 

catch various commands and follow them.
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cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2A 100

memoryA 100
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Snoopy Cache Coherence Protocol
• Each cache line has a state:

– M (modified): no other cache has a copy and the processor can 
write to it.

– S (shared): other caches might have a copy as well.
– I (invalid): the data is no longer valid.

• If a cache line is in S, then only read is possible.
• If a cache line is in M, then write is possible as well.
• Writing to a cache line

– If it’s M, the cache controller does the write.
– If it is not M, it sends an invalidation request to other caches, 

switches the state to M, and does the write.
– Other cache controllers switch the state to I.

• Reading a memory address
– If it’s a hit, read it.
– If it’s not a hit, read it from memory, and other cache controllers 

switch the state to S.
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Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
I: Invalid

Each cache line has state bits

Address tag
state
bits Write miss

(P1 gets line from memory)

Other processor
intent to write 
(P1 writes back)

Read miss
(P1 gets line from memory)

P1 int
en

t to
 write

Other processor
intent to write

Read by any
processor

P1 reads
or writes

Cache state in 
processor P1

Other processor reads
(P1 writes back)
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Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

Read
miss P1 inten

t to
 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

Read
miss P2 inten

t to
 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes
P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes
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Observations

• 2 bits used for 3 states
– There’s room for one more state

• S indicates that sharing is possible, but not definite.
– From S to M, there’s always invalidation requests, even when 

it’s not actually shared.

M

S I

Write miss

Other processor
intent to write

Read
miss

P1 int
en

t to
 write

Other processor
intent to write

Read by any
processor

P1 reads
or writesOther processor reads

P1 writes back
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MESI: An Enhanced MSI protocol
increased performance for private data

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
I: Invalid

Each cache line has a tag

Address tag
state
bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in 
processor P1

P1 intent 
to write

Read miss, 
not sharedOther 

processor
reads

Other processor 
intent to write, P1 
writes back
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Scalable Approach: Directories
• Every memory block has associated directory 

information
– keeps track of copies of cached blocks and their states

– on a miss, find directory entry, look it up, and communicate 
only with the nodes that have copies if necessary

– in scalable networks, communication with directory and 
copies is through network transactions

– Many alternatives for organizing directory information

•  k processors.  
•  With each cache-block in memory: 

k  presence-bits, 1 dirty-bit

•  With each cache-block in cache:    
1 valid bit, and 1 dirty (owner) bit
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Summary
• Cache coherence

– Making sure that caches do not contain stale copies.

• Snoopy cache coherence
– MSI
– MESI

• Directory-based
– Uses a directory per memory block
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