CSE 490/590 Computer Architecture

ILP 11l

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 490/590, Spring 2011

Last time...

* Instruction execution divided into four major stages:
— Instruction Fetch, Decode/Rename, Execute/Complete, Commit

» Control hazards are serious impediment to
superscalar performance

» Dynamic branch predictors can be quite accurate
(>95%) and avoid most control hazards

CSE 490/590, Spring 2011

~

Branch Prediction Bits

e Assume 2 BP bits per instruction
e Change the prediction after two consecutive mistakes!

BP state:
(predict take/—take) x (last prediction right/wrong)

CSE 490/590, Spring 2011 3

Branch History Table

Fetch PC | [loo]
| (_J
k 2k-entry
I-Cache BHT Index BHT,
2 bits/entry
Instruction l
Opcode | | offset
+
Branch? Target PC Taken/—-Taken?

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

CSE 490/590, Spring 2011 4

Exploiting Spatial Correlation
Yeh and Patt, 1992

if (x[i] < 7) then

y += 1;
if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

History register, H, records the direction of the last
N branches executed by the processor

CSE 490/590, Spring 2011 5

Two-Level Branch Predictor

Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

| [Tool

Fetch PC IE Kk

2-bit global branch
history shift register

Shift in Taken/ IZH:‘

—Taken results of
each branch

Taken/—Taken?
CSE 490/590, Spring 2011 6

Limitations of BHTs

Only predicts branch direction. Therefore, cannot redirect
fetch stream until after branch target is determined.

]

Correctly |A | PC Generation/Mux
predicted | P | Instruction Fetch Stage 1
taken branch | F | Instruction Fetch Stage 2
penalty B | Branch Address Calc/Begin Decode
|I [Complete Decode
Jump Register J | Steer Instructions to Functional units
penalty F Register File Read
|E | Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline

CSE 490/590, Spring 2011 7

Branch Target Buffer

predicted
target
Branch
. . Target
IMEM . : Buffer
— (2% entries)
— k
— PC

T et v

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then Kill the instruction
and update BTB & BPb else update BPb

CSE 490/590, Spring 2011 8

Address Collisions

132|Jump 100
Assume a

128-entry
BTB 1028 Add
target BPb

-
Instruction

What will be fetched after the instruction at 10287 Memory
BTB prediction = 236
Correct target =1032

= kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these bubbles?

CSE 490/590, Spring 2011 9

BTB is only for Control Instructions

BTB contains useful information for branch and
jump instructions only

= Do not update it for other instructions
For all other instructions the next PC is PC+4 !

How to achieve this effect without decoding the
instruction?

CSE 490/590, Spring 2011 10

Branch Target Buffer (BTB)

2k-entry direct-mapped BTB

I-Cache pC (can also be associative)
— I:I:I ntry Valid predicted
R target PC
N —
. k . . .
— match valid target

e Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only taken branches and jumps held in BTB

e Next PC determined before branch fetched and decoded

CSE 490/590, Spring 2011 1

Combining BTB and BHT

BTB entries are considerably more expensive than BHT, but can
redirect fetches at earlier stage in pipeline and can accelerate
indirect branches (JR)

« BHT can hold many more entries and is more accurate

PC Generation/Mux
BTB Instruction Fetch Stage 1
Instruction Fetch Stage 2
BHT in later Branch Address Calc/Begin Decode

pipeline stage
corrects when
BTB misses a
predicted

taken branch

Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

[r[RI=T]=[=[=]>]

/

BTB/BHT only updated after branch resolves in E stage

CSE 490/590, Spring 2011 12

Ny

CSE 490/590 Administrivia

* Project 1 & midterm on Friday
— Regrading -> Jangyoung

CSE 490/590, Spring 2011 13

Branch Misprediction in Pipeline

nject correct PC

Kill Kill

Bﬂ Fetch [~ Decode —'I Reorder Buffer)l—» Commit

Complete

e Can have multiple unresolved branches in ROB
e Can resolve branches out-of-order by killing all the
instructions in ROB that follow a mispredicted branch

CSE 490/590, Spring 2011 15

Mispredict Recovery

In-order execution machines:

— Assume no instruction issued after branch can write-back before
branch resolves

— Kill all instructions in pipeline behind mispredicted branch

Out-of-order execution?

