
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Complex Pipelining I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Virtual address caches

– Virtually-indexed, physically-tagged cache design

•  Aliasing problem
– No issue when cache size < page size

•  Using physical address L2 cache
– When cache size > page size
– L2 cache keeps a pointer to L1 cache
– Disallows aliasing

CSE 490/590, Spring 2011 3

Complex Pipelining: Motivation

Pipelining becomes complex when we want
high performance in the presence of:

•  Long latency or partially pipelined floating-
point units

•  Memory systems with variable access time

•  Multiple arithmetic and memory units

CSE 490/590, Spring 2011 4

Floating-Point Unit (FPU)
Much more hardware than an integer unit

Single-cycle FPU is a bad idea - why?

•  it is common to have several FPU’s

•  it is common to have different types of FPU’s
 Fadd, Fmul, Fdiv, ...

•  an FPU may be pipelined, partially pipelined or
not pipelined

To operate several FPU’s concurrently the FP register
file needs to have more read and write ports

CSE 490/590, Spring 2011 5

Functional Unit Characteristics

fully
pipelined

partially
pipelined

Functional units have internal pipeline registers

⇒ operands are latched when an instruction
enters a functional unit

⇒ inputs to a functional unit (e.g., register file)
 can change during a long latency operation

1cyc 1cyc 1cyc

2 cyc 2 cyc

CSE 490/590, Spring 2011 6

Floating-Point ISA

Interaction between the floating-point datapath
and the integer datapath is determined largely
by the ISA

MIPS ISA
•  separate register files for FP and Integer instructions

the only interaction is via a set of move
instructions (some ISA’s don’t even permit this)

•  separate load/store for FPR’s and GPR’s but both
 use GPR’s for address calculation
•  separate conditions for branches

FP branches are defined in terms of condition codes

C 2

CSE 490/590, Spring 2011 7

Realistic Memory Systems

Latency of access to the main memory is usually
much greater than one cycle and often unpredictable

Solving this problem is a central issue in
computer architecture

Common approaches to improving memory
performance

•  caches
single cycle except in case of a miss ⇒ stall

•  interleaved memory
multiple memory accesses ⇒ bank conflicts

•  split-phase memory operations (separate memory
request from response)

⇒ out-of-order responses

CSE 490/590, Spring 2011 8

Multiple Functional Units in Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

CSE 490/590, Spring 2011 9

Complex Pipeline Control Issues

•  Structural conflicts at the execution stage if some
 FPU or memory unit is not pipelined and takes
 more than one cycle

•  Structural conflicts at the write-back stage due to
 variable latencies of different functional units

•  Out-of-order write hazards due to variable
 latencies of different functional units

•  How to handle exceptions?

CSE 490/590, Spring 2011 10

Complex In-Order Pipeline

Delay writeback so all
operations have same
latency to W stage
– Write ports never

oversubscribed (one inst. in &
one inst. out every cycle)

–  Stall pipeline on long latency
operations, e.g., divides, cache
misses

–  Handle exceptions in-order at
commit point

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W + GPRs

X2 W FAdd X3

X3

FPRs X1

X2 FMul X3

X2 FDiv X3

Unpipelined
divider

How to prevent increased writeback
latency from slowing down single
cycle integer operations? Bypassing

CSE 490/590, Spring 2011 11

In-Order Superscalar Pipeline

• Fetch two instructions per cycle;
issue both simultaneously if one
is integer/memory and other is
floating point

•  Inexpensive way of increasing
throughput, examples include
Alpha 21064 (1992) & MIPS
R5000 series (1996)

• Same idea can be extended to
wider issue by duplicating
functional units (e.g. 4-issue
UltraSPARC) but regfile ports and
bypassing costs grow quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W + GPRs

X2 W FAdd X3

X3

FPRs X1

X2 FMul X3

X2 FDiv X3

Unpipelined
divider

CSE 490/590, Spring 2011 12

Types of Data Hazards
Consider executing a sequence of

 rk ← ri op rj
type of instructions

Data-dependence
r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW) hazard

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

C 3

CSE 490/590, Spring 2011 13

Register vs. Memory Dependence

Data hazards due to register operands can be
determined at the decode stage but

data hazards due to memory operands can be
determined only after computing the effective
address

store M[r1 + disp1] ← r2
load r3 ← M[r4 + disp2]

Does (r1 + disp1) = (r4 + disp2) ?

