
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Security

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Today
• Secure design principles
• Cryptography applications (besides

encryption/decryption)

2

CSE 486/586

Security Properties
• Assume a system that processes requests from

agents, and a request comes in from an agent. A
secure system must be able to answer the following
questions before performing the required action.

• Authenticity: is the agent’s claimed identity
authentic?

• Integrity: is the request actually coming from the
agent?

• Authorization: has a proper authority granted
permission to this agent to perform this action?

• These three combined are called the principle of
complete mediation.

3 CSE 486/586

Security Threats
• A secure system must be able to defend against the

following threats.
• Unauthorized information release

– An unauthorized person accesses information.

• Unauthorized information modification
– An unauthorized person changes information.

• Unauthorized denial of use
– An adversary prevents an authorized user from reading or

modifying information.

4

CSE 486/586

Designing Secure Systems
• Your system is only as secure as your weakest

component!
• One must demonstrate that the system is protected

from every possible threat.
• Is the system secure?

– Insecure: just needs to discover one example security hole.
– Secure: must show there’s no security hole at all.
– I don’t know: “We don’t know of any remaining security

holes.”

5 CSE 486/586

Design Principles
• Open design principle

– Let anyone comment on the design. You need all the help
you can get.

– Closed designs have been historically proven to almost
always lead to flaws.

– Open vs. closed debate has been going on for ages (e.g.,
open vs. closed door lock design).

• Minimize secrets
– Because they probably won’t remain secret for long.

– If secrets are minimized, when they are compromised,
they’re easier to replace.

• Economy of mechanism
– The less there is, the more likely you will get it right.
– E.g., having 10,000 lines of security critical code vs. 1,000

lines of security critical code
6

C 2

CSE 486/586

Design Principles
• Minimize common mechanism

– Shared mechanisms provide unwanted communication
paths.

– E.g., putting a new feature in the kernel (shared by all users)
vs. putting it in a library (per application): choose the latter

• Fail-safe defaults
– Most users won’t change defaults, so make sure that they

do something safe.
– E.g., default Wi-Fi router passwords: a lot of users don’t

change them.

• Least privilege principle
– Don’t store lunch in the safe with the jewels.
– Give a program (or execute it with) as fewest privileges as

possible, as accidents can cause a lot of damage.

– E.g., no need to run applications with sudo.

7 CSE 486/586

Safety Net Approach
• Never assume the design is right.
• Two principles

– Be explicit
– Design for iteration

• Be explicit
– Make all assumptions explicit so they can be reviewed.
– E.g., buffer overrun using:

gets(character array reference string_buffer)

If the program allocates 30 bytes, and 250 bytes come in,
then there’s a buffer overrun problem.

• Design for iteration
– Assume you will make errors and prepare to iterate the

design.
8

CSE 486/586

TCB (Trusted Computing Base)
• Applying the economy of mechanism principle

together with the safety net approach
– Organize a system design into two kinds of modules:

untrusted modules and trusted modules

• The correctness of the untrusted modules should not
affect the security of the whole system.

• The trusted modules must work correctly to make the
system secure.

• The collection of trusted modules are called the
trusted computing base (TCB).

• It is important to minimize the size of the TCB (the
economy of mechanism principle), so you can get it
right.

9 CSE 486/586

Secure System Model

10

• A guard is commonly called a reference monitor.

CSE 486/586

CSE 486/586 Administrivia
• PA4 deadline: 5/10
• Survey & course evaluation

– Survey: https://forms.gle/eg1wHN2G8S6GVz3e9
– Course evaluation:

https://www.smartevals.com/login.aspx?s=buffalo

• If both have 80% or more participation,
– For each of you, I’ll take the better one between the midterm

and the final, and give the 30% weight for the better one and
the 20% weight for the other one.

– (Currently, it’s 20% for the midterm and 30% for the final.)

• No recitation this week; replaced with office hours

11 CSE 486/586

Cryptography
• Comes from Greek word meaning “secret”

– Primitives also can provide integrity, authentication

• Cryptographers invent secret codes to attempt to
hide messages from unauthorized observers

• Modern encryption:
– Algorithm public, key secret and provides security
– May be symmetric (secret) or asymmetric (public)

• Cryptographic algorithms goal
– Given key, relatively easy to compute
– Without key, hard to compute (invert)
– The strength of security often based on the length of a key

(to protect against brute-force guesses)
12

plaintext ciphertext plaintext
encryption decryption

https://forms.gle/eg1wHN2G8S6GVz3e9
https://www.smartevals.com/login.aspx?s=buffalo

C 3

CSE 486/586

Window of Validity
• The minimum time to compromise a cryptographic

algorithm.

