CSE 486/586 Distributed Systems
Case Study: Facebook Photo Stores

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Engineering a System
• Generally, when you engineer a system, you need to understand your workload.
 – And design your system according to the workload
 – (Perhaps not in the beginning since there’s no workload)
• Engineering principle
 – Make the common case fast, and rare cases correct
 – (From Patterson & Hennessy books)
 – This principle cuts through generations of systems.
• Example?
 – Caching
• Knowing common cases == understanding your workload
 – E.g., read dominated? Write dominated? Mixed?
• We’ll look at Facebook’s example.

Facebook Workload
• What are the most frequent things you do on Facebook?
 – Read/write wall posts/comments/likes
 – View/upload photos
 – Very different in their characteristics
• Read/write wall posts/comments/likes
 – Mix of reads and writes so more care is necessary in terms of consistency
 – But small in size so probably less performance sensitive
• Photos
 – Write-once, read-many so less care is necessary in terms of consistency
 – But large in size so more performance sensitive

Facebook Photo Workload
• (This is from 2010.)
 – 260 billion images (~20 PB)
 – 1 billion new photos per week (~60 TB)
 – One million image views per second at peak
• Two characteristics: Facebook has analyzed their photo workload and discovered two characteristics.
 – The popularity distribution follows Zipf.
 – Popularity changes over time as photos “age.”

Zipf distribution
• Based on the power law
• Models a lot of natural phenomena
• Social graphs, media popularity, wealth distribution, etc.
• A lot of Web contents too.

Popularity Comes with Age
Facebook Photo Distribution

- "Hot" vs. "warm" vs. "cold" photos
 - Hot: Popular, a lot of views (approx. 90% of views)
 - Warm: Somewhat popular, but still a lot of views in aggregate
 - Cold: Unpopular, occasional views

Handling Different Types of Photos

- Hot photos
 - Facebook uses a CDN (Content Distribution Network) for these.
 - Very good performance, but no reliability guarantee
 - CDN is a cache, not a permanent storage.
- Warm photos
 - Facebook has designed its own storage called Haystack.
 - Balances performance and reliability
- Cold photos
 - Facebook has designed an "archival" storage called f4.
 - Aims for storage efficiency when storing replicated photos (but not high performance)

CSE 486/586 Administrivia

- PA4 deadline: 5/10
- Survey & course evaluation
 - Survey: https://forms.gle/eg1wHN2GS88Gv3a9
 - Course evaluation: https://www.smartevals.com/login.aspx?s=buffalo
- If both have 80% or more participation,
 - For each of you, I’ll take the better one between the midterm and the final, and give the 30% weight for the better one and the 20% weight for the other one.
 - (Currently, it’s 20% for the midterm and 30% for the final.)
- No recitation this week; replaced with office hours

Domain Name System

- For a given user, how to locate a close server?
- Many CDNs rely on Domain Name System (DNS)
 - DNS maps a DNS name to an IP address or another DNS name (alias).
 - E.g., www.cse.buffalo.edu
 - Domain: registrar for each top-level domain
 - Host name: local administrator assigns to each host
- Properties of DNS
 - Hierarchical name space
 - Distributed over a collection of DNS servers
 - Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers

CDN for Hot Photos

- Content providers are CDN customers
- Content replication
 - CDN company (e.g., Akamai) installs thousands of servers throughout Internet
 - In large datacenters close to users
 - CDN replicates customers’ content
 - When provider updates content, CDN updates servers
DNS Root Servers

- Labeled A through M

1. A: Verisign, Dulles, VA
2. B: USC-ISI Marina del Rey, CA
3. C: Cogent, Herndon, VA (also Los Angeles)
4. D: U Maryland College Park, MD
5. E: NASA Mt View, CA
6. F: Internet Software C. Palo Alto, CA (and 17 other locations)
7. G: US DoD Vienna, VA
8. H: ARRL Aberdeen, MD
9. I: Autonomica, Stockholm
10. J: Verisign, (11 locations)
11. K: RIPE London (+ Amsterdam, Frankfurt)
12. L: ICANN Los Angeles, CA
13. M: WIRED Tokyo

