CSE 490/590 Computer Architecture

ISAs and MIPS

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 490/590, Spring 2011

Last Time...

« Computer Architecture >> ISAs and RTL
« Comp. Arch. shaped by technology and applications
« Computer Architecture brings a quantitative approach

to the table
— 5 quantitative principles of design

« The current performance trend shows that
— Latency lags behind bandwidth

CSE 490/590, Spring 2011

~

Instruction Set Architecture (ISA)

The contract between software and hardware

Typically described by giving all the programmer-
visible state (registers + memory) plus the semantics
of the instructions that operate on that state

IBM 360 was first line of machines to separate ISA
from implementation (aka. microarchitecture)

Many implementations possible for a given ISA

— E.g., today you can buy AMD or Intel processors that run the
x86-64 ISA.

— E.g.2: many cellphones use the ARM ISA with implementations
from many different companies including Tl, Qualcomm, Samsung,
Marvell, etc.

— E.g.3., the Soviets build code-compatible clones of the IBM360, as
did Amdhal after he left IBM.

CSE 490/590, Spring 2011

ISA to Microarchitecture Mapping

* ISA often designed with particular microarchitectural style
in mind, e.g.,
— CISC = microcoded
— RISC = hardwired, pipelined
— VLIW = fixed-latency in-order parallel pipelines
— JVM = software interpretation
* But can be implemented with any microarchitectural style
— Intel Nehalem: hardwired pipelined CISC (x86)
machine (with some microcode support)
— Intel could implement a dynamically scheduled out-
of-order VLIW Itanium (IA-64) processor
— ARM Jazelle: A hardware JVM processor

CSE 490/590, Spring 2011 4

Datapath vs Control

Datapath Controller

—

signals

[—
\-_

Control Points

« Datapath: Storage, FU, interconnect sufficient to perform the desired
functions
~ Inputs are Control Points
— Outputs are signals
+ Controller: State machine to orchestrate operation on the data path
— Based on desired function and signals

CSE 490/590, Spring 2011

Microcoded Microarchitecture (CISC)

? =)
Zeras | weontroller [— holds fixed
opcode (ROM) microcode instructions
A5
Datapath
Datal Addr
holds user program Memory | eppem
written in macrocode . (RAM) [Memwrt
instructions (e.g., ._5—
MIPS, x86, etc.)
CSE 490/590, Spring 2011 6

CisC
7 cycles 5 cycles 10 cycles
Inst 1 Inst 2 Inst 3

CLL TP TP PP PPl TTT]
Time ——
 Variable cycles per instruction
» Variable address modes
* reg-reg, reg-mem, mem-mem, etc.
» Convenient for programmers
» Support many instructions
« Difficult to predict completion time
* No good for pipelining

CSE 490/590, Spring 2011 7

Hardwired Control is pure
Combinational Logic (RISC)

. ExtSel
— BSrc
—— OpSel
combinational [MemWrite
zero? —| logic WBSrc
—— RegDst

op code —|

—— RegWrite
— PCSrc

CSE 490/590, Spring 2011

A "Typical” RISC ISA

32-bit fixed format instruction (3 formats)
32 32-bit GPR (RO contains zero, DP take pair)
+ 3-address, reg-reg arithmetic instruction

+ Single address mode for load/store:
base + displacement
— no indirection
+ Simple branch conditions
+ Delayed branch
Designed for use by compilers & pipelining

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3

CSE 490/590, Spring 2011 9

Example: MIPS

Register-Register

31 2625 2120 1615 1110 65 0

[op Tret | re2lrd | [opx |
Register-Immediate

31 2625 2120 16 15 0

[[op Tret | rd | immediate |
Branch

31 2625 2120 16 15 0

| Op | Rsl I?SZ/ODgI immediate |
Jump / Call

3t 26 25 0

| Op | target |

CSE 490/590, Spring 2011

Hardware Elements

» Combinational circuits

OpSelect
— Mux, Decoder, ALU, ... - Add, Sub, ...
- And, Or, Xor, Not, ..

- GT, LT, EQ, Zero, ...

9o A
R O Result

Comp?

Decoder

e Synchronous state elements
- Flipflop, Register, Register file, SRAM, DRAM
D ok LI LI 1

En En R | W
Clk:

Q Q—.

Edge-triggered: Data is sampled at the rising edge
CSE 490/590, Spring 2011

Register Files

register
D, D, D, - D

Q Q Q - Qu
C|O‘Ck V\iE
ReadSell — (st " wi—— ReadDatal
ReadSel2 Register ReadData2
file

WriteSel ———ws

WriteData 2R+1W

« Reads are combinational

CSE 490/590, Spring 2011

Ny

A Simple Memory Model

WriteEnable

C‘Iock l

Address —
MAGIC | —— ReadData

RAM

WriteData ——|

Reads and writes are always completed in one cycle
¢ a Read can be done any time (i.e. combinational)
¢ a Write is performed at the rising clock edge
if it is enabled
= the write address and data
must be stable at the clock edge

CSE 490/590, Spring 2011

CSE 490/590 Administrivia

« Please check the web page:
http://www.cse.buffalo.edu/~stevko/
courses/cse490/springll
* Don't forget
— Recitations start from this week.
— Please purchase a BASYS2 board (100K) as soon as possible.
— Projects should be done individually.

