CSE 486/586 Distributed Systems
Case Study: Facebook Photo Stores

Steve Ko
Computer Sciences and Engineering
University at Buffalo

Engineering a System

- Generally, when you engineer a system, you need to understand your workload.
 - And design your system according to the workload
 - (Perhaps not in the beginning since there’s no workload)
- Engineering principle
 - Make the common case fast, and rare cases correct
 - (From Patterson & Hennessy books)
 - This principle cuts through generations of systems.
- Example?
 - Caching
 - Knowing common cases == understanding your workload
 - E.g., read dominated? Write dominated? Mixed?
 - We'll look at Facebook's example.

Facebook Workload

- What are the most frequent things you do on Facebook?
 - Read/write wall posts/comments/likes
 - View/upload photos
 - Very different in their characteristics
- Read/write wall posts/comments/likes
 - Mix of reads and writes so more care is necessary in terms of consistency
 - But small in size so probably less performance sensitive
- Photos
 - Write-once, read-many so less care is necessary in terms of consistency
 - But large in size so more performance sensitive

Facebook Photo Workload

- (This is from 2010.)
- 260 billion images (~20 PB)
- 1 billion new photos per week (~60 TB)
- One million image views per second at peak

Two characteristics: Facebook has analyzed their photo workload and discovered two characteristics.
 - The popularity distribution follows Zipf.
 - Popularity changes over time as photos "age."

Zipf distribution

- Based on the power law
- Models a lot of natural phenomena
- Social graphs, media popularity, wealth distribution, etc.
- A lot of Web contents too.

Popularity Comes with Age

[Graph showing the popularity decline over age]
Facebook Photo Distribution

- "Hot" vs. "warm" vs. "cold" photos
 - Hot: Popular, a lot of views (approx. 90% of views)
 - Warm: Somewhat popular, but still a lot of views in aggregate
 - Cold: Unpopular, occasional views

Handling Different Types of Photos

- Hot photos
 - Facebook uses a CDN (Content Distribution Network) for these.
 - Very good performance, but no reliability guarantee
 - CDN is a cache, not a permanent storage.
- Warm photos
 - Facebook has designed its own storage called Haystack.
 - Balances performance and reliability
- Cold photos
 - Facebook has designed an “archival” storage called f4.
 - Aims for storage efficiency when storing replicated photos (but not high performance)

CSE 486/586 Administrivia

- PA4 deadline: 5/10
- Survey & course evaluation
 - Survey: https://forms.gle/eg1wHN2G8S6GVz3e9
- If both have 80% or more participation,
 - For each of you, I’ll take the better one between the midterm and the final, and give the 30% weight for the better one and the 20% weight for the other one.
 - (Currently, it’s 20% for the midterm and 30% for the final.)
- No recitation this week; replaced with office hours

Domain Name System

- For a given user, how to locate a close server?
- Many CDNs rely on Domain Name System (DNS)
 - DNS maps a DNS name to an IP address or another DNS name (alias).
 - E.g., www.cse.buffalo.edu
 - Domain: registrar for each top-level domain
 - Host name: local administrator assigns to each host
- Properties of DNS
 - Hierarchical name space
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers

CDN for Hot Photos

- Content providers are CDN customers
- Content replication
 - CDN company (e.g., Akamai) installs thousands of servers throughout Internet
 - In large datacenters close to users
 - CDN replicates customers’ content
 - When provider updates content, CDN updates servers

Distributed Hierarchical Database
DNS Root Servers

- 1088 instances operated by the 12 independent root server operators (see http://www.root-servers.org/)
- Labeled A through M

A	Verisign, Dulles, VA
B	USC-ISI Marina del Rey, CA
C	Cogent, Herndon, VA (also Los Angeles)
D	U Maryland College Park, MD
E	NASA Mt. View, CA
F	Internet Software Group, Cambridge, MA (also 17 other locations)
G	US DoD Vienna, VA
H	ARL Aberdeen, MD
I	Autonomica, Stockholm (plus 3 other locations)
J	Verisign, (11 locations)
K	RIPE London (+ Amsterdam, Frankfurt)
L	ICANN Los Angeles, CA
M	JAPANESE ICANN Tokyo

