
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Cache I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last Time…
•  Pipelining hazards

–  Structural hazards
–  Data hazards
–  Control hazards

•  Data hazards
–  Stall
–  Bypass

•  Control hazards
–  Jump
–  Conditional branch

CSE 490/590, Spring 2011 3

Branch Delay Slots
(expose control hazard to software)

•  Change the ISA semantics so that the instruction that
follows a jump or branch is always executed
–  gives compiler the flexibility to put in a useful instruction where

normally a pipeline bubble would have resulted.

I1 096 ADD
I2 100 BEQZ r1 +200
I3 104 ADD
I4 304 ADD

Delay slot instruction
executed regardless of

branch outcome

•  Other techniques include more advanced branch
prediction, which can dramatically reduce the branch
penalty... to come later

CSE 490/590, Spring 2011 4

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4
ID I1 I2 I3 I4
EX I1 I2 I3 I4
MA I1 I2 I3 I4
WB I1 I2 I3 I4

Branch Pipeline Diagrams
(branch delay slot)

 time
 t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 EX3 MA3 WB3
(I4) 304: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

CSE 490/590, Spring 2011 5

Why an Instruction may not be
dispatched every cycle (CPI>1)

•  Full bypassing may be too expensive to implement
–  typically all frequently used paths are provided
–  some infrequently used bypass paths may increase cycle time and

counteract the benefit of reducing CPI
•  Loads have two-cycle latency

–  Instruction after load cannot use load result
–  MIPS-I ISA defined load delay slots, a software-visible pipeline hazard

(compiler schedules independent instruction or inserts NOP to avoid
hazard). Removed in MIPS-II (pipeline interlocks added in hardware)

»  MIPS:“Microprocessor without Interlocked Pipeline Stages”
•  Conditional branches may cause bubbles

–  kill following instruction(s) if no delay slots

CSE 490/590, Spring 2011

Early Read-Only Memory Technologies

6

Punched cards, From early
1700s through Jaquard Loom,
Babbage, and then IBM Punched paper tape,

instruction stream in
Harvard Mk 1

IBM Card Capacitor ROS

IBM Balanced Capacitor
ROS

Diode Matrix, EDSAC-2
µcode store

C 2

CSE 490/590, Spring 2011

Early Read/Write Main Memory
Technologies

7

Williams Tube,
Manchester Mark 1, 1947

Babbage, 1800s: Digits
stored on mechanical wheels

Mercury Delay Line, Univac 1, 1951

Also, regenerative capacitor memory on
Atanasoff-Berry computer, and rotating
magnetic drum memory on IBM 650

CSE 490/590, Spring 2011 8

Semiconductor Memory

•  Semiconductor memory began to be competitive in early
1970s

–  Intel formed to exploit market for semiconductor memory
–  Early semiconductor memory was Static RAM (SRAM). SRAM

cell internals similar to a latch (cross-coupled inverters).

•  First commercial Dynamic RAM (DRAM) was Intel 1103
–  1Kbit of storage on single chip
–  charge on a capacitor used to hold value

•  Semiconductor memory quickly replaced core in ‘70s

CSE 490/590, Spring 2011

Modern DRAM Structure

9

[Samsung, sub-70nm DRAM, 2004]

CSE 490/590, Spring 2011 10

DRAM Architecture

R
o
w

 A
d
d
re

ss

D
ec

o
d
er

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

D Data

•  Bits stored in 2-dimensional arrays on chip

•  Modern chips have around 4 logical banks on each chip

–  each logical bank physically implemented as many smaller arrays

CSE 490/590, Spring 2011 11

DRAM Operation
Three steps in read/write access to a given bank
•  Row access (RAS)

–  decode row address, enable addressed row (often multiple Kb in row)
–  bitlines share charge with storage cell
–  small change in voltage detected by sense amplifiers which latch whole

row of bits
–  sense amplifiers drive bitlines full rail to recharge storage cells

•  Column access (CAS)
–  decode column address to select small number of sense amplifier

latches (4, 8, 16, or 32 bits depending on DRAM package)
–  on read, send latched bits out to chip pins
–  on write, change sense amplifier latches which then charge storage

cells to required value
–  can perform multiple column accesses on same row without another

row access (burst mode)
•  Precharge

–  charges bit lines to known value, required before next row access

Each step has a latency of around 15-20ns in modern DRAMs
Various DRAM standards (DDR, RDRAM) have different ways of encoding the

signals for transmission to the DRAM, but all share same core architecture

CSE 490/590, Spring 2011 12

DRAM Packaging

•  DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals
connected in parallel (sometimes need buffers
to drive signals to all chips)

•  Data pins work together to return wide word
(e.g., 64-bit data bus using 16x4-bit parts)

Address lines multiplexed
row/column address

Clock and control signals

Data bus
(4b,8b,16b,32b)

DRAM
chip

~12

~7

C 3

CSE 490/590, Spring 2011 13

CPU-Memory Bottleneck

Memory CPU

Performance of high-speed computers is usually
limited by memory bandwidth & latency

•  Latency (time for a single access)
Memory access time >> Processor cycle time
Problematic

•  Bandwidth (number of accesses per unit time)
Increase the bus size, etc.
Usually OK

CSE 490/590, Spring 2011 14

Processor-DRAM Gap (latency)

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

o
rm

an
ce

Four-issue 2GHz superscalar accessing 100ns DRAM could
execute 800 instructions during time for one memory access!

