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Last time… 
•  Instruction execution divided into four major stages: 

–  Instruction Fetch, Decode/Rename, Execute/Complete, Commit 

•  Control hazards are serious impediment to 
superscalar performance 

•  Dynamic branch predictors can be quite accurate 
(>95%) and avoid most control hazards 
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•  Assume 2 BP bits per instruction 
•  Change the prediction after two consecutive mistakes! 

¬take 
wrong 

taken 
¬ taken 

taken 

taken 

taken 
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right 
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right 
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wrong 

¬ taken 

¬ taken ¬ taken 

BP state:   
 (predict take/¬take) x (last prediction right/wrong) 

Branch Prediction Bits 
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Branch History Table 

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions 

0 0 Fetch PC 

Branch? Target PC 

+ 

I-Cache 

Opcode offset 
Instruction 

k 

BHT Index 

2k-entry 
BHT, 
2 bits/entry 

Taken/¬Taken? 
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Exploiting Spatial Correlation 
Yeh and Patt, 1992 

History register, H, records the direction of the last 
N branches executed by the processor 

if (x[i] < 7) then 
 y += 1; 

if (x[i] < 5) then 
 c -= 4; 

If first condition false, second condition also false 
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Two-Level Branch Predictor 

Pentium Pro uses the result from the last two branches 
to select one of the four sets of BHT bits (~95% correct) 

0 0 

k Fetch PC 

Shift in Taken/
¬Taken results of 
each branch 

2-bit global branch 
history shift register 

Taken/¬Taken? 
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Limitations of BHTs 
Only predicts branch direction. Therefore, cannot redirect 
fetch stream until after branch target is determined. 

UltraSPARC-III fetch pipeline 

Correctly  
predicted  
taken branch 
penalty 

Jump Register 
penalty 

A  PC Generation/Mux 
P  Instruction Fetch Stage 1 
F  Instruction Fetch Stage 2 
B  Branch Address Calc/Begin Decode 
I  Complete Decode 
J  Steer Instructions to Functional units 
R  Register File Read 
E  Integer Execute 

Remainder of execute pipeline  
(+ another 6 stages) 
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Branch Target Buffer 

BP bits are stored with the predicted target address. 

IF stage: If (BP=taken) then nPC=target else nPC=PC+4 
later:       check prediction, if wrong then kill the instruction 
                and update BTB  & BPb else update BPb 

IMEM 

PC 

Branch  
Target  
Buffer  
(2k entries) 

k 

BPb predicted 

target BP 

 target 
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Address Collisions 

What will be fetched after the instruction at 1028? 
 BTB prediction  =       
 Correct target  =     

	

⇒  

Assume a  
128-entry  
BTB 

BPb target 
take 236 

1028  Add ..... 

132  Jump 100 

Instruction 
Memory 

236 
1032 

kill  PC=236 and fetch PC=1032 

 Is this a common occurrence? 
 Can we avoid these bubbles? 

CSE 490/590, Spring 2011 10 

BTB is only for Control Instructions 

BTB contains useful information for branch and  
jump instructions only 

	

⇒ Do not update it for other instructions 

For all other instructions the next PC is PC+4 ! 

How to achieve this effect without decoding the  
instruction? 
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Branch Target Buffer (BTB) 

•  Keep both the branch PC and target PC in the BTB  
•  PC+4 is fetched if match fails 
•  Only taken branches and jumps held in BTB 
•  Next PC determined before branch fetched and decoded 

2k-entry direct-mapped BTB 
(can also be associative) 

I-Cache PC 

k 

Valid 

valid 

Entry PC 

= 

match 

predicted 

target 

target PC 
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Combining BTB and BHT 
•  BTB entries are considerably more expensive than BHT, but can 

redirect fetches at earlier stage in pipeline and can accelerate 
indirect branches (JR) 

•  BHT can hold many more entries and is more accurate 

A  PC Generation/Mux 
P  Instruction Fetch Stage 1 
F  Instruction Fetch Stage 2 
B  Branch Address Calc/Begin Decode 
I  Complete Decode 
J  Steer Instructions to Functional units 
R  Register File Read 
E  Integer Execute 

BTB 

BHT BHT in later 
pipeline stage 
corrects when 
BTB misses a 
predicted 
taken branch 

BTB/BHT only updated after branch resolves in E stage 
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CSE 490/590 Administrivia 

•  Project 1 & midterm on Friday 
– Regrading -> Jangyoung 
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Mispredict Recovery 

