CSE 486/586 Distributed Systems
Byzantine Fault Tolerance

Byzantine Fault Tolerance

• Fault categories
 – Benign: failures we’ve been talking about
 – Byzantine: arbitrary failures

• Benign
 – Fail-stop & crash: process halted
 – Omission: msg loss, send-omission, receive-omission
 – All entities still follow the protocol

Byzantine
 – A broader category than benign failures
 – Process or channel exhibits arbitrary behavior.
 – May deviate from the protocol
 – Processes can crash, messages can be lost, etc.
 – Can be malicious (attacks, software bugs, etc.)

BYZANTINE Fault Tolerance

• Can we achieve consensus with f Byzantine faults?
 – But we’re not bypassing the impossibility result (e.g., we still need to mask benign failures.)

• Result: with f faulty nodes, we need 3f + 1 nodes to tolerate their Byzantine behavior.
 – Fundamental limitation
 – Today’s goal is to understand this limitation.

• How about Paxos (that tolerates benign failures)?
 – With f faulty nodes, we need 2f + 1 (i.e., we need a correct majority)
 – Having f faulty nodes means that as long as f + 1 nodes are reachable, Paxos can guarantee an agreement.
 – This is the known lower bound for consensus with non-Byzantine failures.

“BYZANTINE”

• Leslie Lamport (again!) defined the problem & presented the result.
 • “I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves.”
 • “At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem.”
 • “…The obviously more appropriate Byzantine generals then occurred to me.”

Introducing the Byzantine Generals

• Imagine several divisions of the Byzantine army camped outside of a city
• Each division has a general.
• The generals can only communicate by a messenger.

Introducing the Byzantine Generals

• They must decide on a common plan of action (consensus).
• But, some of the generals can be traitors.
• Quick example to demonstrate the problem:
 – One commander and two lieutenants
 – With one traitor, can non-traitors decide on a common plan?
Understanding the Problem

- **Setup**
 - One commander & two lieutenants
 - One can be a traitor
 - $f = 1$ and $n = 3$ ($2f + 1$)

- **Protocol**
 - Commander sends a command (either attack or retreat) to the two lieutenants.
 - Each lieutenant forwards the command to the other lieutenant in case messages get lost.

- **Goal**
 - Deciding on the same plan of action (either attack or retreat)

Compare this to the next scenario.

For lieutenant 1, this looks exactly the same as the previous scenario.

In the example, one traitor ($f = 1$) makes it impossible to reach consensus with three generals ($2f + 1$ generals).

Or more generally, when f nodes can behave arbitrarily (Byzantine), $2f + 1$ nodes are not enough to tolerate it.

- This is unlike Paxos (reaching consensus while tolerating non-Byzantine failures).

More Practical Setting

- Replicated Web servers
 - Multiple servers running the same state machine.
 - For example, a client asks a question and each server replies with an answer (yes/no).
 - The client determines what the correct answer is based on the replies.

CSE 486/586 Adminstrivia

- PA4 deadline: 5/10
- Final exam: 5/17 @ 11:45 am – 2:45 pm in Knox 109
 - Includes everything
 - True/false questions & multi-choice questions
 - Cheat sheet allowed (1-page, letter-sized, front-and-back)
 - No restroom use
- Survey & course evaluation
 - Survey: https://forms.gle/eg1wHN2QSSEGy23t9
 - Incentive when both have 80% or more participation
 - Currently about 50% for both
 - No recitation this week; replaced with office hours
More Practical Setting

- \(f \) Byzantine failures
 - At any point of time, there can be up to \(f \) failures.
- Ambiguity (many possibilities) of a failure
 - A crashed process, a message loss, malicious behavior (e.g., a lie), etc., but a client cannot tell which one it is.
 - But in total, the maximum # of failures is bounded by \(f \).

BFT Question

- Given \(f \), how many nodes do we need to tolerate \(f \) Byzantine failures?
 - \(f \) failures can be any mix of malicious servers, crashed servers, message losses, etc.
 - Malicious servers can do anything, e.g., they can lie (if yes, say no, if no, say yes).

Intuition for the Result

- Let's say we have \(n \) servers, and maximum \(f \) Byzantine failures.
 - What is the minimum # of replies that you are always guaranteed to get?
 - \(n - f \)
 - Why? Maximum failures can all be crashed processes

- The problem is that we're unsure what those \(f \) failures are. So we have to think about many possibilities.
 - Upon receiving \(n - f \) replies (guaranteed), are we really sure that \(f \) replies will never come?
 - No, those \(f \) replies could be from slow but correct processes.

- If those \(f \) replies are from slow processes, then they are still correct. They don't count towards \(f \) failures.
 - This means that out of \(n - f \) replies, there can still be \(f \) replies from \(f \) Byzantine nodes.
 - This leaves us with \(f \) processes that can be malicious that have already replied.
Intuition for the Result

Then the question is: out of \(n - f \) replies and possible \(f \) malicious replies contained among them, how can we make sure that we can always determine the correct answer?

- If we make sure that \(n - f \) replies always contain more replies from honest nodes than Byzantine nodes, we're safe.

Answer: we make sure that we always get \(f + 1 \) replies from honest nodes, one more than the number of potentially-malicious nodes, \(f \).

- We set \(n = 3f + 1 \)
- When we get \(n - f \) replies, it is \(2f + 1 \) replies. At least \(f + 1 \) replies from honest nodes, and at most \(f \) replies from malicious nodes.

Summary

- Byzantine generals problem
 - They must decide on a common plan of action.
 - But, some of the generals can be traitors.
- Requirements
 - All loyal generals decide upon the same plan of action (e.g., attack or retreat).
 - A small number of traitors cannot cause the loyal generals to adopt a bad plan.
- Impossibility result
 - In general, with less than \(3f + 1 \) nodes, we cannot tolerate \(f \) faulty nodes.

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC).