CSE 490/590 Computer Architecture

ILP I

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 490/590, Spring 2011

Last time...

e Scoreboard

— Data structure that keeps track of dependencies among
instructions

e In-order limitations
— Out-of-order alone cannot solve

¢ Register renaming
— Overcoming the restriction caused by the # of registers

CSE 490/590, Spring 2011 2

Instruction-level Parallelism via Renaming

latency .
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long l \
3 MULTD F6, F4, F2 3 l.

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, Fe6, F4' 1

In-order: 121). 2344 35...566
Out-of-order: 1(2,1)445 ... 2(3,5366

Any antidependence can be eliminated by renaming.
(renaming = additional storage)
Can it be done in hardware? yes!

CSE 490/590, Spring 2011 3

Register Renaming

» Decode does register renaming and adds instructions to
the issue stage reorder buffer (ROB)

= renaming makes WAR or WAW hazards impossible

» Any instruction in ROB whose RAW hazards have been
satisfied can be dispatched.

= Out-of-order or dataflow execution

CSE 490/590, Spring 2011 4

Dataflow Execution

Ins# useexec op pl srcl p2 src2

| T 1 T 1]t

t;

ptrs— .
next to
deallocate

ptri—]

_next I [1 [1 | ta

available

Reorder buffer

Instruction slot is candidate for execution when:
* It holds a valid instruction (“use” bit is set)
* It has not already started execution (“exec” bit is clear)
* Both operands are available (p1 and p2 are set)

CSE 490/590, Spring 2011 5

Renaming & Out-of-order Issue

An example
Renaming table Reorder buffer
p data Ins# use exec op pl srcl p2 src2
F1 1 [O) t;
F2 vil 2 |o]o | &
v F3 3 [1]0 [mMuLlo] w 1w t
F4 [4 |olo [suBl1] w1 1w 1%
F5 5 1]o]ov [1] w [ts
F6 3 .
F7 }
F8 [
data / t;
1 LD F2, 34(R2))
2 LD F4, 45(R3) e When are tags in sources
3 MULTD F6, F4, F2 replaced by data?
4 SUBD F8, F2, F2 Whenever an FU produces data
5 DIVD F4, F2, F8| e When can a name be reused?
6 ADDD F10, F6, F4 Whenever an instruction completes

CSE 490/590, Spring 2011 6

Data-Driven Execution

Renaming
table &
reg file

Ins# |use |exec] op |pl] srcl |p2 src2 t,

Reorder
buffer

I
Replacing the I i | i 1I i ! l
tag by its value Load
is an expensive Unit FU Fu
operation l l l

Store
Unit

< t, result >

» Instruction template (i.e., tag t) is allocated by the
Decode stage, which also associates tag with register in regfile
* When an instruction completes, its tag is deallocated

CSE 490/590, Spring 2011 7

Simplifying Allocation/Deallocation

Ins# useexec op pl srcl p2 src2

| T 1 T 1 |t
tZ
ptrs— .
next to
deallocate
ptr;—]
next [1 [1 [1 It

available
Reorder buffer
Instruction buffer is managed circularly
e“exec” bit is set when instruction begins execution
eWhen an instruction completes its “use” bit is marked free
® ptr, is incremented only if the “use” bit is marked free

CSE 490/590, Spring 2011 8

IBM 360/91 Floating-Point Unit

R. M. Tomasulo, 1967

; ZZﬁZﬁZ load oo} 1 p fag/data Floating-
3p ftag/data_| buffers 2 b fag/data "7 Point
4p ftag/data | (from 3 p ftag/data Reg
5 4 p ftag/data
M memory)
Distribute /d] l/d
i i 1 |p_tag/data ag/data
Instruction 2 ttag/data ag/data_| 1p tag/data |p fag/data
Zemp/ates 3k hag/data b fag/data] 2p ftag/data_p]taq/data‘{
y
functlonal Adder ort
units
—
| <tag, result >]

b fag/data | Common bus ensures that data is made available
store buffers [immediately to all the instructions waiting for it.
(to memory) | tag/data | Match tag, if equal, copy value & set presence “p”.

CSE 490/590, Spring 2011 9

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.
Why ?

Reasons

1. Effective on a very small class of programs

2. Memory latency a much bigger problem

3. Exceptions not precise!

One more problem needed to be solved

Control transfers

CSE 490/590, Spring 2011 10

CSE 490/590 Administrivia

* No office hours this week
— Appointment via email if needed

— Project-related questions > fastest: Safwan or
Jangyoung

* Guest Lecture by Prof. Kris Schindler on Wed
» Guest lecture by Prof. Tevfik Kosar on Fri

CSE 490/590, Spring 2011 11

Precise Interrupts

It must appear as if an interrupt is taken between
two instructions (say I, and I;,)
o the effect of all instructions up to and including I; is
totally complete
* no effect of any instruction after I; has taken place

The interrupt handler either aborts the program or
restarts it at I, .

CSE 490/590, Spring 2011 12

Ny

Effect on Interrupts

Out-of-order Completion

I, DIVD f6, f6, f4
I LD f2, 45(r3)

I MULTD fo, f2, f4
I, DIVD f8, f6, f2
I, SUBD f10, fo, f6
I, ADDD f6, 8, f2

out-of-ordercomp 1 2 2 3 1 4 3 55 4 6 6

restore 2 restore f10
Consider interrupts

Precise interrupts are difficult to implement at high speed
- want to start execution of later instructions before
exception checks finished on earlier instructions

CSE 490/590, Spring 2011 13

Exception Handling
(In-Order Five-Stage Pipeline)

Commit
Point

Inst.
Decode
" CJD Mem W
N
Selec K
Handper |PC Address 2
PC [Exceptions c
ause

7
Asynchronous
Interrupts

Kill F I Kill D I Kill E I
Stage Stage Stage

* Hold exception flags in pipeline until commit point (M stage)

* Exceptions in earlier pipe stages override later exceptions

* Inject external interrupts at commit point (override others)

o If exception at commit: update Cause and EPC registers, kill
all stages, inject handler PC into fetch stage

CSE 490/590, Spring 2011 14

Phases of Instruction Execution

I-cache
Buffer
Buffer

Units
Result
Buffer

Arch.
State

CSE 490/590, Spring 2011 15

Acknowledgements

« These slides heavily contain material developed and
copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)

« And also by:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

* MIT material derived from course 6.823
» UCB material derived from course CS252

CSE 490/590, Spring 2011 16

W

