CSE 490/590 Computer Architecture

Directory-Based Caches Il

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 490/590, Spring 2011

Last time...

» True sharing vs. false sharing
* Miss vs. hit in multiprocessors

~

CSE 490/590, Spring 2011

A Cache Coherent System Must:

Provide set of states, state transition diagram, and
actions
Manage coherence protocol
— (0) Determine when to invoke coherence protocol
— (a) Find info about state of address in other caches to determine action
» whether need to communicate with other cached copies
— (b) Locate the other copies
— (c) Communicate with those copies (invalidate/update)
(0) is done the same way on all systems
— state of the line is maintained in the cache
— protocol is invoked if an “access fault” occurs on the line

Different approaches distinguished by (a) to (c)

CSE 490/590, Spring 2011

Bus-based Coherence

All of (a), (b), (c) done through broadcast on bus

— faulting processor sends out a “search”

— others respond to the search probe and take necessary action
+ Could do it in scalable network too

— broadcast to all processors, and let them respond

« Conceptually simple, but broadcast doesn’t scale with
number of processors, P

— on bus, bus bandwidth doesn’t scale

— on scalable network, every fault leads to at least P network
transactions

« Scalable coherence:
— can have same cache states and state transition diagram
— different mechanisms to manage protocol

CSE 490/590, Spring 2011

Scalable Approach: Directories

« Every memory block has associated directory
information
— keeps track of copies of cached blocks and their states

— on a miss, find directory entry, look it up, and communicate only
with the nodes that have copies if necessary

— in scalable networks, communication with directory and copies is
through network transactions

* Many alternatives for organizing directory information

CSE 490/590, Spring 2011

Basic Operation of Directory

« k processors.

« With each cache-block in memory:
k presence-bits, 1 dirty-bit

+ With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit

7 v
presence bits dirty bit

« Read from main memory by processor i:
« If dirty-bit OFF then { read from main memory; turn p[i] ON; }

« if dirty-bit ON then { recall line from dirty proc (downgrade cache
state to shared); update memory; turn dirty-bit OFF; turn pl[i] ON;
supply recalled data to i;}

« Write to main memory by processor i:
« If dirty-bit OFF then {send invalidations to all caches that have the
block; turn dirty-bit ON; supply data to i; turn p[i] ON; ... }

CSE 490/590, Spring 2011

Directory Cache Protocol

| Interconnection Network

R

TR

Directory Directory Directory Directory
Controller Controller Controller Controller
DRAM Bank DRAM Bank DRAM Bank DRAM Bank

» Assumptions: Reliable network, FIFO message
delivery between any given source-destination pair

CSE 490/590, Spring 2011 ’

Cache States

For each cache line, there are 4 possible states:

— C-invalid (= Nothing): The accessed data is not resident in the
cache.

— C-shared (= Sh): The accessed data is resident in the cache,
and possibly also cached at other sites. The data in memory
is valid.

— C-modified (= Ex): The accessed data is exclusively resident
in this cache, and has been modified. Memory does not have
the most up-to-date data.

— C-transient (= Pending): The accessed data is in a transient
state (for example, the site has just issued a protocol request,
but has not received the corresponding protocol reply).

CSE 490/590, Spring 2011

Home directory states

» For each memory block, there are 4 possible
states:

— R(dir): The memory block is shared by the sites specified in
dir (dir is a set of sites). The data in memory is valid in this
state. If dir is empty (i.e., dir = €), the memory block is not
cached by any site.

— W(id): The memogf block is exclusively cached at site id,
and has been modified at that site. Memory does not have
the most up-to-date data.

- TR(dir&: The memory block is in a transient state waiting for
the acknowledgements to the invalidation requests that the
home site has issued.

— TW(id): The memory block is in a transient state waiting for
a block exclusively cached at site id (i.e., in C-modified
state) to make the memory block at the home site up-to-
date.

CSE 490/590, Spring 2011

CSE 490/590 Administrivia

« Keyboards available for pickup at my office

* Project 2: less than 2 weeks left (Deadline 5/2)
— Will have demo sessions

» No class on 5/2 (finish the project!)
« Final exam: Thursday 5/5, 11:45pm — 2:45pm
* Project 2 + Final = 55%

CSE 490/590, Spring 2011 10

Protocol Messages

There are 10 different protocol messages:

Category Messages

Cache to Memory ShReq, ExReq
Requests

Memory to Cache WbReq, InvReq, FlushReq
Requests

Cache to Memory WbRep (v), InvRep, FlushRep (v)
Responses

Memory to Cache ShRep (v) , ExRep (v)
Responses

CSE 490/590, Spring 2011

Cache State Transitions
(from invalid state)

No | Current State Handling Message Next State Dequeue Action

. Message?