« Please read the syllabus webpage.

« | have no idea how fast/slow I'm going.
— Please stop me if too fast!

CSE 490/590, Spring 2011 14

Implementing MIPS:

Single-cycle per instruction
datapath & control logic

CSE 490/590, Spring 2011

The MIPS ISA

Processor State
32 32-bit GPRs, RO always contains a 0
32 single precision FPRs, may also be viewed as
16 double precision FPRs
FP status register, used for FP compares & exceptions
PC, the program counter
some other special registers

Data types
8-bit byte, 16-bit half word
32-bit word for integers
32-bit word for single precision floating point
64-bit word for double precision floating point

Load/Store style instruction set
data addressing modes- immediate & indexed
branch addressing modes- PC relative & register indirect
Byte addressable memory- big endian mode

All instructions are 32 bits
CSE 490/590, Spring 2011 16

Example: MIPS

Register-Register

31 2625 2120 16 15 11 10 65 0

[op Tret | rez [rd 1 [omx |
Register-Immediate

3t 2625 2120 16 15 0

[op Tret TR immediate |
Branch

31 26 25 2120 16 15 0

[op Trst kseropd immediate |
Jump / Call

31 26 25 o

| Op I target |

CSE 490/590, Spring 2011

Instruction Execution

Execution of an instruction involves

. instruction fetch

. decode and register fetch

. ALU operation

. memory operation (optional)
. write back

(S OV S

and the computation of the address of the
next instruction

CSE 490/590, Spring 2011 18

(&%)

Datapath: Reg-Reg ALU Instructions

RegWrite
0x4- a
ak
inst<25:21> We
n W’rsé
P dd instj—linst<15:11> " ot
—-33 rd2] z
Inst.
o Memory LGPRs|
inst<5:0> [ALU
OpCode
RegWrite Timing?
6 5 5 5 5 6
[o[rs[rt JTrd] o] func] rd< (rs)func(rt)
32625 2120 odf 0540, Spring2011 ° 19

Datapath: Reg-Imm ALU Instructions

RegWrite

inst<25:21>
D sl finst<20:16>
ok Inst.]
ML inst<15:0>
inst<31:26> o1
*| B
OpCode ExtSel
6 5 5 16
|opcode| rs | rt | immediate | rt < (rs) op immediate
31 26 25 2120 16 15 0
CSE 490/590, Spring 2011 20

Conflicts in Merging Datapath

RegWrite
oxé Introduce
ak
a muxes
inst<25:21> we
n rs1
adr ’
P inst|_lSt<20:16%
inst<15:11>
o fmst
Memor

inst<15:0>

inst<31:26>|

ALU
inst<5:0> Control

OpCode ExtSel

5 5 5 5 6
| 0 | rs | rt | rd | 0 | func | rd < (rs) func (rt)
[opcode[rs [rt] immediate] rt < (rs) op immediate
CSE 490/590, Spring 2011 21

Datapath for ALU Instructions

RegWrite

ek

<25:21>
<20:16>

—
<15:11> 57

<15:0>

<31:26> <5h>

OpCode RegDst ExtSel ~ OpSel BSrc
t/

d Reg/Imm
6 5 5 5 5 6
| 0 | rs | rt | rd | 0 | func | rd < (rs) func (rt)
[opcode] rs [rt] immediate] rt < (rs) op immediate
CSE 490/590, Spring 2011 2

Datapath for Memory Instructions

Should program and data memory be separate?

Harvard style: separate (Aiken and Mark 1 influence)
- read-only program memory
- read/write data memory

- Note:

Somehow there must be a way to load the
program memory

Princeton style: the same (von Neumann'’s influence)
- single read/write memory for program and data

- Note:
A Load or Store instruction requires
accessing the memory more than once
during its execution

CSE 490/590, Spring 2011 23

Load/Store Instructions:Harvard Datapath

RegWrite

MemWrite
WBSrc
ALU/ Mem

ok

Vwe

Datd®

Memory

_I

OpCode RegDst ~ Extsel ~ OpSel BSrc
6 5 16 addressing mode
[opcodd rs [rt | displacement] (rs) + displacement

31 26 25 2120 1615 0
rs is the base register
rt is the destination of a Load or the source for a Store
CSE 490/590, Spring 2011 24

Acknowledgements

« These slides heavily contain material developed and
copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)

« And also by:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

* MIT material derived from course 6.823
« UCB material derived from course CS252

CSE 490/590, Spring 2011

(@]

