

Performance of Symmetric Shared-Memory Multiprocessors

Cache performance is combination of:

- 1. Uniprocessor cache miss traffic
- 2. Traffic caused by communication
- Results in invalidations and subsequent cache misses
 Adds 4th C: coherence miss

CSE 490/590, Spring 2011

- Adds 4st C. conference miss
 Joins Compulsory, Capacity, Conflict
 - (Sometimes called a Communication miss)

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Example: True v. False Sharing v. Hit?

• Assume x1 and x2 in same cache block. P1 and P2 both read x1 and x2 before.

Time	P1	P2	True, False, Hit? Why?
1	Write x1		True miss; invalidate x1 in P2
2		Read x2	False miss; x1 irrelevant to P2
3	Write x1		False miss; x1 irrelevant to P2
4		Write x2	False miss; x1 irrelevant to P2
5	Read x2		True miss; invalidate x2 in P1

CSE 490/590, Spring 2011

CSE 490/590, Spring 2011

11

12

A Cache Coherent System Must:

- Provide set of states, state transition diagram, and actions
- Manage coherence protocol
 - (0) Determine when to invoke coherence protocol
 - (a) Find info about state of address in other caches to determine action
 » whether need to communicate with other cached copies
 - (b) Locate the other copies
 - (c) Communicate with those copies (invalidate/update)
- (0) is done the same way on all systems – state of the line is maintained in the cache
 - protocol is invoked if an "access fault" occurs on the line
- · Different approaches distinguished by (a) to (c)

CSE 490/590, Spring 2011

15

Acknowledgements

- These slides heavily contain material developed and copyright by
 - Krste Asanovic (MIT/UCB)
 - David Patterson (UCB)
- · And also by:
 - Arvind (MIT)
 - Joel Emer (Intel/MIT)
 - James Hoe (CMU)
 - John Kubiatowicz (UCB)
- MIT material derived from course 6.823
- · UCB material derived from course CS252

CSE 490/590, Spring 2011

18