TLD and Authoritative DNS Servers

- Top-level domain (TLD) servers
 - Generic domains (e.g., com, org, edu)
 - Country domains (e.g., uk, fr, ca, jp)
 - Typically managed professionally
 - Network Solutions maintains servers for "com"
 - Educause maintains servers for "edu"
- Authoritative DNS servers
 - Provide public records for hosts at an organization
 - For the organization’s servers (e.g., Web and mail)
 - Can be maintained locally or by a service provider

Example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

How a CDN Works

End-user

facebook.com (content provider)

DNS root server

Dynamo lookup: cache.facebook.com

ALIAS: g.akamai.net

Nearby Akamai cluster

Akamai cluster

GET index.html

http://cache.facebook.com/g/facebook.com/foo.jpg

Akamai regional DNS server

End-user

HTTP

How a CDN Works

facebook.com (content provider)

DNS root server

Dynamo lookup: cache.facebook.com

ALIAS: a73.g.akamai.net

Nearby Akamai cluster

Akamai cluster

Server selection algorithm

End-user

HTTP
Facebook Photo Distribution

- "Hot" vs. "warm" vs. "cold" photos
 - Hot: Popular, a lot of views (approx. 90% of views)
 - Warm: Somewhat popular, but still a lot of views in aggregate
 - Cold: Unpopular, occasional views

Handling Warm Photos: Haystack

- Designed for performance and reliability
- "Default" photo storage
Haystack Directory

- Helps the URL construction for an image
 - http://(CDN)/(Cache)/(Machine id)/(Logical volume, Photo)
 - Staged lookup
 - CDN strips out its portion.
 - Cache strips out its portion.
 - Machine strips out its portion

- Logical & physical volumes
 - A logical volume is replicated as multiple physical volumes
 - Physical volumes are stored.
 - Each volume contains multiple photos.

Haystack Cache & Store

- Haystack cache
 - Facebook-operated second-level cache using DHT
 - Photo IDs as keys
 - Further removes traffic to Store

- Haystack store
 - Maintains physical volumes.
 - One volume is a single large file (100GB) with many photos (needles)
 - Performance-optimized: requires a single disk read for image retrieval

Facebook Photo Distribution

- “Hot” vs. “warm” vs. “cold” photos
 - Hot: Popular, a lot of views (approx. 90% of views)
 - Warm: Somewhat popular, but still a lot of views in aggregate
 - Cold: Unpopular, occasional views

CDN / Haystack / f4

- CDN absorbs much traffic for hot photos.
- Haystack’s tradeoff: good throughput and reliability, but somewhat inefficient storage space usage (mainly due to replication).
- f4’s tradeoff: less throughput, but more storage efficient.
 - ~ 1 month after upload, photos/videos are moved to f4.
 - f4 uses an error-correcting coding scheme to efficiently replicate data.

f4’s Replication

- (n, k) Reed-Solomon code
 - k data blocks, f=(n-k) parity blocks, n total blocks
 - Upon a failure, any k blocks can reconstruct the lost block.
 - Can tolerate up to f block failures
 - Need to go through coder/decoder for read/write, which affects the throughput

- Parity example: XOR
 - (Reed-Solomon uses something more complicated than this.)
 - XOR bits, e.g., (0, 1, 1, 0) → P: 0
 - Reconstruction after failures: (0, 1, 1, 0) → P: 0

f4: Single Datacenter

- Within a single data center, (14, 10) Reed-Solomon code
 - This tolerates up to 4 block failures
 - 1.4X storage usage per block
- Distribute blocks across different racks
 - This tolerates four host/rack failures
f4: Cross-Datacenter

- Additional parity block
 - Can tolerate a single datacenter failure

```
Datacenter 1
0000000000000000
0000000000000000
Block A

Datacenter 2
0000000000000000
0000000000000000
Block B

Datacenter 3
0000000000000000
0000000000000000
A XOR B
```

- Overall average space usage per block: 2.1X
 - E.g., average for block A & B: \((1.4 \times 2 + 1.4)/2 = 2.1\)
- With 2.1X space usage,
 - 4 hostrack failures tolerated
 - 1 datacenter failure tolerated

Summary

- Engineering a system needs workload understanding.
- Facebook photo workload
 - Hot, warm, and cold.
- CDN for hot photos
 - Performance
- Haystack for warm photos
 - Performance & reliability
- f4 for cold photos
 - Reliability and storage efficiency

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Michael Freedman (Princeton), and Jennifer Rexford (Princeton).