
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Address Translation and Protection

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Prefetching

–  Speculate future I & d accesses and fetch them into caches

•  Hardware techniques
–  Stream buffer
–  Prefetch-on-miss
– One Block Lookahead
–  Strided

•  Software techniques
–  Prefetch instruction
–  Loop interchange
–  Loop fusion
– Cache tiling

CSE 490/590, Spring 2011 3

Memory Management
•  From early absolute addressing schemes, to modern

virtual memory systems with support for virtual
machine monitors

•  Can separate into orthogonal functions:
–  Translation (mapping of virtual address to physical address)
–  Protection (permission to access word in memory)
–  Virtual memory (transparent extension of memory space

using slower disk storage)

•  But most modern systems provide support for all the
above functions with a single page-based system

CSE 490/590, Spring 2011 4

Absolute Addresses

•  Only one program ran at a time, with unrestricted
access to entire machine (RAM + I/O devices)

•  Addresses in a program depended upon where the
program was to be loaded in memory

•  Problems?

EDSAC, early 50’s

CSE 490/590, Spring 2011 5

Dynamic Address Translation

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped.

 How?⇒ multiprogramming

Location-independent programs
Programming and storage management ease

 ⇒ need for a base register

Protection
Independent programs should not affect
each other inadvertently

 ⇒ need for a bound register

prog1

prog2

Ph
ys

ic
al

 M
em

o
ry

CSE 490/590, Spring 2011 6

Simple Base and Bound Translation

Load X

Program
Address
Space

Bound
Register ≤

Bounds
Violation?

Ph
ys

ic
al

 M
em

o
ry

current
segment

Base
Register

+

Physical
Address Effective

Address

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

Base Physical Address

Segment Length

C 2

CSE 490/590, Spring 2011 7

Memory Fragmentation

 As users come and go, the storage is “fragmented”.
 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS
Space

16K

24K

24K

32K

24K

user 1

user 2

user 3

OS
Space

16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5
arrive

Users 2 & 5
leave

OS
Space

16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

CSE 490/590, Spring 2011 8

•  Processor-generated address can be split into:

Paged Memory Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

•  A page table contains the physical address of the base of
each page:

Physical
Memory

CSE 490/590, Spring 2011 9

Private Address Space per User

•  Each user has a page table
•  Page table contains an entry for each user page

VA1 User 1

Page Table

VA1 User 2

Page Table

VA1 User 3

Page Table

Ph
ys

ic
al

 M
em

o
ry

free

OS
pages

CSE 490/590, Spring 2011 10

Where Should Page Tables Reside?
•  Space required by the page tables (PT) is

proportional to the address space, number of
users, ...

 ⇒ Space requirement is large
 ⇒ Too expensive to keep in registers

•  Idea: Keep PTs in the main memory
–  needs one reference to retrieve the page base address

and another to access the data word
 ⇒ doubles the number of memory references!

CSE 490/590, Spring 2011 11

Page Tables in Physical Memory

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT
User
1

PT
User
2

VA1

Ph
ys

ic
al

 M
em

o
ry

CSE 490/590, Spring 2011 12

CSE 490/590 Administrivia
•  Midterm on Friday, 3/4
•  Project 1 deadline: Friday, 3/11
•  Project 2 list will be up soon
•  Guest lectures possibly this month
•  Quiz will be distributed Monday

C 3

CSE 490/590, Spring 2011 13

A Problem in the Early Sixties

•  There were many applications whose data
could not fit in the main memory, e.g., payroll
– Paged memory system reduced fragmentation but

still required the whole program to be resident in
the main memory

•  Programmers moved the data back and forth
from the secondary store by overlaying it
repeatedly on the primary store

 tricky programming!

CSE 490/590, Spring 2011 14

Manual Overlays

Ferranti Mercury
1956

40k bits
main

640k bits
drum

Central Store

•  Assume an instruction can address all
the storage on the drum

•  Method 1: programmer keeps track of
addresses in the main memory and
initiates an I/O transfer when required
–  Difficult, error-prone!

•  Method 2: automatic initiation of I/O
transfers by software address translation
–  Brooker’s interpretive coding, 1960
–  Inefficient!

Not just an ancient black art, e.g., IBM Cell microprocessor
used in Playstation-3 has explicitly managed local store!

CSE 490/590, Spring 2011 15

Demand Paging in Atlas (1962)

Secondary
(Drum)
32x6 pages

Primary
32 Pages
512 words/page

Central
Memory User sees 32 x 6 x 512 words

of storage

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

 Tom Kilburn

Primary memory as a cache
for secondary memory

CSE 490/590, Spring 2011 16

Hardware Organization of Atlas

Initial
Address
Decode

16 ROM pages
0.4 ~1 µsec

2 subsidiary pages
 1.4 µsec

Main
 32 pages
 1.4 µsec

Drum (4)
 192 pages

8 Tape decks
88 sec/word

48-bit words
512-word pages

1 Page Address
Register (PAR)
per page frame

Compare the effective page address against all 32 PARs
 match ⇒ normal access
 no match ⇒ page fault
 save the state of the partially executed
 instruction

Effective
Address

system code
(not swapped)

system data
(not swapped)

0

31

PARs

<effective PN , status>

CSE 490/590, Spring 2011 17

Atlas Demand Paging Scheme

• On a page fault:
– Input transfer into a free page is initiated
– The Page Address Register (PAR) is updated
– If no free page is left, a page is selected to be

replaced (based on usage)
– The replaced page is written on the drum

» to minimize drum latency effect, the first empty
page on the drum was selected

– The page table is updated to point to the new
location of the page on the drum

CSE 490/590, Spring 2011 18

Caching vs. Demand Paging

CPU cache
primary
memory

secondary
memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled
 in hardware mostly in software

primary
memory

CPU

C 4

CSE 490/590, Spring 2011 19

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