CSE 490/590, Spring 2011 14

Data Hazards: An Example

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

CSE 490/590, Spring 2011 15

Instruction Scheduling

I6

I2

I4

I1

I5

I3

Valid orderings:
in-order I1 I2 I3 I4 I5 I6

out-of-order

out-of-order

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

I2 I1 I3 I4 I5 I6

I1 I2 I3 I5 I4 I6

CSE 490/590, Spring 2011 16

Out-of-order Completion
In-order Issue

 Latency
I1 DIVD f6, f6, f4 4

I2 LD f2, 45(r3) 1

I3 MULTD f0, f2, f4 3

I4 DIVD f8, f6, f2 4

I5 SUBD f10, f0, f6 1

I6 ADDD f6, f8, f2 1

in-order comp 1 2

out-of-order comp 1 2

1 2 3 4 3 5 4 6 5 6

2 3 1 4 3 5 5 4 6 6

CSE 490/590, Spring 2011 17

CSE 490/590 Administrivia
•  Midterm on Friday, 3/4
•  Review on Wednesday, 3/2
•  Project 1 deadline: Friday, 3/11
•  CSE machines are available for projects

–  Thin clients & SSH only for simulation
–  Linux & Windows machines @ 216 Bell for board

•  Office hours will be posted again.
–  At least next week, it’ll be Wed after class until 2pm.

CSE 490/590, Spring 2011
3/10/2009

18

CDC 6600 Seymour Cray, 1963

• A fast pipelined machine with 60-bit words
–  128 Kword main memory capacity, 32 banks

• Ten functional units (parallel, unpipelined)
–  Floating Point: adder, 2 multipliers, divider
–  Integer: adder, 2 incrementers, ...

• Hardwired control (no microcoding)
• Scoreboard for dynamic scheduling of instructions
• Ten Peripheral Processors for Input/Output

–  a fast multi-threaded 12-bit integer ALU
• Very fast clock, 10 MHz (FP add in 4 clocks)
• >400,000 transistors, 750 sq. ft., 5 tons, 150 kW,

novel freon-based technology for cooling
• Fastest machine in world for 5 years (until 7600)

–  over 100 sold ($7-10M each)

C 4

CSE 490/590, Spring 2011 19

IBM Memo on CDC6600
Thomas Watson Jr., IBM CEO, August 1963:

 “Last week, Control Data ... announced the 6600
system. I understand that in the laboratory
developing the system there are only 34 people
including the janitor. Of these, 14 are engineers
and 4 are programmers... Contrasting this modest
effort with our vast development activities, I fail to
understand why we have lost our industry
leadership position by letting someone else offer
the world's most powerful computer.”

To which Cray replied: “It seems like Mr. Watson has
answered his own question.”

CSE 490/590, Spring 2011 20

•  Separate instructions to manipulate three types of reg.
 8 60-bit data registers (X)
 8 18-bit address registers (A)
 8 18-bit index registers (B)

•  All arithmetic and logic instructions are reg-to-reg

•  Only Load and Store instructions refer to memory!

 Touching address registers 1 to 5 initiates a load
 6 to 7 initiates a store

 - very useful for vector operations

opcode i j k Ri ← (Rj) op (Rk)

CDC 6600:
A Load/Store Architecture

opcode i j disp Ri ← M[(Rj) + disp]

6 3 3 3

6 3 3 18

CSE 490/590, Spring 2011 21

CDC 6600: Datapath

Address Regs Index Regs
 8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory
128K words,
32 banks,
1µs cycle

result
addr

result

operand

operand
addr

CSE 490/590, Spring 2011 22

CDC6600 ISA designed to simplify
high-performance implementation
•  Use of three-address, register-register ALU

instructions simplifies pipelined implementation
–  No implicit dependencies between inputs and outputs

•  Decoupling setting of address register (Ar) from
retrieving value from data register (Xr) simplifies
providing multiple outstanding memory accesses

–  Software can schedule load of address register before use of value
–  Can interleave independent instructions inbetween

•  CDC6600 has multiple parallel but unpipelined
functional units

–  E.g., 2 separate multipliers

•  Follow-on machine CDC7600 used pipelined
functional units

–  Foreshadows later RISC designs

CSE 490/590, Spring 2011 23

Complex Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

CSE 490/590, Spring 2011 24

When is it Safe to Issue an
Instruction?

Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the
Issue stage can dispatch an instruction

•  Is the required function unit available?

•  Is the input data available? ⇒ RAW?

•  Is it safe to write the destination? ⇒ WAR? WAW?

•  Is there a structural conflict at the WB stage?

C 5

CSE 490/590, Spring 2011 25

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

The instruction i at the Issue stage consults this table
FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

 Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

CSE 490/590, Spring 2011 26

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

