
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

ILP III

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Instruction execution divided into four major stages:

–  Instruction Fetch, Decode/Rename, Execute/Complete, Commit

•  Control hazards are serious impediment to
superscalar performance

•  Dynamic branch predictors can be quite accurate
(>95%) and avoid most control hazards

CSE 490/590, Spring 2011 3

•  Assume 2 BP bits per instruction
•  Change the prediction after two consecutive mistakes!

¬take
wrong

taken
¬ taken

taken

taken

taken
¬take
right

take
right

take
wrong

¬ taken

¬ taken ¬ taken

BP state:
 (predict take/¬take) x (last prediction right/wrong)

Branch Prediction Bits

CSE 490/590, Spring 2011 4

Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

CSE 490/590, Spring 2011 5

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the last
N branches executed by the processor

if (x[i] < 7) then
 y += 1;

if (x[i] < 5) then
 c -= 4;

If first condition false, second condition also false

CSE 490/590, Spring 2011 6

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Shift in Taken/
¬Taken results of
each branch

2-bit global branch
history shift register

Taken/¬Taken?

C 2

CSE 490/590, Spring 2011 7

Limitations of BHTs
Only predicts branch direction. Therefore, cannot redirect
fetch stream until after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly
predicted
taken branch
penalty

Jump Register
penalty

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

CSE 490/590, Spring 2011 8

Branch Target Buffer

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction
 and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPb predicted

target BP

 target

CSE 490/590, Spring 2011 9

Address Collisions

What will be fetched after the instruction at 1028?
 BTB prediction =
 Correct target =

	

⇒

Assume a
128-entry
BTB

BPb target
take 236

1028 Add

132 Jump 100

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

 Is this a common occurrence?
 Can we avoid these bubbles?

CSE 490/590, Spring 2011 10

BTB is only for Control Instructions

BTB contains useful information for branch and
jump instructions only

	

⇒ Do not update it for other instructions

For all other instructions the next PC is PC+4 !

How to achieve this effect without decoding the
instruction?

CSE 490/590, Spring 2011 11

Branch Target Buffer (BTB)

•  Keep both the branch PC and target PC in the BTB
•  PC+4 is fetched if match fails
•  Only taken branches and jumps held in BTB
•  Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

CSE 490/590, Spring 2011 12

Combining BTB and BHT
•  BTB entries are considerably more expensive than BHT, but can

redirect fetches at earlier stage in pipeline and can accelerate
indirect branches (JR)

•  BHT can hold many more entries and is more accurate

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHT BHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch

BTB/BHT only updated after branch resolves in E stage

C 3

CSE 490/590, Spring 2011 13

CSE 490/590 Administrivia

•  Project 1 & midterm on Friday
– Regrading -> Jangyoung

CSE 490/590, Spring 2011 14

Mispredict Recovery

In-order execution machines:
–  Assume no instruction issued after branch can write-back before

branch resolves
–  Kill all instructions in pipeline behind mispredicted branch

– Multiple instructions following branch in program
order can complete before branch resolves

Out-of-order execution?

CSE 490/590, Spring 2011 15

Branch Misprediction in Pipeline

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

•  Can have multiple unresolved branches in ROB
•  Can resolve branches out-of-order by killing all the
 instructions in ROB that follow a mispredicted branch

Branch
Prediction

PC

Complete

CSE 490/590, Spring 2011 16

t v t v t v

Recovering ROB/Renaming Table

Register
File

Reorder
buffer Load

 Unit
FU FU FU Store

 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table r1

t v

r2

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

Rename
Snapshots

Ptr2
next to commit

Ptr1
next available

rollback
next available

CSE 490/590, Spring 2011 17

Speculating Both Directions

•  resource requirement is proportional to the
 number of concurrent speculative executions

An alternative to branch prediction is to execute
both directions of a branch speculatively

•  branch prediction takes less resources
 than speculative execution of both paths

•  only half the resources engage in useful work
 when both directions of a branch are executed
 speculatively

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction

CSE 490/590, Spring 2011 18

Memory Dependencies

st r1, (r2)
ld r3, (r4)

When can we execute the load?

C 4

CSE 490/590, Spring 2011 19

In-Order Memory Queue

•  Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution until
all previous loads and stores have completed
execution

•  Can still execute loads and stores speculatively, and
out-of-order with respect to other instructions

•  Need a structure to handle memory ordering…

CSE 490/590, Spring 2011 20

Conservative O-o-O Load Execution

st r1, (r2)
ld r3, (r4)

•  Split execution of store instruction into two phases: address
calculation and data write

•  Can execute load before store, if addresses known and r4 != r2

•  Each load address compared with addresses of all previous
uncommitted stores (can use partial conservative check i.e.,
bottom 12 bits of address)

•  Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

CSE 490/590, Spring 2011 21

Address Speculation

•  Guess that r4 != r2

•  Execute load before store address known

•  Need to hold all completed but uncommitted load/
store addresses in program order

•  If subsequently find r4==r2, squash load and all
following instructions

 => Large penalty for inaccurate address speculation

st r1, (r2)
ld r3, (r4)

CSE 490/590, Spring 2011 22

Memory Dependence Prediction
(Alpha 21264)

st r1, (r2)
ld r3, (r4)

•  Guess that r4 != r2 and execute load before store

•  If later find r4==r2, squash load and all following
instructions, but mark load instruction as store-wait

•  Subsequent executions of the same load instruction
will wait for all previous stores to complete

•  Periodically clear store-wait bits

CSE 490/590, Spring 2011 23

Speculative Loads / Stores
Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold
speculative store data.

CSE 490/590, Spring 2011 24

Speculative Store Buffer

•  On store execute:
–  mark entry valid and speculative, and save data and tag of instruction.

•  On store commit:
–  clear speculative bit and eventually move data to cache

•  On store abort:
–  clear valid bit

Data

Load Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

C 5

CSE 490/590, Spring 2011 25

Speculative Store Buffer

•  If data in both store buffer and cache, which should we use?
 Speculative store buffer

•  If same address in store buffer twice, which should we use?
 Youngest store older than load

Data

Load Address

Tags

Store Commit Path

Speculative
Store
Buffer

L1 Data
Cache

Load Data

Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V
Tag Data S V

CSE 490/590, Spring 2011 26

Fetch Decode &
Rename Reorder Buffer PC

Branch
Prediction

Update predictors

Commit

Datapath: Branch Prediction
and Speculative Execution

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store
Buffer D$

Execute

kill
kill

kill kill

CSE 490/590, Spring 2011 27

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