• Problem

– It can be shorter than the lifetime of your system.

• Example

– SHA-0 was published in 1993.

– A possible weakness was found in the algorithm and

replaced in 1995 with SHA-1.

– A way to compromise SHA-0 was published in 2004.

– A way to compromise SHA-1 was published in 2017.

• A system designer needs to be prepared to update
their crypto function, perhaps more than once.

13 CSE 486/586

Three Types of Functions
• Cryptographic hash functions

– Zero keys

• Secret-key functions
– One key

• Public-key functions
– Two keys

14

CSE 486/586

Cryptographic Hash Functions
• Takes message, m, of arbitrary length and produce a

smaller (short) number, h(m)
• Properties

– Easy to compute h(m)

– Pre-image resistance (strong collision): Hard to find an m,
given h(m)

» “One-way function”
– Second pre-image resistance (weak collision): Hard to find

two values that hash to the same h(m)
» E.g. discover collision: h(m) == h(m’) for m != m’

– Often assumed: output of hash fn’s “looks” random

15 CSE 486/586

Symmetric (Secret) Key Crypto
• Also: “conventional / private-key / single-key”

– Sender and recipient share a common key
– All classical encryption algorithms are private-key

• Was only type of encryption prior to invention of
public-key in 1970’s

– Most widely used

• Two requirements
– Strong encryption algorithm
– Secret key must be known only to sender/receiver

• Goal: Given key, generate 1-to-1 mapping to
ciphertext that looks random if key unknown

– Assume algorithm is known (no security by obscurity)
– Implies secure channel to distribute key

16

CSE 486/586

Symmetric Key Crypto

17 CSE 486/586

Public (Asymmetric) Key Crypto
• Public invention Diffie & Hellman in 1976

– Known earlier to classified community

• Involves two keys

– Public key: can be known to anybody, used to encrypt and
verify signatures

– Private key: should be known only to the recipient, used to
decrypt and sign signatures

– Avoiding key distribution: secure communication without having
to trust a key distribution center with your key

• Asymmetric

– Can encrypt messages or verify signatures w/o ability to
decrypt msgs or create signatures

– If “one-way function” goes c ß F(m), then public-key

encryption is a “trap-door” function:

» Easy to compute c ß F(m, pub)

» Hard to compute m ß F-1(c) without knowing priv

» Easy to compute m ß F-1(c,priv) by knowing priv

18

C 4

CSE 486/586

Public (Asymmetric) Key Crypto

19 CSE 486/586

Application: Storing Passwords
• Password hashing

– Password systems don’t store plaintext passwords.
– All passwords are hashed and the hashes are stored.
– Concerned with insider attacks, e.g., system admins.

• Must compare typed passwords to stored passwords
– Does hash (typed) == hash (password)?

• Actually, a salt is often used: hash (input || salt)
– A salt is effectively a random number added to input.
– It is stored together with the generated hash.
– Avoids precomputation of all possible hashes in “rainbow

tables” (available for download from file-sharing systems)
– No need to be a secret: with a salt, pre-computation is not

possible.

20

CSE 486/586

Application: Secure Digest
• A secure digest is a summary of a message.

– A fixed-length that characterizes an arbitrary-length
message

– Typically produced by a cryptographic hash function, e.g.,
SHA-256.

• E.g., Open-source Android Repo command
verification

21 CSE 486/586

Application: MAC
• MAC (Message Authentication Code)

– Uses symmetric crypto & hashing
– Prevents sender masquerading & message tampering (but this

is not about confidentiality)

• Answering the following two questions
– Who sent the message (authenticity)
– What the sender says (integrity)

• Sender (sending a message M)
– Computes a message digest: SHA1 (M)
– Encrypts the message digest: H = AESK(SHA1 (M))
– Sends <M, H>

• Receiver
– Receives <M, H>
– Computes a message digest: SHA1 (M)
– Encrypts the message digest: H’ = AESK(SHA1 (M))
– Checks the equality: H’ == H

22

CSE 486/586

Application: Digital Signature
• Similar to MAC

– Verifies a message or a document is an unaltered copy of
one produced by the signer

– Both integrity & authenticity
– Uses asymmetric crypto & hashing

• Signer (writing a document, M)
– Computes a message digest: SHA1(M)
– Signs the digest with the private key: H = RSAK(SHA1(M))
– Posts the message & the signature: <M, H>

• Verifier
– Obtains <M, H>
– Computes a message digest: H’ = SHA1(M)
– Decrypt the signature with the public key: RSAK’(H)
– Verifies the equality: RSAK’(H) == H’

23 CSE 486/586

HTTPS
• A use case for digital signatures and public key

encryption

• Threat model

– Eavesdropper listening on conversation (confidentiality)

– Man-in-the-middle modifying content (integrity)

– Adversary impersonating desired website (authentication,

and confidentiality)

• Enter HTTP-S

– HTTP sits on top of secure channels

– All (HTTP) bytes written to secure channel are encrypted

and authenticated

24

C 5

CSE 486/586

Encrypted Communication

• What is wrong with this?
– How do you know you’re actually talking to facebook and f-

pub belongs to facebook?

25

Hey, I want to be more secure

Sure, use this public key and
encrypt your traffic

Key: f-pub

(encrypted communication)

CSE 486/586

Digital Certificates
• A digital certificate is a statement signed by a third party

principal (that you trust).
• The (trusted) third party basically vouches that a public key

belongs to an organization.
• A digital certificate has a public key, its organization, and a

signature by a third party that attests that the public key
belongs to the organization.

• A third-party example: Verisign Certification Authority (CA)
• Example

• Facebook sends its public key to Verisign.
• Verisign uses its private key to digitally sign Facebook’s public

key. This says that Verisign attests that the public key belongs
to Facebook.

• Verisign gives the signature to Facebook.
• When you ask Facebook for its public key, Facebook sends

you its public key as well as the signature (from Verisign).
• You verify that the signature is from Verisign. If successful, you

trust that the public key belongs to Facebook.
26

CSE 486/586

Digital Certificates
• Question still remains: how do you verify if the signature is

from Verisign?
• Verisign uses its private key to sign. What do you need to verify

this signature?
• You need Verisign’s public key to verify the signature.
• Full circle: in order to verify Facebook’s public key (which

Verisign attests), you need to acquire Verisign’s public key and
verify it.

• Chain of trust
• You don’t trust Facebook’s public key, so Facebook says “trust

Verisign’s public key.” (trust delegation)
• But in order to trust Verisign’s public key, some other trusted

entity needs to verify the trustworthiness of Verisign’s public
key. (another trust delegation necessary)

• You can establish a chain of trust that way. But delegation has
to stop somewhere and you need to actually trust something.

• This end of the chain is called the root of trust (something that
you actually trust).

27 CSE 486/586

Digital Certificates
• This trust comes from your OS.
• Your OS pre-stores Verisign’s public keys &

certificates (self-signed by Verisign).
• Use Verisign’s public key to verify Verisign’s signature for

Facebook’s public key.
• As long as you trust your OS, you trust Verisign’s public key

as well as Facebook’s.

• You can manually install other company’s certificates
that you trust.

• You can also self-sign your certificate, e.g., for
testing HTTPS configuration.

28

CSE 486/586

On My Mac…

29 CSE 486/586

X.509 Certificates
• The most widely used standard format for certificates
• Format

– Subject: Distinguished Name, Public Key
– Issuer: Distinguished Name, Signature
– Period of validity: Not Before Date, Not After Date
– Administrative information: Version, Serial Number
– Extended information

• Binds a public key to the subject
– A subject: person, organization, etc.

• The binding is in the signature issued by an issuer.
– You need to either trust the issuer directly or indirectly (by

establishing a root of trust).

30

C 6

CSE 486/586

X.509 Certificates

31 CSE 486/586

Certificate Pinning
• An application (e.g., a mobile app) frequently uses a

back-end server.
• To use HTTPS, the server typically sends a

certificate which the application verifies.
• Problem

– A user can be tricked to install rogue certificates that verify
an adversary’s server certificates.

– E.g., a public Wi-Fi connection redirects you to a website
and asks you to install a certificate.

– E.g., the Iranian gov. has been suspected to compromise a
certificate authority and issued rogue certificates that
approve rogue websites that masquerade as Google.

• Certificate pinning
– An application pre-stores a few certificates that it expects to

receive from its server.
32

CSE 486/586

Android App Code Signing
• A use case for digital certificates
• Google requires all apps to be signed by their

developers before release.
– A developer uses their private key to sign an app.

– The public key is provided as part of the app in a (self-
signed) certificate.

