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Last time… 
•  Snoopy Cache Coherence Protocol 

– MSI & MESI 
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MESI: An Enhanced MSI protocol 
 increased performance for private data 

M E 

S I 

M: Modified Exclusive 
E: Exclusive but unmodified 
S: Shared  
 I: Invalid 

Each cache line has a tag 

Address tag 
state 
 bits 

Write miss 

Other processor 
intent to write 

Read miss, 
shared 

Other processor 
intent to write 

P1 write 

Read by any 
 processor 

Other processor reads 
P1 writes back 

P1 read 
P1 write 
or read 

Cache state in 
processor P1 

P1 intent 
to write 

Read miss, 
not shared Other 

processor 
reads 

Other processor 
intent to write, P1 
writes back 
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Snooper Snooper Snooper Snooper 

Optimized Snoop with Level-2 Caches 

•  Processors often have two-level caches 
•  small L1, large L2 (usually both on chip now) 

•  Inclusion property: entries in L1 must be in L2 
      invalidation in L2 ⇒  invalidation in L1 
•  Snooping on L2 does not affect CPU-L1 bandwidth 

    What problem could occur? 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 

CPU 

L1 $ 

L2 $ 
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Intervention 

When a read-miss for A occurs in cache-2,  
a read request for A is placed on the bus 

•  Cache-1 needs to supply & change its state to shared 
•  The memory may respond to the request also! 

Does memory know it has stale data? 

Cache-1 needs to intervene through memory 
controller to supply correct data to cache-2 

cache-1 A  200 

CPU-Memory bus 

CPU-1 CPU-2 

cache-2 

memory (stale data) A  100 
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False Sharing 

state   blk addr  data0  data1        ...     dataN 

A cache block contains more than one word 

Cache-coherence is done at the block-level and 
not word-level 

Suppose M1 writes wordi and M2 writes wordk and 
both words have the same block address. 

What can happen? 
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Synchronization and Caches: 
 Performance Issues  

Cache-coherence protocols will cause mutex to ping-pong 
between P1’s and P2’s caches. 

Ping-ponging can be reduced by first reading the mutex 
location (non-atomically) and executing a swap only if it is 
found to be zero.  

cache 

Processor 1 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

Processor 2 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

Processor 3 
    R ← 1 
L: swap (mutex), R; 
    if  <R> then goto L;  
      <critical section> 
    M[mutex] ← 0; 

          CPU-Memory Bus 

mutex=1 cache cache 
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Blocking caches 
One request at a time + CC ⇒  SC 

Non-blocking caches  
Multiple requests (different addresses) concurrently + CC 
                                ⇒  Relaxed memory models 

CC ensures that all processors observe the same 
order of loads and stores to an address  

Out-of-Order Loads/Stores & CC 

Cache 
Memory pushout (Wb-rep) 

load/store 
buffers 

CPU 

(S-req, M-req) 

(S-rep, M-rep) 

Wb-req, Inv-req, Inv-rep 
snooper 

(I/S/M) 

CPU/Memory 
Interface 
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Performance of Symmetric Shared-Memory 
Multiprocessors 
Cache performance is combination of: 
1.  Uniprocessor cache miss traffic 
2.  Traffic caused by communication  

–  Results in invalidations and subsequent cache misses 

•  Adds 4th C: coherence miss 
–  Joins Compulsory, Capacity, Conflict 
–  (Sometimes called a Communication miss) 
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Coherency Misses 
1.  True sharing misses arise from the communication 

of data through the cache coherence mechanism 
•  Invalidates due to 1st write to shared block 
•  Reads by another CPU of modified block in different cache 
•  Miss would still occur if block size were 1 word 

2.  False sharing misses when a block is invalidated 
because some word in the block, other than the one 
being read, is written into 
•  Invalidation does not cause a new value to be communicated, but 

only causes an extra cache miss 
•  Block is shared, but no word in block is actually shared 

 ⇒ miss would not occur if block size were 1 word 
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CSE 490/590 Administrivia 
•  Keyboards available for pickup at my office 
•  Project 2: less than 2 weeks left (Deadline 5/2) 

– Will have demo sessions 

•  No class on 5/2 (finish the project!) 
•  Final exam: Thursday 5/5, 11:45pm – 2:45pm 
•  Project 2 + Final = 55% 
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Example: True v. False Sharing v. 
Hit? 

Time P1 P2 True, False, Hit? Why? 
1 Write x1 

2 Read x2 

3 Write x1 

4 Write x2 

5 Read x2 

•  Assume x1 and x2 in same cache block.  
  P1 and P2 both read x1 and x2 before. 

True miss; invalidate x1 in P2 

False miss; x1 irrelevant to P2 

False miss; x1 irrelevant to P2 

False miss; x1 irrelevant to P2 

True miss; invalidate x2 in P1 
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MP Performance 4 Processor  
Commercial Workload: OLTP, Decision 
Support (Database), Search Engine 
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•  True sharing and 
false sharing 
unchanged going 
from 1 MB to 8 MB 
(L3 cache) 

•  Uniprocessor 
cache misses 
improve with 
cache size 
increase (Instruction, 
Capacity/Conflict, 
Compulsory)  
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MP Performance 2MB Cache  
Commercial Workload: OLTP, Decision 
Support (Database), Search Engine 

•  True sharing, 
false sharing 
increase going 
from 1 to 8 
CPUs 
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A Cache Coherent System Must: 
•  Provide set of states, state transition diagram, and 

actions 
•  Manage coherence protocol 

–  (0)  Determine when to invoke coherence protocol 
–  (a)  Find info about state of address in other caches to determine action 

»  whether need to communicate with other cached copies 
–  (b)  Locate the other copies 
–  (c)  Communicate with those copies  (invalidate/update) 

•  (0) is done the same way on all systems 
–  state of the line is maintained in the cache 
–  protocol is invoked if an “access fault” occurs on the line 

•  Different approaches distinguished by (a) to (c) 
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Bus-based Coherence 

•  All of (a), (b), (c) done through broadcast on bus 
–  faulting processor sends out a “search”  
–  others respond to the search probe and take necessary action 

•  Could do it in scalable network too 
–  broadcast to all processors, and let them respond 

•  Conceptually simple, but broadcast doesn’t scale with 
number of processors, P 

–  on bus, bus bandwidth doesn’t scale 
–  on scalable network, every fault leads to at least P network 

transactions 

•  Scalable coherence: 
–  can have same cache states and state transition diagram 
–  different mechanisms to manage protocol 
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Scalable Approach: Directories 
•   Every memory block has associated directory 

information 
–  keeps track of copies of cached blocks and their states 
–  on a miss, find directory entry, look it up, and communicate only 

with the nodes that have copies if necessary 
–  in scalable networks, communication with directory and copies is 

through network transactions 

•  Many alternatives for organizing directory information 
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