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Last time… 
•  Virtual address caches 

– Virtually-indexed, physically-tagged cache design 

•  Aliasing problem 
– No issue when cache size < page size 

•  Using physical address L2 cache 
– When cache size > page size 
– L2 cache keeps a pointer to L1 cache 
– Disallows aliasing 
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Complex Pipelining: Motivation 

Pipelining becomes complex when we want 
high performance in the presence of: 

•  Long latency or partially pipelined floating-
point units 

•  Memory systems with variable access time 

•  Multiple arithmetic and memory units 
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Floating-Point Unit (FPU) 
Much more hardware than an integer unit 

Single-cycle FPU is a bad idea - why? 

•  it is common to have several FPU’s 

•  it is common to have different types of FPU’s  
    Fadd, Fmul, Fdiv, ... 

•  an FPU may be pipelined, partially pipelined or 
not pipelined 

To operate several FPU’s concurrently the FP register 
file needs to have more read and write ports 
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Functional Unit Characteristics 

fully 
pipelined 

partially 
pipelined 

Functional units have internal pipeline registers 

⇒   operands are latched when an instruction  
enters a functional unit  

⇒   inputs to a functional unit (e.g., register file) 
     can change during a long latency operation 

1cyc 1cyc 1cyc 

2 cyc 2 cyc 
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Floating-Point ISA 

Interaction between the floating-point datapath 
and the integer datapath is determined largely 
by the ISA 

MIPS ISA  
•  separate register files for FP and Integer instructions 

the only interaction is via a set of move 
instructions  (some ISA’s don’t even permit this) 

•  separate load/store for FPR’s and GPR’s but both 
   use GPR’s for address calculation  
•  separate conditions for branches 

FP branches are defined in terms of condition codes 
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Realistic Memory Systems  

Latency of access to the main memory is usually 
much greater than one cycle and often unpredictable 

Solving this problem is a central issue in 
computer architecture  

Common approaches to improving memory 
performance 

•  caches  
single cycle except in case of a miss ⇒  stall 

•  interleaved memory  
multiple memory accesses ⇒ bank conflicts 

•  split-phase memory operations (separate memory 
request from response) 

⇒ out-of-order responses 
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Multiple Functional Units in Pipeline 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 
FPR’s 
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Complex Pipeline Control Issues 

•  Structural conflicts at the execution stage if some  
   FPU or memory unit is not pipelined and takes 
   more than one cycle 

•  Structural conflicts at the write-back stage due to  
   variable latencies of different functional units 

•  Out-of-order write hazards due to variable  
   latencies of different functional units 

•  How to handle exceptions? 
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Complex In-Order Pipeline 

Delay writeback so all 
operations have same 
latency to W stage 
– Write ports never 

oversubscribed (one inst. in & 
one inst. out every cycle) 

–  Stall pipeline on long latency 
operations, e.g., divides, cache 
misses 

–  Handle exceptions in-order at 
commit point 

Commit 
Point 

PC 
Inst. 
Mem D Decode X1 X2 

Data 
Mem W + GPRs 

X2 W FAdd X3 

X3 

FPRs X1 

X2 FMul X3 

X2 FDiv X3 

Unpipelined 
divider 

How to prevent increased writeback 
latency from slowing down single 
cycle integer operations?  Bypassing 
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In-Order Superscalar Pipeline 

• Fetch two instructions per cycle; 
issue both simultaneously if one 
is integer/memory and other is 
floating point 

•  Inexpensive way of increasing 
throughput, examples include 
Alpha 21064 (1992) & MIPS 
R5000 series (1996) 

• Same idea can be extended to 
wider issue by duplicating 
functional units (e.g. 4-issue 
UltraSPARC) but regfile ports and 
bypassing costs grow quickly 

Commit 
Point 

2 
PC 

Inst. 
Mem D 

Dual 
Decode X1 X2 

Data 
Mem W + GPRs 

X2 W FAdd X3 

X3 

FPRs X1 

X2 FMul X3 

X2 FDiv X3 

Unpipelined 
divider 

CSE 490/590, Spring 2011 12 

Types of Data Hazards  
Consider executing a sequence of  

  rk  ←  ri  op  rj  
type of instructions 

Data-dependence 
r3  ←  r1 op r2  Read-after-Write   
r5  ←  r3 op r4  (RAW) hazard 

Anti-dependence 
r3  ←  r1 op r2  Write-after-Read  
r1  ←  r4 op r5  (WAR) hazard 

Output-dependence 
r3  ←  r1 op r2   Write-after-Write  
r3  ←  r6 op r7    (WAW) hazard 
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Register vs. Memory Dependence 

Data hazards due to register operands can be 
determined at the decode stage but 

data hazards due to memory operands can be 
determined only after computing the effective  
address 

store   M[r1 +  disp1] ← r2   
load   r3  ←  M[r4 +  disp2] 

Does (r1 + disp1) = (r4 + disp2) ? 
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Data Hazards: An Example 

I1  DIVD   f6,  f6,  f4 

I2  LD   f2,  45(r3) 

I3  MULTD  f0,  f2,  f4 

I4  DIVD   f8,  f6,  f2 

I5  SUBD   f10,  f0,  f6 

I6  ADDD   f6,  f8,  f2 

RAW Hazards 
WAR Hazards 
WAW Hazards 
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Instruction Scheduling 

I6 

I2 

I4 

I1 

I5 

I3 

Valid orderings: 
in-order  I1   I2   I3   I4   I5  I6 

out-of-order   

out-of-order 

I1  DIVD   f6,  f6,  f4 

I2  LD   f2,  45(r3) 