CSE 490/590, Spring 2011

Physical Size Affects Latency

15

Small
Memory

CPU

Big Memory

CPU

•  Signals have
further to travel

•  Fan out to more
locations

CSE 490/590, Spring 2011 16

CSE 490/590 Administrivia
•  Very important to attend

–  Recitations next week & the week after

•  Guest lectures
–  There will be a couple guest lectures late Feb/early Mar.

•  Quiz 1
–  Rescheduled
–  Fri, 2/11
–  Closed book, in-class
–  Includes lectures until last Monday (1/31)
–  Review: next Wed (2/9)

CSE 490/590, Spring 2011 17

Memory Hierarchy

Small,
Fast

Memory
(RF, SRAM)

•  capacity: Register << SRAM << DRAM why?
•  latency: Register << SRAM << DRAM why?
•  bandwidth: on-chip >> off-chip why?

On a data access:
if data ∈ fast memory ⇒ low latency access (SRAM)
If data ∉ fast memory ⇒ long latency access (DRAM)

CPU
Big, Slow
Memory
(DRAM)

A B

holds frequently used data

CSE 490/590, Spring 2011 18

Relative Memory Cell Sizes

[Foss, “Implementing
Application-Specific

Memory”, ISSCC 1996]

DRAM on
memory chip

On-Chip
SRAM in
logic chip

C 4

CSE 490/590, Spring 2011 19

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit -5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

CSE 490/590, Spring 2011

Memory Hierarchy: Apple iMac G5

 iMac G5"
1.6 GHz"

07 Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G

Latency
Cycles,

Time

1,
0.6 ns

3,
1.9 ns

3,
1.9 ns

11,
6.9 ns

88,
55 ns

107,

12 ms

Let programs address a memory space that
scales to the disk size, at a speed that is usually

as fast as register access

Managed "
by compiler"

Managed "
by hardware"

Managed by OS,"
hardware,"
application"

 Goal: Illusion of large, fast, cheap memory"

CSE 490/590, Spring 2011 21

Management of Memory Hierarchy
•  Small/fast storage, e.g., registers

– Address usually specified in instruction
– Generally implemented directly as a register file

»  but hardware might do things behind software’s back, e.g.,
stack management, register renaming

•  Larger/slower storage, e.g., main memory
– Address usually computed from values in register
– Generally implemented as a hardware-managed

cache hierarchy
» hardware decides what is kept in fast memory
»  but software may provide “hints”, e.g., don’t cache or

prefetch

CSE 490/590, Spring 2011

Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory.
IBM Systems Journal 10(3): 168-192 (1971)	

Time!

M
em

or
y

A
dd

re
ss

 (o
ne

 d
ot

 p
er

 a
cc

es
s)
!

CSE 490/590, Spring 2011

Typical Memory Reference Patterns
Address

Time

Instruction
 fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

vector access

scalar accesses

CSE 490/590, Spring 2011

Common Predictable Patterns

Two predictable properties of memory references:

–  Temporal Locality: If a location is referenced it is
likely to be referenced again in the near future.

–  Spatial Locality: If a location is referenced it is likely
that locations near it will be referenced in the near
future.

C 5

CSE 490/590, Spring 2011

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems Journal
10(3): 168-192 (1971)	

Time!

M
em

or
y

A
dd

re
ss

 (o
ne

 d
ot

 p
er

 a
cc

es
s)
!

Spatial
Locality

Temporal
 Locality

CSE 490/590, Spring 2011

Caches

Caches exploit both types of predictability:

– Exploit temporal locality by remembering the
contents of recently accessed locations.

– Exploit spatial locality by fetching blocks of data
around recently accessed locations.

CSE 490/590, Spring 2011

Inside a Cache

CACHE Processor Main
Memory

Address Address

Data Data

 Address
 Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line 100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

 416

CSE 490/590, Spring 2011

Cache Algorithm (Read)

 Look at Processor Address, search cache tags to find match. Then
either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace?

CSE 490/590, Spring 2011 29

Placement Policy

0 1 2 3 4 5 6 7 0 1 2 3 Set Number

Cache

 Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

 set 0 block 4
 (12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

CSE 490/590, Spring 2011

Direct-Mapped Cache

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t k b

 t

HIT Data Word or Byte

 2k

lines

C 6

CSE 490/590, Spring 2011

Direct Map Address Selection
higher-order vs. lower-order address bits

 Tag Data Block V

 =

Block
Offset

 Index

 t k
 b

 t

HIT Data Word or Byte

 2k

lines

Tag

CSE 490/590, Spring 2011

2-Way Set-Associative Cache

 Tag Data Block V

 =

Block
Offset

 Tag Index

 t k

 b

HIT

 Tag Data Block V

Data
Word
or Byte

 =

 t

CSE 490/590, Spring 2011

Fully Associative Cache

 Tag Data Block V

 =

B
lo

ck

O
ff
se

t

Ta

g

 t

 b

HIT

Data
Word
or Byte

 =

 =

 t

CSE 490/590, Spring 2011 34

Replacement Policy
In an associative cache, which block from a set
should be evicted when the set becomes full?

•  Random

•  Least Recently Used (LRU)
•  LRU cache state must be updated on every access
•  true implementation only feasible for small sets (2-way)
•  pseudo-LRU binary tree often used for 4-8 way

•  First In, First Out (FIFO) a.k.a. Round-Robin
•  used in highly associative caches

•  Not Least Recently Used (NLRU)
•  FIFO with exception for most recently used block or blocks

This is a second-order effect. Why?

Replacement only happens on misses

CSE 490/590, Spring 2011 35

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

