
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Directory-Based Caches I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Snoopy Cache Coherence Protocol

– MSI & MESI

CSE 490/590, Spring 2011
3

MESI: An Enhanced MSI protocol
 increased performance for private data

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write, P1
writes back

CSE 490/590, Spring 2011
4

Snooper Snooper Snooper Snooper

Optimized Snoop with Level-2 Caches

•  Processors often have two-level caches
•  small L1, large L2 (usually both on chip now)

•  Inclusion property: entries in L1 must be in L2
 invalidation in L2 ⇒ invalidation in L1
•  Snooping on L2 does not affect CPU-L1 bandwidth

 What problem could occur?

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CSE 490/590, Spring 2011
5

Intervention

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

•  Cache-1 needs to supply & change its state to shared
•  The memory may respond to the request also!

Does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

cache-1 A 200

CPU-Memory bus

CPU-1 CPU-2

cache-2

memory (stale data) A 100

CSE 490/590, Spring 2011
6

False Sharing

state blk addr data0 data1 ... dataN

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?

C 2

CSE 490/590, Spring 2011
7

Synchronization and Caches:
 Performance Issues

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

cache

Processor 1
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

Processor 2
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

Processor 3
 R ← 1
L: swap (mutex), R;
 if <R> then goto L;
 <critical section>
 M[mutex] ← 0;

 CPU-Memory Bus

mutex=1 cache cache

CSE 490/590, Spring 2011
8

Blocking caches
One request at a time + CC ⇒ SC

Non-blocking caches
Multiple requests (different addresses) concurrently + CC
 ⇒ Relaxed memory models

CC ensures that all processors observe the same
order of loads and stores to an address

Out-of-Order Loads/Stores & CC

Cache
Memory pushout (Wb-rep)

load/store
buffers

CPU

(S-req, M-req)

(S-rep, M-rep)

Wb-req, Inv-req, Inv-rep
snooper

(I/S/M)

CPU/Memory
Interface

CSE 490/590, Spring 2011
9

Performance of Symmetric Shared-Memory
Multiprocessors
Cache performance is combination of:
1.  Uniprocessor cache miss traffic
2.  Traffic caused by communication

–  Results in invalidations and subsequent cache misses

•  Adds 4th C: coherence miss
–  Joins Compulsory, Capacity, Conflict
–  (Sometimes called a Communication miss)

CSE 490/590, Spring 2011
10

Coherency Misses
1.  True sharing misses arise from the communication

of data through the cache coherence mechanism
•  Invalidates due to 1st write to shared block
•  Reads by another CPU of modified block in different cache
•  Miss would still occur if block size were 1 word

2.  False sharing misses when a block is invalidated
because some word in the block, other than the one
being read, is written into
•  Invalidation does not cause a new value to be communicated, but

only causes an extra cache miss
•  Block is shared, but no word in block is actually shared

 ⇒ miss would not occur if block size were 1 word

CSE 490/590, Spring 2011 11

CSE 490/590 Administrivia
•  Keyboards available for pickup at my office
•  Project 2: less than 2 weeks left (Deadline 5/2)

– Will have demo sessions

•  No class on 5/2 (finish the project!)
•  Final exam: Thursday 5/5, 11:45pm – 2:45pm
•  Project 2 + Final = 55%

CSE 490/590, Spring 2011 12

Example: True v. False Sharing v.
Hit?

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

•  Assume x1 and x2 in same cache block.
 P1 and P2 both read x1 and x2 before.

True miss; invalidate x1 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss; invalidate x2 in P1

C 3

CSE 490/590, Spring 2011
13

MP Performance 4 Processor
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25

1 MB 2 MB 4 MB 8 MB
Cache size

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n
Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

•  True sharing and
false sharing
unchanged going
from 1 MB to 8 MB
(L3 cache)

•  Uniprocessor
cache misses
improve with
cache size
increase (Instruction,
Capacity/Conflict,
Compulsory)

CSE 490/590, Spring 2011
14

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision
Support (Database), Search Engine

•  True sharing,
false sharing
increase going
from 1 to 8
CPUs

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

CSE 490/590, Spring 2011
15

A Cache Coherent System Must:
•  Provide set of states, state transition diagram, and

actions
•  Manage coherence protocol

–  (0) Determine when to invoke coherence protocol
–  (a) Find info about state of address in other caches to determine action

»  whether need to communicate with other cached copies
–  (b) Locate the other copies
–  (c) Communicate with those copies (invalidate/update)

•  (0) is done the same way on all systems
–  state of the line is maintained in the cache
–  protocol is invoked if an “access fault” occurs on the line

•  Different approaches distinguished by (a) to (c)

CSE 490/590, Spring 2011
16

Bus-based Coherence

•  All of (a), (b), (c) done through broadcast on bus
–  faulting processor sends out a “search”
–  others respond to the search probe and take necessary action

•  Could do it in scalable network too
–  broadcast to all processors, and let them respond

•  Conceptually simple, but broadcast doesn’t scale with
number of processors, P

–  on bus, bus bandwidth doesn’t scale
–  on scalable network, every fault leads to at least P network

transactions

•  Scalable coherence:
–  can have same cache states and state transition diagram
–  different mechanisms to manage protocol

CSE 490/590, Spring 2011
17

Scalable Approach: Directories
•  Every memory block has associated directory

information
–  keeps track of copies of cached blocks and their states
–  on a miss, find directory entry, look it up, and communicate only

with the nodes that have copies if necessary
–  in scalable networks, communication with directory and copies is

through network transactions

•  Many alternatives for organizing directory information

CSE 490/590, Spring 2011 18

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

