CSE 490/590 Computer Architecture

Directory-Based Caches |

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 490/590, Spring 2011

Last time...

* Snoopy Cache Coherence Protocol
— MSI & MESI

CSE 490/590, Spring 2011 2

MESI: An Enhanced MSI protocol

increased performance for private data

Each cache line has a tag M: Modified Exclusive
E: Exclusive but unmodified

l [[Address tag] S: Shared
séate‘ I: Invalid
it
s Write miss
. read
Py write Read miss,
or read not shared

Other processor reads

Other processor
P, writes back

Other processor intent to write

Read miss, intent to Wite, P

Optimized Snoop with Level-2 Caches

CPU
L2 $ L2$
Snooper Snoopefr Snoop€lr Snooper
1 I

e Processors often have two-level caches
e small L1, large L2 (usually both on chip now)
e Inclusion property: entries in L1 must be in L2
invalidation in L2 = invalidation in L1
e Snooping on L2 does not affect CPU-L1 bandwidth

What problem could occur?

CSE 490/590, Spring 2011

shared writes back
Read by any Other processor
intent to write
processor Cache state in
processor Py
CSE 490/590, Spring 2011 :
Intervention

A 100 memory (stale data)
—

When a read-miss for A occurs in cache-2,

a read request for A is placed on the bus
* Cache-1 needs to supply & change its state to shared
* The memory may respond to the request also!

Does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

CSE 490/590, Spring 2011

False Sharing

state [blk addr [dataO[datal] ... | dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M, writes word; and M, writes word, and
both words have the same block address.

What can happen?

CSE 490/590, Spring 2011

Synchronization and Caches:

Performance Issues

Processor 1 Processor 2 Processor 3
R<1 R<1 R<1
L: swap (mutex), R; L: swap (mutex), R; L: swap (mutex), R;
if <R> then goto L; if <R> then goto L; if <R> then goto L;
<critical section> <critical section> <critical section>
M[mutex] < 0; M[mutex] < 0; M[mutex] < 0;
I I 1
cache A | | mujex=1 | | cache
T | | [| T T
CPU-Merrory-sus—

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

CSE 490/590, Spring 2011

Out-of-Order Loads/Stores & CC

Whb-req, Inv-req, Inv-rep

load/store —
buffer: -
pushout (Wb-rep) Memory
—]ﬁi—P Cache :Ijjf
DU)
(1/S/M) | (S-rep, M-rep)
— 11
Blocking caches (S-req, M-req) CPU/Memory
One request at a time + CC = SC Interface

Non-blocking caches
Multiple requests (different addresses) concurrently + CC
= Relaxed memory models
CC ensures that all processors observe the same
order of loads and stores to an address

CSE 490/590, Spring 2011

Performance of Symmetric Shared-Memory
Multiprocessors

Cache performance is combination of:
1. Uniprocessor cache miss traffic

2. Traffic caused by communication
— Results in invalidations and subsequent cache misses

+ Adds 4™ C: coherence miss
— Joins Compulsory, Capacity, Conflict
— (Sometimes called a Communication miss)

CSE 490/590, Spring 2011

Coherency Misses

1. True sharing misses arise from the communication
of data through the cache coherence mechanism
« Invalidates due to 1%t write to shared block
* Reads by another CPU of modified block in different cache
« Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the one
being read, is written into
« Invalidation does not cause a new value to be communicated, but

only causes an extra cache miss

« Block is shared, but no word in block is actually shared
= miss would not occur if block size were 1 word

CSE 490/590, Spring 2011 10

CSE 490/590 Administrivia

« Keyboards available for pickup at my office

* Project 2: less than 2 weeks left (Deadline 5/2)
— Will have demo sessions

» No class on 5/2 (finish the project!)
« Final exam: Thursday 5/5, 11:45pm — 2:45pm
* Project 2 + Final = 55%

CSE 490/590, Spring 2011 1

Example: True v. False Sharing v.
Hit?

» Assume x1 and x2 in same cache block.
P1 and P2 both read x1 and x2 before.

Time P1 P2 True, False, Hit? Why?
1 | Write x1 True miss; invalidate x1 in P2
2 Read x2 |False miss; x1 irrelevant to P2
3 | Write x1 False miss; x1 irrelevant to P2
4 Write X2 |False miss; x1 irrelevant to P2
5 | Read x2 True miss; invalidate x2 in P1

CSE 490/590, Spring 2011 12

Ny

MP Performance 4 Processor
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

3.25

* True sharing and

false sharing minstruction

unchanged going

2.75

o Capacity/Conflict

=
s
g 25 oCold —
from 1 MB to 8 MB £ 2.25 mFalse Sharing —|
(L3 cache) E 2 o True Sharing
8175
* Uniprocessor 8 15 .
cache misses S125
) . > 1 —
improve with £ —
cache size s 067: — —
increase (Instruction, o 2'5 N
Capacity/Conflict, " o
Compulsory) 1MB 2MB 4MB 8MB
Cache size

CSE 490/590, Spring 2011

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

3

mInstruction
i O Conflict/Capacity

¢ True sharing, g 25 -{;cou
false sharing 3 mFalse Sharing
. " £ 2 O True Sharing
Increase going £
from1to 8 2,51

gt
CPUs -

@

> 1

g

@

=05

0

Processor count

CSE 490/590, Spring 2011

A Cache Coherent System Must:

» Provide set of states, state transition diagram, and
actions
» Manage coherence protocol
— (0) Determine when to invoke coherence protocol
— (a) Find info about state of address in other caches to determine action
» whether need to communicate with other cached copies
— (b) Locate the other copies
— (c) Communicate with those copies (invalidate/update)
* (0) is done the same way on all systems
— state of the line is maintained in the cache
— protocol is invoked if an “access fault” occurs on the line

« Different approaches distinguished by (a) to (c)

CSE 490/590, Spring 2011

Bus-based Coherence

All of (a), (b), (c) done through broadcast on bus

— faulting processor sends out a “search”

— others respond to the search probe and take necessary action
Could do it in scalable network too

— broadcast to all processors, and let them respond
Conceptually simple, but broadcast doesn’t scale with
number of processors, P

— on bus, bus bandwidth doesn’t scale

— on scalable network, every fault leads to at least P network

transactions

Scalable coherence:

— can have same cache states and state transition diagram

— different mechanisms to manage protocol

CSE 490/590, Spring 2011

Scalable Approach: Directories

« Every memory block has associated directory
information
— keeps track of copies of cached blocks and their states

— on a miss, find directory entry, look it up, and communicate only
with the nodes that have copies if necessary

— in scalable networks, communication with directory and copies is
through network transactions

* Many alternatives for organizing directory information

CSE 490/590, Spring 2011

Acknowledgements

» These slides heavily contain material developed and
copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)

« And also by:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

« MIT material derived from course 6.823
* UCB material derived from course CS252

CSE 490/590, Spring 2011 18

(&%)