1 | C-nothing Load C-pending No ShReq(id Home.a)

2 | C-nothing Store C-pending No ExReq(id Home.a)

3 | C-nothing WbReq(a) C-nothing Yes None

4 | C-nothing FlushReq(a) C-nothing Yes None

5 | C-nothing InvReq(a) C-nothing Yes None

6 | C-nothing ShRep (a) C-shared Yes updates cache with prefetch data
7 | C-nothing ExRep (a) C-exclusive Yes updates cache with data

CSE 490/590, Spring 2011

Ny

Cache State Transitions
(from shared state)

Cache State Transitions
(from exclusive state)

No | Current State Handling Message Next State Dequeue | Action
. Message?
8 | Cshared Load C-shared Yes Reads cache
9 | C-shared WbReq(a) C-shared Yes None
10 | C-shared FlushReq(a) C-nothing Yes InvRep(id, Home, a)
11 | C-shared InvReq(a) C-nothing Yes InvRep(id, Home, a)
12 | C-shared ExRep(a) C-exclusive | Yes None
13 | C-shared (Voluntary Invalidate) | C-nothing NA InvRep(id, Home, a)
CSE 490/590, Spring 2011 B
Cache Transitions
(from pending)
No | Current State Handling Message Next State Dequeue Action
. Message?
20 | C-pending WbReq(a) C-pending Yes None
21 | C-pending FlushReq(a) C-pending Yes None
22 | C-pending InvReq(a) C-pending Yes None
23 | C-pending ShRep(a) C-shared Yes updates cache with data
24 | C-pending ExRep(a) C-exclusive | Yes update cache with data
CSE 490/590, Spring 2011 15
Home Directory State Transitions
No. | Current State Message Received Next State Dequeue | Action
Message?
7 | R(dir) & (dir= {id}) | ShReq(a) R(dir) Yes None
8 | R(dir) & (dir={id}) | ExReq(a) W(id) Yes ExRep(Home, id, data(a))
9 | R(dir) & (dir={id}) | InvRep(a) R(e) Yes None
10 | R(dir) & (id £ dir) ShReq(a) R(dir) Yes None
& (dir = {id})
11 | R(dir) & (id £ dir) ExReq(a) Tr(dir-{id}) | No InvReq(Home, dir - {id}, a)
& (dir = {id})
12 | R(dir) & (id € dir) InvRep(a) R(dir- {id}) | Yes None
& (dir = {id})

No | Current State Handling Message Next State | Dequeue | Action
. Message?
14 | C-exclusive Load C-exclusive | Yes reads cache
15 | C-exclusive Store C-exclusive | Yes writes cache
16 | C-exclusive WbReq(a) C-shared Yes WbRep(id, Home, data(a))
17 | C-exclusive FlushReq(a) C-nothing Yes FlushRep(id, Home, data(a))
18 | C-exclusive (Voluntary Writeback) | C-shared NA WbRep(id, Home, data(a))
19 | C-exclusive (Voluntary Flush) C-nothing NA FlushRep(id, Home, data(a))
CSE 490/590, Spring 2011 "
Home Directory State Transitions
No. | Current State Message Received Next State Dequeue Action
Message?
T | R(dn) & @ir=¢) ShReq(a) R((id}) Yes ‘ShRep(Home, id. data(a))
2 R(dir) & (dir=¢) ExReq(a) W(id) Yes ExRep(Home, id, data(a))
3 | R(dn) & (@dr=¢) (Voluntary Prefetch) | R({id}) NA ShRep(Fome, id, data(a))
4 |Rein&({dEdr) | ShReq(a) R(dir+ {id}) | Yes ShRep(Home, id, data(a))
& (dir # ¢)
5 |R@@i)&(dEdin) | EXReq(@) Ti(din) No TnvReq(Home, dir, 2)
& (dir % €)
6 | R &(d Sdin) | (Voluntary Prefetch) | Ridir = (i) | NA ShRep(Home, id, data(a))
& (dif = ¢)
Messages sent from site id
CSE 490/590, Spring 2011 1
Home Directory State Transitions
No. [Current State Message Received Next State Dequeue | Action
Message?
13 | Wid) ShReq(a) Tw(id’) No WbReq(Home, id, a)
14 | Wid) ExReq(a) Tw(id’) No FlushReq(Home, id", a)
T | Wi ExReq(a) Wid) Yes Note
16 | W(id) WbRep(a) R({id}) Yes data -> memory
17 | W(id) FlushRep(a) R(e) Yes data -> memory

Messages sent from site id

CSE 490/590, Spring 2011

Messages sent from site id

CSE 490/590, Spring 2011

(&%)

Home Directory State Transitions

No. [Current State Message Received NestSate | Dequeue [Action
18 | Tr(dir) & (ddi) | IvRep(a) Ti(dir - {id)) Xes = Note
19 | Tr(dir) & (id€dir) | InvRep(a) Tr(dir) Yes None
20 | Tw(id) WbRep(a) R({id}) Yes data-> memory
21 | Tw(id) FlushRep(a) RE) Yes data-> memory

Messages sent from site id

CSE 490/590, Spring 2011

19

Acknowledgements

« These slides heavily contain material developed and

copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)
« And also by:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

* MIT material derived from course 6.823
« UCB material derived from course CS252

CSE 490/590, Spring 2011

