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Last time… 
•  Prefetching 

–  Speculate future I & d accesses and fetch them into caches 

•  Hardware techniques 
–  Stream buffer 
–  Prefetch-on-miss 
– One Block Lookahead 
–  Strided  

•  Software techniques 
–  Prefetch instruction 
–  Loop interchange 
–  Loop fusion 
– Cache tiling 
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Memory Management 
•  From early absolute addressing schemes, to modern 

virtual memory systems with support for virtual 
machine monitors 

•  Can separate into orthogonal functions: 
–  Translation (mapping of virtual address to physical address) 
–  Protection (permission to access word in memory) 
–  Virtual memory (transparent extension of memory space 

using slower disk storage) 

•  But most modern systems provide support for all the 
above functions with a single page-based system 
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Absolute Addresses 

•  Only one program ran at a time, with unrestricted 
access to entire machine (RAM + I/O devices) 

•  Addresses in a program depended upon where the 
program was to be loaded in memory 

•  Problems? 

EDSAC, early 50’s 
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Dynamic Address Translation 

Motivation 
In the early machines, I/O operations were slow 
and each word transferred involved the CPU  

Higher throughput if CPU and I/O of 2 or more 
programs were overlapped. 

 How?⇒ multiprogramming 

Location-independent programs 
Programming and storage management ease   

 ⇒ need for a base register 

Protection 
Independent programs should not affect 
each other inadvertently 

 ⇒ need for a bound register  
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Simple Base and Bound Translation 

Load X 
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Base and bounds registers are visible/accessible only 
when processor is running in the supervisor mode 

Base Physical Address 

Segment Length 
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Memory Fragmentation 

  As users come and go, the storage is “fragmented”.  
  Therefore, at some stage programs have to be moved 
  around to compact the storage.  
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•  Processor-generated address can be split into: 

Paged Memory Systems 

Page tables make it possible to store the 
pages of a program non-contiguously. 
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•  A page table contains the physical address of the base of 
each page:

Physical 
Memory 
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Private Address Space per User 

•  Each user has a page table  
•  Page table contains an entry for each user page 

VA1 User 1 

Page Table  

VA1 User 2 
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Where Should Page Tables Reside? 
•  Space required by the page tables (PT) is 

proportional to the address space, number of 
users, ... 

      ⇒  Space requirement is large  
     ⇒ Too expensive to keep in registers 

•  Idea: Keep PTs in the main memory 
–  needs one reference to retrieve the page base address 

and another to access the data word 
   ⇒ doubles the number of memory references! 
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Page Tables in Physical Memory 
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CSE 490/590 Administrivia 
•  Midterm on Friday, 3/4 
•  Project 1 deadline: Friday, 3/11 
•  Project 2 list will be up soon 
•  Guest lectures possibly this month 
•  Quiz will be distributed Monday 
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A Problem in the Early Sixties 

•  There were many applications whose data 
could not fit in the main memory, e.g., payroll 
– Paged memory system reduced fragmentation but 

still required the whole program to be resident in 
the main memory 

•  Programmers moved the data back and forth 
from the secondary store by overlaying it 
repeatedly on the primary store 

    
     tricky programming! 
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Manual Overlays  

Ferranti Mercury 
1956 

40k bits 
main 

640k bits 
drum 

Central Store 

•  Assume an instruction can address all 
the storage on the drum 

•  Method 1: programmer keeps track of 
addresses in the main memory and 
initiates an I/O transfer when required 
–  Difficult, error-prone! 

•  Method 2: automatic initiation of I/O 
transfers by software address translation 
–  Brooker’s interpretive coding, 1960 
–  Inefficient! 

Not just an ancient black art, e.g., IBM Cell microprocessor 
used in Playstation-3 has explicitly managed local store! 
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Demand Paging in Atlas (1962) 

Secondary 
(Drum) 
32x6 pages 

Primary 
32 Pages 
512 words/page 

Central  
Memory User sees 32 x 6 x 512 words 

of storage 

“A page from secondary 
storage is brought into the 
primary storage whenever 
it is (implicitly) demanded 
by the processor.” 

  Tom Kilburn 

Primary memory as a cache 
for secondary memory 
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Hardware Organization of Atlas  

Initial 
Address 
Decode 

16 ROM pages 
0.4 ~1 µsec 

2 subsidiary pages 
       1.4 µsec 

Main 
  32 pages 
  1.4 µsec 

Drum (4) 
   192 pages 


8 Tape decks 
88 sec/word 

48-bit words 
512-word pages 

1 Page Address 
Register (PAR) 
per page frame 

Compare the effective page address against all 32 PARs 
 match   ⇒ normal access 
 no match  ⇒ page fault 
        save the state of the partially executed 
        instruction 

Effective 
Address 

system code 
(not swapped) 

system data 
(not swapped) 

0 

31 

PARs 

<effective PN , status> 
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Atlas Demand Paging Scheme 

• On a page fault:  
– Input transfer into a free page is initiated 
– The Page Address Register (PAR) is updated 
– If no free page is left, a page is selected to be 

replaced (based on usage) 
– The replaced page is written on the drum 

» to minimize drum latency effect, the first empty 
page on the drum was selected 

– The page table is updated to point to the new 
location of the page on the drum 
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Caching vs. Demand Paging 

CPU cache 
primary 
memory 

secondary 
memory 

Caching           Demand paging 
cache entry    page frame 
cache block (~32 bytes)  page (~4K bytes) 
cache miss rate (1% to 20%)  page miss rate (<0.001%) 
cache hit (~1 cycle)   page hit (~100 cycles) 
cache miss (~100 cycles)  page miss (~5M cycles) 
a miss is handled            a miss is handled  
     in hardware                  mostly in software 

primary 
memory 

CPU 



C 4 

CSE 490/590, Spring 2011 19 

Acknowledgements 
•  These slides heavily contain material developed and 

copyright by 
–  Krste Asanovic (MIT/UCB) 
–  David Patterson (UCB) 

•  And also by: 
–  Arvind (MIT) 
–  Joel Emer (Intel/MIT) 
–  James Hoe (CMU) 
–  John Kubiatowicz (UCB) 

•  MIT material derived from course 6.823 
•  UCB material derived from course CS252 


