
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Complex Pipelining II

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Complex pipelining

– Multiple functional units with variable access time

•  Types of data hazards

– RAW, WAR, WAW

•  Dependency graph
– How instructions are dependent on each other
– Basis for out-of-order

CSE 490/590, Spring 2011 3

Complex Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

CSE 490/590, Spring 2011 4

When is it Safe to Issue an
Instruction?

Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the
Issue stage can dispatch an instruction

•  Is the required function unit available?

•  Is the input data available? ⇒ RAW?

•  Is it safe to write the destination? ⇒ WAR? WAW?

•  Is there a structural conflict at the WB stage?

CSE 490/590, Spring 2011 5

Types of Data Hazards
Consider executing a sequence of

 rk ← ri op rj
type of instructions

Data-dependence
r3 ← r1 op r2 Read-after-Write
r5 ← r3 op r4 (RAW) hazard

Anti-dependence
r3 ← r1 op r2 Write-after-Read
r1 ← r4 op r5 (WAR) hazard

Output-dependence
r3 ← r1 op r2 Write-after-Write
r3 ← r6 op r7 (WAW) hazard

CSE 490/590, Spring 2011 6

A Data Structure for Correct Issues
Keeps track of the status of Functional Units

The instruction i at the Issue stage consults this table
FU available? check the busy column
RAW? search the dest column for i’s sources
WAR? search the source columns for i’s destination
WAW? search the dest column for i’s destination

An entry is added to the table if no hazard is detected;
An entry is removed from the table after Write-Back

 Name Busy Op Dest Src1 Src2
Int
Mem
Add1
Add2
Add3
Mult1
Mult2
Div

C 2

CSE 490/590, Spring 2011 7

Simplifying the Data Structure
Assuming In-order Issue

Suppose the instruction is not dispatched by the
Issue stage if a RAW hazard exists or the required
FU is busy, and that operands are latched by
functional unit on issue:

Can the dispatched instruction cause a
WAR hazard ?

WAW hazard ?
NO: Operands read at issue

YES: Out-of-order completion

CSE 490/590, Spring 2011 8

Simplifying the Data Structure ...

No WAR hazard
 ⇒ no need to keep src1 and src2

The Issue stage does not dispatch an instruction in
case of a WAW hazard

 ⇒ a register name can occur at most once in the
 dest column

WP[reg#] : a bit-vector to record the registers for
which writes are pending

 These bits are set to true by the Issue stage and
 set to false by the WB stage

 ⇒ Each pipeline stage in the FU's must carry the
 dest field and a flag to indicate if it is valid
 “the (we, ws) pair”

CSE 490/590, Spring 2011 9

Scoreboard for In-order Issues

Busy[FU#] : a bit-vector to indicate FU’s availability.
 (FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which
 writes are pending.

These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

CSE 490/590, Spring 2011 10

Scoreboard Dynamics

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

Functional Unit Status Registers Reserved
Int(1) Add(1) Mult(3) Div(4) WB for Writes

 t0 I1 f6 f6
 t1 I2 f2 f6 f6, f2
 t2 f6 f2 f6, f2 I2
 t3 I3 f0 f6 f6, f0
 t4 f0 f6 f6, f0 I1
 t5 I4 f0 f8 f0, f8
 t6 f8 f0 f0, f8 I3
 t7 I5 f10 f8 f8, f10
 t8 f8 f10 f8, f10 I5
 t9 f8 f8 I4
t10 I6 f6 f6
t11 f6 f6 I6

CSE 490/590, Spring 2011 11

CSE 490/590 Administrivia
•  Midterm on Friday, 3/4
•  Review on Wednesday, 3/2
•  Project 1 deadline: Friday, 3/11
•  Office hours this week: Wed after class until 2pm

CSE 490/590, Spring 2011 12

In-Order Issue Limitations: an example
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

In-order restriction prevents
instruction 4 from being dispatched

C 3

CSE 490/590, Spring 2011 13

Out-of-Order Issue

•  Issue stage buffer holds multiple instructions waiting to issue.
•  Decode adds next instruction to buffer if there is space and the instruction

does not cause a WAR or WAW hazard.
–  Note: WAR possible again because issue is out-of-order (WAR not possible with in-

order issue and latching of input operands at functional unit)

•  Any instruction in buffer whose RAW hazards are satisfied can be issued
(for now at most one dispatch per cycle). On a write back (WB), new
instructions may get enabled.

IF ID WB

ALU Mem

Fadd

Fmul

Issue

CSE 490/590, Spring 2011 14

Issue Limitations: In-Order and Out-of-Order
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

CSE 490/590, Spring 2011 15

How many instructions can be in
the pipeline?

Which features of an ISA limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide
any significant performance improvement!

Number of Registers

CSE 490/590, Spring 2011 16

Overcoming the Lack of Register
Names

Floating Point pipelines often cannot be kept filled
with small number of registers.

 IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Robert Tomasulo of IBM suggested an ingenious
solution in 1967 using on-the-fly register renaming

CSE 490/590, Spring 2011 17

Instruction-level Parallelism via Renaming
 latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

3 4

5

6

X

Any antidependence can be eliminated by renaming.
 (renaming ⇒ additional storage)
 Can it be done in hardware? yes!

CSE 490/590, Spring 2011 18

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

