Last time…

- Dynamic RAM (DRAM) is the main form of main memory storage in use today
 - Holds values on small capacitors, need refreshing (hence dynamic)
 - Slow multi-step access: precharge, read row, read column
- Static RAM (SRAM) is faster but more expensive
 - Used to build on-chip memory for caches
- Cache holds a small set of values in fast memory (SRAM) close to the processor
 - Need to develop a search scheme to find the values in cache and a replacement policy to make space for newly accessed locations
- Caches exploit two forms of predictability in memory reference streams
 - Temporal locality, same location likely to be accessed again soon
 - Spatial locality, neighboring location likely to be accessed soon

Some Basics (Again)

- Block: the unit of access/storage in cache
- Word: the unit of access by CPU
- A block contains multiple words.
 - Why multiple words?
- On cache miss,
 - Memory access
 - Cache block replacement
 - Why keep it?
- Five things to decide
 - After fetching a block from the memory, where do we place it inside the cache?
 - If the line is taken or the cache is full already, which block to evict?
 - How many words per block?
 - How big?
 - What happens on write?

Placement Policy

- Direct-Mapped Cache
 - Tag
 - Index
 - Block Offset
 - Block: \(V, t, k, b \)
 - Data Word or Byte
 - \(V \) = \(k \) \(\mod 2^n \)

- 2-Way Set-Associative Cache
 - Tag
 - Index
 - Block Offset
 - Block: \(V, t, k, b \)
 - Data Word or Byte
 - \(V \) = \(t \)
Fully Associative Cache

Block Size and Spatial Locality

CPU-Cache Interaction

Improving Cache Performance

Replacement Policy

Serial-versus-Parallel Cache and Memory access
CSE 490/590 Administrivia

- **Feedback on lectures**
 - If you have any feedback/concern, please send it along to me
 - Thanks to those who already did
 - Please ask questions if things are not clear
 - Or you can simply scream, “TOO FAST!”
 - Please utilize my office hours (I will change to sometime in the afternoon)
- **Very important to attend**
 - Recitations this week & next week
- **Quiz 1**
 - Fri, 2/11
 - Closed book, in-class
 - Includes lectures until last Monday (1/31)
 - Review: Wed (2/9)

Acknowledgements

- These slides heavily contain material developed and copyright by
 - Krste Asanovic (MIT/UCB)
 - David Patterson (UCB)
- And also by:
 - Arvind (MIT)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
- MIT material derived from course 6.823
- UCB material derived from course CS252