• Installation & update
– At installation time, Android verifies if it’s signed.
– When updating an app, Android verifies if it’s signed by the

same private key.

• Sharing
– Different apps from the same developer can be signed with

the same private key.
– Android allows those apps to share data without permission.
– E.g., Facebook app, Facebook Messenger, & Instagram

33 CSE 486/586

Android Platform Key
• Another use case for digital certificates
• When compiling the Android OS, a vendor (Google,

Samsung, etc.) includes their certificate (public key)
in the platform.

• A vendor, e.g., Google, signs their apps with their
private key.

– When installed from Google Play, Android verifies that those
apps are Google apps (called platform apps, e.g., Google
Play Services app).

– They can have more privilege than apps from regular devs.

• An OS update package is also signed by the same
private key and verified before installation.

34

CSE 486/586

Authentication
• Use of cryptography to have two principals verify

each others’ identities.
• Direct authentication: the server uses a shared secret key to

authenticate the client.

• Indirect authentication: a trusted authentication server (third
party) authenticates the client.

• The authentication server knows keys of principals and
generates temporary shared key (ticket) to an authenticated
client. The ticket is used for messages in this session.

• E.g., Verisign servers

35 CSE 486/586

Direct Authentication
• Authentication with a secret key

36

Bob calculates KA,B (RB)

and matches with reply.

Alice is the only one

who could have

replied correctly.

“Nonce” (used as a “challenge”)=random num,

C 7

CSE 486/586

“Optimized” Direct Authentication
• Authentication with a secret key with three messages

• Anything wrong with this?

37 CSE 486/586

Reflection Attack

38

CSE 486/586

Needham-Schroeder Authentication
• An authentication server provides secret keys.

– Every client shares a secret key with the server to encrypt
their channels.

• If a client A wants to communicate with another client
B,

– The server sends a key to the client A in two forms.
– First, in a plain form, so that the client A can use it to encrypt

its channel to the client B.
– Second, in an encrypted form (with the client B’s secret key),

so that the client B can know that the key is valid.
– The client A sends this encrypted key to the client B as well.

• Basis for Kerberos

39 CSE 486/586

Needham-Schroeder Authentication

40

KB

KA
KB …

System A

System B

Authentication
System

<A, B, NA>

1

< {KAB, A} > KB3

< {NB} > KAB 45
< {NB-1, req} >KAB

KA

6< {res} >KAB

<NA,B,KAB, {KAB, A} >
2

KAKB

Ticket

A asks for a
key to

communicate
with B

A demonstrates

that it is the sender

of the previous

message

“Nonce”=random num,

CSE 486/586

Nonce NA in Message 1

41

KB

KA
KB …

System A

System C

Authentication
System

<A, B>

1

<B, KAB, {KAB, A} > KA

2

KB

KA

<B, KAB, {KAB, A} >
KB KA

Because we need to relate message 2 to message 1

Chuck has stolen KB and

intercepted message 2.

It can masquerade as the

authentication system.

1’

<A, B>

<B, KAB, {KAB, A} >
KB KA

2’

CSE 486/586

Kerberos
• Follows Needham-Schroeder closely
• Time values used for nonces

– To prevent replay attacks
– To enforce a lifetime for each ticket

• Very popular
– An Internet standard
– Default in MS Windows

42

C 8

CSE 486/586

Kerberos

43

ServerClient

DoOperation

Authentication
database

Login
session setup

Ticket-
granting
service T

Kerberos Key Distribution Centre

Server
session setup

Authen-
tication

service A
1. Request for

TGS ticket

2. TGS
ticket

3. Request for
server ticket

4. Server ticket
5. Service

request

Request encrypted with session key

Reply encrypted with session key

Service
function

Step B

Step A

Step C

C S

CSE 486/586

Summary
• Secure system design

– Design principles, the safety net approach, TCB, etc.

• Three types of functions
– Cryptographic hash, symmetric key crypto, asymmetric key

crypto

• Applications
– Password store, secure digest, MAC, digital signature, and

digital certificates.

44

CSE 486/586 45

Acknowledgements
• These slides contain material from "Principles of

Computer System Design: An Introduction,” Chapter
11

– https://ocw.mit.edu/resources/res-6-004-principles-of-
computer-system-design-an-introduction-spring-2009/online-
textbook/protection_open_5_0.pdf

• These slides contain material developed and
copyrighted by Indranil Gupta (UIUC), Jennifer
Rexford (Princeton) and Michael Freedman
(Princeton).