In-order execution machines: 
–  Assume no instruction issued after branch can write-back before 

branch resolves 
–  Kill all instructions in pipeline behind mispredicted branch 

– Multiple instructions following branch in program 
order can complete before branch resolves 

Out-of-order execution? 
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Branch Misprediction in Pipeline 

Fetch Decode 

Execute 

Commit Reorder Buffer 

Kill 

Kill Kill 

Branch 
Resolution 

Inject correct PC 

•  Can have multiple unresolved branches in ROB 
•  Can resolve branches out-of-order by killing all the  
   instructions in ROB that follow a mispredicted branch 

Branch 
Prediction 

PC 

Complete 
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t v t v t v 

Recovering ROB/Renaming Table 

Register 
File 

Reorder  
buffer Load 

 Unit 
FU FU FU Store 

 Unit 

< t, result > 

t1 
t2 
. 
. 
tn 

Ins#  use  exec   op   p1    src1   p2    src2    pd  dest     data 

Commit 

Rename  
Table r1  

t v 

r2 

Take snapshot of register rename table at each predicted 
branch, recover earlier snapshot if branch mispredicted 

Rename  
Snapshots 

Ptr2  
next to commit 

Ptr1  
next available 

rollback  
next available 
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Speculating Both Directions  

•  resource requirement is proportional to the 
        number of concurrent speculative executions 

An alternative to branch prediction is to execute 
both directions of a branch speculatively 

•  branch prediction takes less resources  
   than speculative execution of both paths 

•  only half the resources engage in useful work 
   when both directions of a branch are executed  
   speculatively 

With accurate branch prediction, it is more cost 
effective to dedicate all resources to the predicted 
direction 
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Memory Dependencies 

st r1, (r2) 
ld r3, (r4) 

When can we execute the load? 
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In-Order Memory Queue 

•  Execute all loads and stores in program order 

=> Load and store cannot leave ROB for execution until 
all previous loads and stores have completed 
execution 

•  Can still execute loads and stores speculatively, and 
out-of-order with respect to other instructions 

•  Need a structure to handle memory ordering… 
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Conservative O-o-O Load Execution 

st r1, (r2) 
ld r3, (r4)  

•  Split execution of store instruction into two phases: address 
calculation and data write 

•  Can execute load before store, if addresses known and r4 != r2 

•  Each load address compared with addresses of all previous 
uncommitted stores  (can use partial conservative check i.e., 
bottom 12 bits of address) 

•  Don’t execute load if any previous store address not known 

(MIPS R10K, 16 entry address queue) 
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Address Speculation 

•  Guess that r4 != r2 

•  Execute load before store address known 

•  Need to hold all completed but uncommitted load/
store addresses in program order 

•  If subsequently find r4==r2, squash load and all 
following instructions 

   => Large penalty for inaccurate address speculation 

st r1, (r2) 
ld r3, (r4) 
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Memory Dependence Prediction 
(Alpha 21264) 

st r1, (r2) 
ld r3, (r4)  

•  Guess that r4 != r2 and execute load before store 

•  If later find r4==r2, squash load and all following 
instructions, but mark load instruction as store-wait 

•  Subsequent executions of the same load instruction 
will wait for all previous stores to complete 

•  Periodically clear store-wait bits 
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Speculative Loads / Stores 
Just like register updates, stores should not modify 
the memory until after the instruction is committed 

- A speculative store buffer is a structure introduced to hold 
speculative store data. 
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Speculative Store Buffer 

•  On store execute: 
–  mark entry valid and speculative, and save data and tag of instruction. 

•  On store commit:  
–  clear speculative bit and eventually move data to cache 

•  On store abort: 
–   clear valid bit 

Data 

Load Address 

Tags 

Store Commit Path 

Speculative 
Store 
Buffer 

L1 Data 
Cache 

Load Data 

Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
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Speculative Store Buffer 

•  If data in both store buffer and cache, which should we use? 
 Speculative store buffer 

•  If same address in store buffer twice, which should we use? 
 Youngest store older than load 

Data 

Load Address 

Tags 

Store Commit Path 

Speculative 
Store 
Buffer 

L1 Data 
Cache 

Load Data 

Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
Tag Data S V 
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Fetch Decode & 
Rename Reorder Buffer PC 

Branch 
Prediction 

Update predictors 

Commit 

Datapath: Branch Prediction 
and Speculative Execution 

Branch 
Resolution 

Branch 
Unit ALU 

Reg. File 

MEM Store 
Buffer D$ 

Execute 

kill 
kill 

kill kill 
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