TLD and Authoritative DNS Servers

- Top-level domain (TLD) servers
 - Generic domains (e.g., com, org, edu)
 - Country domains (e.g., uk, fr, ca, jp)
 - Typically managed professionally
 » Network Solutions maintains servers for “com”
 » Educause maintains servers for “edu”
- Authoritative DNS servers
 - Provide public records for hosts at an organization
 - For the organization’s servers (e.g., Web and mail)
 - Can be maintained locally or by a service provider

Example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

1. Request from cis.poly.edu to local DNS server dns.poly.edu
2. local DNS server asks TLD DNS server for gaia.cs.umass.edu
3. TLD DNS server sends address for dns.cs.umass.edu to local DNS server
4. local DNS server answers request to request host cis.poly.edu (gaia.cs.umass.edu)

How a CDN Works

facebook.com (content provider)

1. DNS lookup
2. DNS root server
3. Akamai global DNS server
4. Akamai regional DNS server
5. Akamai cluster
6. End-user

Server selection algorithm
Facebook Photo Distribution

- "Hot" vs. "warm" vs. "cold" photos
 - Hot: Popular, a lot of views (approx. 90% of views)
 - Warm: Somewhat popular, but still a lot of views in aggregate
 - Cold: Unpopular, occasional views

Handling Warm Photos: Haystack

- Designed for performance and reliability
- "Default" photo storage
Haystack Directory

- Helps the URL construction for an image
 - http://⟨CDN⟩/⟨Cache⟩/⟨Machine id⟩/⟨Logical volume, Photo⟩
 - Staged lookup
 - CDN strips out its portion.
 - Cache strips out its portion.
 - Machine strips out its portion

- Logical & physical volumes
 - A logical volume is replicated as multiple physical volumes
 - Physical volumes are stored.
 - Each volume contains multiple photos.

Haystack Cache & Store

- Haystack cache
 - Facebook-operated second-level cache using DHT
 - Photo IDs as the key
 - Further removes traffic to Store

- Haystack store
 - Maintains physical volumes
 - One volume is a single large file (100GB) with many photos (needles)
 - Performance-optimized: requires a single disk read for image retrieval

Facebook Photo Distribution

- “Hot” vs. “warm” vs. “cold” photos
 - Hot: Popular, a lot of views (approx. 90% of views)
 - Warm: Somewhat popular, but still a lot of views in aggregate
 - Cold: Unpopular, occasional views

CDN / Haystack / f4

- CDN absorbs much traffic for hot photos.
- Haystack’s tradeoff: good throughput and reliability, but somewhat inefficient storage space usage (mainly due to replication).
- f4’s tradeoff: less throughput, but more storage efficient.
 - ~1 month after upload, photos/videos are moved to f4.
 - f4 uses an error-correcting coding scheme to efficiently replicate data.

f4’s Replication

- (n, k) Reed-Solomon code
 - k data blocks, f= n-k parity blocks, n total blocks
 - Upon a failure, any k blocks can reconstruct the lost block.
 - Can tolerate up to f block failures
 - Need to go through coder/decoder for read/write, which affects the throughput

- Parity example: XOR
 - (Reed-Solomon uses something more complicated than this.)
 - XOR bits, e.g., ⟨0, 1, 1, 0⟩ \rightarrow P: 0
 - Reconstruction after failures: ⟨0, 1, 1, 0⟩ \rightarrow P: 0

f4: Single Datacenter

- Within a single data center, (14, 10) Reed-Solomon code
 - This tolerates up to 4 block failures
 - 1.4X storage usage per block
- Distribute blocks across different racks
 - This tolerates four host/rack failures
f4: Cross-Datacenter

- Additional parity block
 - Can tolerate a single datacenter failure

- Overall average space usage per block: 2.1X
 - E.g., average for block A & B: \((1.4\times2 + 1.4)/2 = 2.1\)

- With 2.1X space usage,
 - 4 host/rack failures tolerated
 - 1 datacenter failure tolerated

Summary

- Engineering a system needs workload understanding.
- Facebook photo workload
 - Hot, warm, and cold.
- CDN for hot photos
 - Performance
- Haystack for warm photos
 - Performance & reliability
- f4 for cold photos
 - Reliability and storage efficiency

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Michael Freedman (Princeton), and Jennifer Rexford (Princeton).