
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Cache IV

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Types of cache misses: 3 C’s

– Compulsory, Capacity, and Conflict

•  Write policies
– Write through vs. write back
– No write allocate vs. write allocate

•  Multi-level cache hierarchies reduce miss penalty
–  Inclusive versus exclusive caching policy
– Can change design tradeoffs of L1 cache if known to have L2

•  Prefetching
–  Speculate future I & D accesses and fetch them into caches
– Usefulness & timeliness

CSE 490/590, Spring 2011

Write-Back Cache Accesses
•  Write-back cache

–  Writes only go to cache (make dirty lines)
–  Upon evict, update memory

•  0 mem access
–  Write hit

•  1 mem access
–  Read miss on a clean line

•  2 mem accesses
–  Read miss on a dirty line

•  Variable cycles per read/write, might complicate the
pipeline control

3 CSE 490/590, Spring 2011 4

Hardware Instruction Prefetching
Instruction prefetch in Alpha AXP 21064

–  Fetch two blocks on a miss; the requested block (i) and the next
consecutive block (i+1)

–  Requested block placed in cache, and next block in instruction stream
buffer

–  If miss in cache but hit in stream buffer, move stream buffer block into
cache and prefetch next block (i+2)

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer

Prefetched
instruction block Req

 block

Req
 block

CSE 490/590, Spring 2011 5

Hardware Data Prefetching
•  Prefetch-on-miss:

– Prefetch b + 1 upon miss on b

•  One Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when block b is accessed
– Why is this different from doubling block size?
– Can extend to N-block lookahead

•  Strided prefetch
– If observe sequence of accesses to block b, b+N, b+2N,

then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12 lines
ahead of current access

CSE 490/590, Spring 2011 6

Software Prefetching

 for(i=0; i < N; i++) {
 prefetch(&a[i + 1]);
 prefetch(&b[i + 1]);
 SUM = SUM + a[i] * b[i];
 }

What property do we require of the cache for
prefetching to work ?

C 2

CSE 490/590, Spring 2011 7

Software Prefetching Issues

•  Timing is the biggest issue, not predictability
–  If you prefetch very close to when the data is required, you

might be too late
–  Prefetch too early, cause pollution
–  Estimate how long it will take for the data to come into L1, so

we can set P appropriately
–  Why is this hard to do?

 for(i=0; i < N; i++) {
 prefetch(&a[i + P]);
 prefetch(&b[i + P]);
 SUM = SUM + a[i] * b[i];
 }

Must consider cost of prefetch instructions

CSE 490/590, Spring 2011 8

Compiler Optimizations

•  Restructuring code affects the data block
access sequence
–  Group data accesses together to improve spatial locality
–  Re-order data accesses to improve temporal locality

•  Prevent data from entering the cache
–  Useful for variables that will only be accessed once before being

replaced
–  Needs mechanism for software to tell hardware not to cache

data (“no-allocate” instruction hints or page table bits)

•  Kill data that will never be used again
–  Streaming data exploits spatial locality but not temporal locality
–  Replace into dead cache locations

CSE 490/590, Spring 2011 9

Loop Interchange

 for(i=0; i < M; i++) {
 for(j=0; j < N; j++) {
 x[i][j] = 2 * x[i][j];
 }
 }

What type of locality does this improve?

 for(j=0; j < N; j++) {
 for(i=0; i < M; i++) {
 x[i][j] = 2 * x[i][j];
 }
 }

CSE 490/590, Spring 2011 10

Loop Fusion
for(i=0; i < N; i++)
 a[i] = b[i] * c[i];

for(i=0; i < N; i++)
 d[i] = a[i] * c[i];

 for(i=0; i < N; i++)
{
 a[i] = b[i] * c[i];
 d[i] = a[i] * c[i];

 }

What type of locality does this improve?

CSE 490/590, Spring 2011 11

 for(i=0; i < N; i++)
 for(j=0; j < N; j++) {
 r = 0;
 for(k=0; k < N; k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = r;
 }

Matrix Multiply, Naïve Code

Not touched Old access New access

x j

i

y k

i

z j

k

CSE 490/590, Spring 2011 12

 for(jj=0; jj < N; jj=jj+B)
 for(kk=0; kk < N; kk=kk+B)
 for(i=0; i < N; i++)
 for(j=jj; j < min(jj+B,N); j++) {
 r = 0;
 for(k=kk; k < min(kk+B,N); k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = x[i][j] + r;
 }

Matrix Multiply with Cache Tiling

What type of locality does this improve?

y k

i

z j

k

x j

i

C 3

CSE 490/590, Spring 2011 13

CSE 490/590 Administrivia
•  Midterm on Friday, 3/4
•  Project 1 deadline: Friday, 3/11
•  Guest lectures possibly this month
•  Course early-evaluation today

CSE 490/590, Spring 2011 14

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