I3  MULTD   f0,  f2,  f4 

I4  DIVD   f8,  f6,  f2 

I5  SUBD   f10,  f0,  f6 

I6  ADDD   f6,  f8,  f2 

I2   I1   I3   I4   I5  I6 

I1   I2  I3   I5   I4  I6 
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Out-of-order Completion 
In-order Issue 

             Latency 
I1  DIVD   f6,  f6,  f4   4 

I2  LD   f2,  45(r3)    1 

I3  MULTD   f0,  f2,  f4   3 

I4  DIVD   f8,  f6,  f2   4 

I5  SUBD   f10,  f0,  f6   1 

I6  ADDD   f6,  f8,  f2   1 

in-order comp   1   2 

out-of-order comp  1   2 

1   2   3   4        3   5   4   6   5   6 

2   3   1   4   3   5   5   4   6   6 
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CSE 490/590 Administrivia 
•  Midterm on Friday, 3/4 
•  Review on Wednesday, 3/2 
•  Project 1 deadline: Friday, 3/11 
•  CSE machines are available for projects 

–  Thin clients & SSH only for simulation 
–  Linux & Windows machines @ 216 Bell for board 

•  Office hours will be posted again. 
–  At least next week, it’ll be Wed after class until 2pm. 
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CDC 6600 Seymour Cray, 1963 

• A fast pipelined machine with 60-bit words 
–  128 Kword main memory capacity, 32 banks 

• Ten functional units (parallel, unpipelined) 
–  Floating Point: adder, 2 multipliers, divider 
–  Integer: adder, 2 incrementers, ... 

• Hardwired control (no microcoding) 
• Scoreboard for dynamic scheduling of instructions  
• Ten Peripheral Processors for Input/Output 

–  a fast multi-threaded 12-bit integer ALU 
• Very fast clock, 10 MHz (FP add in 4 clocks) 
• >400,000 transistors,  750 sq. ft., 5 tons, 150 kW, 

novel freon-based technology for cooling 
• Fastest machine in world for 5 years (until 7600) 

–  over 100 sold ($7-10M each) 
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IBM Memo on CDC6600 
Thomas Watson Jr., IBM CEO, August 1963: 

 “Last week, Control Data ... announced the 6600 
system. I understand that in the laboratory 
developing the system there are only 34 people 
including the janitor. Of these, 14 are engineers 
and 4 are programmers... Contrasting this modest 
effort with our vast development activities, I fail to 
understand why we have lost our industry 
leadership position by letting someone else offer 
the world's most powerful computer.” 

To which Cray replied: “It seems like Mr. Watson has 
answered his own question.” 
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•  Separate instructions to manipulate three types of reg. 
   8   60-bit data registers (X) 
        8   18-bit address registers (A) 
     8   18-bit index registers (B) 

•  All arithmetic and logic instructions are reg-to-reg  

•  Only Load and Store instructions refer to memory! 

 Touching address registers 1 to 5 initiates a load   
                  6 to 7 initiates a store  

 - very useful for vector operations 

opcode   i      j      k     Ri  ← (Rj) op (Rk) 

CDC 6600:  
A Load/Store Architecture 

opcode   i     j                disp                  Ri ← M[(Rj) + disp] 

6 3 3 3 

6 3 3 18 
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CDC 6600: Datapath 

Address Regs         Index Regs 
  8 x 18-bit                8 x 18-bit 

Operand Regs 
8 x 60-bit 

Inst. Stack 
8 x 60-bit 

IR 

10 Functional 
Units 

Central 
Memory 
128K words, 
32 banks, 
1µs cycle 

result 
addr 

result 

operand 

operand 
addr 
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CDC6600 ISA designed to simplify 
high-performance implementation 
•  Use of three-address, register-register ALU 

instructions simplifies pipelined implementation 
–  No implicit dependencies between inputs and outputs 

•  Decoupling setting of address register (Ar) from 
retrieving value from data register (Xr) simplifies 
providing multiple outstanding memory accesses 

–  Software can schedule load of address register before use of value 
–  Can interleave independent instructions inbetween 

•  CDC6600 has multiple parallel but unpipelined 
functional units 

–  E.g., 2 separate multipliers 

•  Follow-on machine CDC7600 used pipelined 
functional units 

–  Foreshadows later RISC designs 
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Complex Pipeline 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 
FPR’s 

Can we solve write 
hazards without 
equalizing all pipeline 
depths and without 
bypassing? 
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When is it Safe to Issue an 
Instruction? 

Suppose a data structure keeps track of all the 
instructions in all the functional units 

The following checks need to be made before the 
Issue stage can dispatch an instruction 

•  Is the required function unit available? 

•  Is the input data available?   ⇒   RAW? 

•  Is it safe to write the destination?  ⇒  WAR?  WAW? 

•  Is there a structural conflict at the WB stage? 
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A Data Structure for Correct Issues 
Keeps track of the status of Functional Units 

The instruction i at the Issue stage consults this table 
FU available?  check the busy column 
RAW?   search the dest column for i’s sources 
WAR?   search the source columns for i’s destination 
WAW?   search the dest column for i’s destination 

An entry is added to the table if no hazard is detected; 
An entry is removed from the table after Write-Back 

  Name  Busy   Op  Dest  Src1  Src2    
Int 
Mem   
Add1 
Add2 
Add3 
Mult1 
Mult2 
Div 
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