—Multiple instructions following branch in program
order can complete before branch resolves

CSE 490/590, Spring 2011 14

Recovering ROB/Renaming Table

Rename Rename Register
Table 't Snapshots File
r2
Pir, l
hext to commit [Ins# JuseJexed op [pi[srcl p2] src2 pd] dest [data t,
[— T T T T
t;
ollback .
pext available™} 1 1 1 — — 1
P, t
next available T Y 7 —
Reorder [T T+ T+ T+ 11
buffer i
Lo Store
Unit FU FuU Fu ‘ Unit
| | | | < t, result >

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

CSE 490/590, Spring 2011 16

Speculating Both Directions

An alternative to branch prediction is to execute
both directions of a branch speculatively

* resource requirement is proportional to the
number of concurrent speculative executions

* only half the resources engage in useful work
when both directions of a branch are executed
speculatively

* branch prediction takes less resources
than speculative execution of both paths
With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction

CSE 490/590, Spring 2011 17

Memory Dependencies

st rl, (r2)
1d r3, (r4)

When can we execute the load?

CSE 490/590, Spring 2011 18

W

In-Order Memory Queue
» Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution until
all previous loads and stores have completed
execution

» Can still execute loads and stores speculatively, and
out-of-order with respect to other instructions

» Need a structure to handle memory ordering...

CSE 490/590, Spring 2011 19

Conservative 0-0-O Load Execution

st rl, (r2)
1d r3, (r4)

« Split execution of store instruction into two phases: address
calculation and data write

« Can execute load before store, if addresses known and r4 !=r2

« Each load address compared with addresses of all previous
uncommitted stores (can use partial conservative check i.e.,
bottom 12 bits of address)

» Don't execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)

CSE 490/590, Spring 2011 20

Address Speculation

st rl, (r2)
1d r3, (r4)
Guess that r4 1=r2

Execute load before store address known

Need to hold all completed but uncommitted load/
store addresses in program order

If subsequently find r4==r2, squash load and all
following instructions

=> Large penalty for inaccurate address speculation

CSE 490/590, Spring 2011 21

Memory Dependence Prediction
(Alpha 21264)

st rl, (r2)
1d r3, (r4)

Guess that r4 !=r2 and execute load before store

If later find r4==r2, squash load and all following
instructions, but mark load instruction as store-wait

Subsequent executions of the same load instruction
will wait for all previous stores to complete

Periodically clear store-wait bits

CSE 490/590, Spring 2011 22

Speculative Loads / Stores

Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold
speculative store data.

CSE 490/590, Spring 2011 23

Speculative Store Buffer

‘
Specuiative [Load Address | L1 Data
Buffer l 1 Cache

qTag ata
9Tag ata
qTag ata
e L Tags |Data
qTag Data
dTag Data
[Store Commit Path I
Load Data

» On store execute:

— mark entry valid and speculative, and save data and tag of instruction.
» On store commit:

— clear speculative bit and eventually move data to cache
+ On store abort:

— clear valid bit

CSE 490/590, Spring 2011 24

Speculative Store Buffer

i Load Address
gﬁfrceu/anve — L1 Data

Buffer I _l—l Cache

qTag Data
qTag Data

Tag Data Tags [Dat

Tag Data ag ata

Tag Data

Tag ata

tore Commit Path
Load Data

« |f data in both store buffer and cache, which should we use?
Speculative store buffer

« |f same address in store buffer twice, which should we use?
Youngest store older than load

CSE 490/590, Spring 2011 25

Datapath: Branch Prediction
and Speculative Execution

— Update predictors

Branch
Predicti6

Kill] | il
Fetch[™ Decode & |, Reo%er Buff;\ ™ Commi
Rename

[+] |

v v v A\
| Reg. File

1t 1l
Branc Store
Unit 'HALU"ME Buffer |:|D$ |
CSE Exec,ute T

Acknowledgements

* These slides heavily contain material developed and
copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)

* And also by:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

* MIT material derived from course 6.823
« UCB material derived from course CS252

CSE 490/590, Spring 2011 27

(@)1

