
FPGA and Verilog

Safwan Wshah Project TA

srwshah@buffalo.edu

Office hours :

- Tuesday 11-12

- Friday 12-1- Friday 12-1

Office Location: 30 Commons -- CEDAR

Semester Plan

• Week 2 – Introduction to FPGA and Verilog

• Week 3 – Structural Verilog + The Verilog HDL
Test Fixture

• Week 4 – Behavioral Modeling• Week 4 – Behavioral Modeling

• Week 5 –Example
» Writing Modular Code in Verilog

» Managing a Large Project;

» I/O on the Basys 2 Board

• Week 6- Project 1 specification and grading
criteria

Projects

• Project 1

– Will be basic project that make things easy to start

the final project.

• Project 2• Project 2

– Advanced project, there are many suggested

projects and you can come up with your own.

FPGA

• Field-Programmable Gate Arrays (FPGAs) are pre-
fabricated silicon devices that can be electrically
programmed to become almost any kind of digital
circuit or system.

• Applications of FPGAs include
» digital signal processing,

» software-defined radio,

» Aerospace

» medical imaging, computer vision,

» speech recognition,

» cryptography, bioinformatics, computer hardware emulation, radio
astronomy, metal detection and a growing range of other areas.

In the Final Project

you will have many

project options or

you can come up

with your own

FPGA

• We are going to use Basys 2 FPGA from Xilnix

– http://www.xilinx.com/

• Each student should buy his own board

– When to buy ? NOW

– How to buy?

• Go to xilnix website , and order it from there

http://www.digilentinc.com/Products/Detail.cfm?Prod=

BASYS2

Order it as student

Overview of Hardware Description

Languages
Hardware Description Languages (HDL):

• Verilog (What we are going to use)
– Similar syntax to C

– Commonly used in Industry (USA & Japan)

• VHDL (VHSIC hardware description language)• VHDL (VHSIC hardware description language)
– Similar syntax to ADA(extended from Pascal)

– Commonly used in Government contract work ,Academia and
Europe.

• Both are
– IEEE standards

– Supported by ASIC(Application-specific integrated circuit) &
FPGA synthesis tools

Advantages of HDLs

• Descriptions are portable & independent of technology
– Allows for easy modification and reuse of previous designs

• Efficient utilization
– Simply resynthesize

– New implementation is faster (Design is the same)

– Decreases design cycle time– Decreases design cycle time

• Automatic synthesis of HDL into a working implementation
– Bypasses some steps such as manual minimization techniques

• Testing
– Behavioral description can be quickly & easily synthesized prior

to implementation

– Very advantageous early in design process

– Provides for early evaluation of alternative structures

HDL Use in Design Tools & the Design Process

• Design Entry

• Design Verification

• Test Generation

• Fault Analysis & Simulation• Fault Analysis & Simulation

• Timing Analysis & Verification

• Synthesis

• Automatic Schematic Generation
– Improves efficiency of design flow by eliminating translations of design

description as we move through design process

Digital system Abstractions*

Behavioral Modeling

• Abstract description of how the circuit works

• Does not include any indication of structure
(implementation) details

• Useful early in design process• Useful early in design process

– Allows designer to get a sense of circuit’s
characteristics before embarking on design
process.

– After functionality is well defined, structural
design may follow

• Procedural Models

– Synthesis Tools

• Take a behavioral specification & generate the

implementationimplementation

Structural Modeling

• System is described as a set of modules

consisting of:

– Interface

– Description– Description

• Modules interconnected to create system

Structural vs. Behavioral

• Behavioral

– Functional

– No implementation details

Structural Modeling

• System is described as a set of modules

consisting of:

– Interface:

• Declares nets & registers which comprise the two • Declares nets & registers which comprise the two

fundamental data types in Verilog

– Nets

» Wire, wired-AND, wired-OR, trireg

» Used to connect structures (eg. - gates)

– Description

• Basic Module

– Basic Module Format

• The Full Adder

Basic Module
module fulladder() ;

wire w1, w2, w3, w4, s, cout;

reg a, b, c;

xor

g1(w1, a, b),

g2(s, w1, c);g2(s, w1, c);

and

g3(w2, c, b),

g4(w3, c, a),

g5(w4, a, b);

or

g6(cout, w2, w3, w4);

endmodule

• Comments

– Comments are preceded by //

Creating Ports

– Port names are known only inside the module– Port names are known only inside the module

– Declarations

• Input

• Output

• Bidirectional

• Full Adder Module

module fulladder(a,b,c,s,cout);

input a,b,c;

output s,cout;

xor #1

g1(w1, a, b),

g2(s, w1, c);

and #1

g3(w2, c, b),

g4(w3, c, a),

g5(w4, a, b);

or #1

g6(cout, w2, w3, w4);

endmodule

• Instantiation

– Modules can be instantiated to complete a design

– 4-bit Ripple Carry Adder

Vectors

• Scalar
– A single bit net or reg

• Vector
– A multiple bit net or reg

• Advantage
– Vectors make for a more natural way of scaling up a design

• Example• Example
– Consider the 4-bit adder

• Using scalars:
– A3 A2 A1 A0 + B3 B2 B1 B0 + Cin = Cout S3 S2 S1 S0

• Using vectors:
– A + B + Cin = Cout, S

– A[3:0] + B[3:0] + Cin = Cout, S[3:0]

module fulladder(a,b,c,s,cout);

input a,b,c;

output s,cout;

xor #1

g1(w1, a, b),

g2(s, w1, c);

module fourBitAdder(x,y,s,cout,cin);

input [3:0] x,y;
g2(s, w1, c);

and #1

g3(w2, c, b),

g4(w3, c, a),

g5(w4, a, b);

or #1

g6(cout, w2, w3, w4);

endmodule

input [3:0] x,y;

output [3:0] s;

input cin;

output cout;

wire c[3:0];

fulladder f0 (x[0],y[0],cin,s[0],c[0]);

fulladder f1 (x[1],y[1],c[0],s[1],c[1]);

fulladder f2 (x[2],y[2],c[1],s[2],c[2]);

fulladder f3 (x[3],y[3],c[2],s[3],cout);

endmodule

References

• Donald E. Thomas and Philip R. Moorby, The Verilog
Hardware Description Language, Kluwer Academic
Publishers, 1998

• Samir Palnitkar, Verilog HDL A Guide to Digital Design and
Synthesis, Prentice Hall, Inc., 4th Edition, 1996

• David R. Smith and Paul D. Franzon, Verilog Styles of Digital • David R. Smith and Paul D. Franzon, Verilog Styles of Digital
Systems, Prentice Hall, Inc., 2000

• Michael D. Ciletti, Advanced Digital Design with the Verilog
HDL, Pearson Education, Inc. (Prentice Hall), 2003

• * VHDL Tutorial, Jan Van der Spiegel, University of
Pennsylvania, Department of Electrical and Systems
Engineering

• Wikipeidia

