CSE 490/590 Computer Architecture

Pipelining I

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 490/590, Spring 2011

Last Time...

* MIPS instructions
- Reg-Reg: ADD R1,R2,R3
— Reg-Imm: LD R1,30(R2), BEQZ R4, name
— Jump/Call: J name, JAL name
» MIPS single cycle implementation
— Fetch > Decode & Reg fetch > execute > mem > WB
— All'in one cycle
* MIPS pipelining
— 5 stages
— Iron law: performance benefit analysis
» Pipelining reduces time/cycle
» Also try to maintain CPI == 1

CSE 490/590, Spring 2011

~

Harvard-Style Datapath for MIPS

PCSrc
br RegWrite MemWrite | WBSrc

rind

Add|

——— [Jjabs
cra
Ny |
1
™~ Ve
) ddl
z rdatal
Data
Memory
ALU
‘

T
OpCode RegDst ~ ExtSel ~ OpSel BSrc zero?

CSE 490/590, Spring 2011 3

5-Stage Pipelined Execution

s
rd1]
—lwdrdz AL

m
Ext L]

I-Fetch Decode, Reg. Fetch Execute Memory
(IF) (ID) (EX) (MA)
time t0 t1 t2
instructionl IF; ID; EX
instruction2 IF, 1D,
instruction3 IF;

instruction4
instruction5

CSE 490/590, Spring 2011

Write
-Back
(WwB)

5-Stage Pipelined Execution

Resource Usage Diagram

0x4: a
[V we

| =
I U HLD_"”S““ ~

LGPRs|
Inst.
Memor Imm [
. Ext u
Write
I-Fetch Decode, Reg. Fetch Execute Memory -Back
(IF) (ID) (EX) (MA) (WB)
time t0 t1 t2 t3|t4|t5 t6 t7
g IF oL I, I | I
5 ID L L, ||
S EX I L |31, I
& MA L|L |1 I, I
wB Ll I I, I
CSE 490/590, Spring 2011 5

Pipelined Execution:

ALU Instructions

B
(=)

0x4 a

[W
&

'l
Inst

[Memor

MD1

Not quite correct!

We need an Instruction Reg (IR) for each stage

CSE 490/590, Spring 2011

Instructions interact with each other

Pipelined MIPS Datapath R
in pipeline

without jumps

F D
* An instruction in the pipeline may need a

oxa resource being used by another instruction
ﬁ Soond in the pipeline > structural hazard

£ RegWrite
We Opsel

NS

E
[
[

sl

MemWrte e + An instruction may depend on something

| e J produced by an earlier instruction
rdata —Dependence may be for a data value
B . - data hazard
—Dependence may be for the next instruction’s

address
-> control hazard (branches, exceptions)

T

Inst
[Memor

Control Points Need to
Be Connected

CSE 490/590, Spring 2011 7 CSE 490/590, Spring 2011 8
Resolving Structural Hazards
9 Data Hazards
+ Structural hazards occurs when two el e
instructions need same hardware resource at oxa
same time ﬁ
— Can resolve in hardware by stalling newer instruction till
older instruction finished with resource
* A structural hazard can always be avoided by E aar |
adding more hardware to design nst
- E.g., if two instructions both need a port to memory at same Hor o
time, could avoid hazard by adding second port to memory
« Our 5-stage pipe has no structural hazards by
design
— Thanks to MIPS ISA, which was designed for pipelining rl < r0+ 10

r4 <ri+17 rl is stale. Oops!

CSE 490/590, Spring 2011 10

CSE 490/590, Spring 2011 9

Feedback to Resolve Hazards

[| J

. FB, FB, FBy | FB,—
Strategy 1: i j (T f y i
Wait for the result to be available by freezing stagel stage , Stgge Stige—-
earlier pipeline stages = interlocks L 2

Resolving Data Hazards (1)

« Later stages provide dependence information to
earlier stages which can stall (or kill) instructions

CSE 490/590, Spring 2011 12

CSE 490/590, Spring 2011 1

Ny

Interlocks to resolve Data Hazards

Stall Condition
|

0x4 nop B Eii E

BT e

Inst
[Memor

rl<r0+ 10

r4 <~rl+ 17

CSE 490/590, Spring 2011

Stalled Stages and Pipeline Bubbles

time
t0 t1 t2 t3 t4 t5 t6 t7
(I;) r1 < (r0) + 10 IF, ID, E T WBI~,
(I,) r4 < (r1) + 17 1F, Igﬁ;:loz 1D, EX, MA, WB,
(1) IF; IF; IF; IF; ID; EX; MA; WB,
stalled stages

time

t0O t1 t2 t3 t4 t5 t6 t7
IF oI, L, I, I, I I,
D L L L L I, I

LRjesource EX I, nopnopnop I, Iy I,
sage MA I, nop nop nop I, I,
WB I, nop nop nop I, I,

nop = pipeline bubble

CSE 490/590, Spring 2011 14

CSE 490/590 Administrivia

* Please purchase a BASYS2 board (100K) as soon as

possible.
— Projects should be done individually.
* Quiz 1
— Fri, 2/4
— Closed book, in-class
« Lecture notes
— (Hopefully) will be up by a day before.
— But will probably do some editing before and after each class.
— Also available in pptx now

CSE 490/590, Spring 2011

Interlock Control Logic

stall B

inst|

o]

Inst
Memon

Compare the source registers of the instruction in the decode
stage with the destination register of the uncommitted
instructions.

CSE 490/590, Spring 2011 16

Interlock Control Logic
ignoring jumps & branches

ws
we'

stall

stal

/"’5 pe ?

P — Al‘[T‘ re2 Coest Caest
Cre

0x4 a |

inst|

Inst
Memon

=
==

—}

Should we always stall if the rs field matches some rd?
not every instruction writes a register = we

not every instruction reads a register = re
CSE 490/590, Spring 2011

Hazards due to Loads & Stores

Stall Co‘ndltlon What if

(r1)+7 = (r3)+5?

0x4- a

Pl
] inst|
Inst
[Memor

MI(r1)+7] = (r2)
r4 < M[(r3)+5]

Is there any possible data hazard
in this instruction sequence?

CSE 490/590, Spring 2011 18

(&%)

Load & Store Hazards Resolving Data Hazards (2)

ivll.[(rl)+7] <~ (r2) ‘(r1)+7 = (r3)+5 = data hazard
r4 < M[(r3)+5]

Strategy 2:

Route data as soon as possible after it is
However, the hazard is avoided because our calculated to the earlier pipeline stage > bypass
memory system completes writes in one cycle !

Load/Store hazards are sometimes resolved in the
pipeline and sometimes in the memory system
itself.

More on this later in the course.

CSE 490/590, Spring 2011 19 CSE 490/590, Spring 2011 20
Bypassing Adding a Bypass
time t0 tl t2 t3 t4 t5 t6 t7 sl
(1) r1 <r0 + 10 IF, 1D, EX—MATWBI~
(L) rd <rl + 17 IF, 10, ID, 1D, ID, EX, MA, WB, — r4 <ri.. . rl<..
(I3) IF; IF; IF; IF; ID; EX; MA; oxa ~ E M w
(1) stalled stages IF, ID, EX,) a nop -y i - E
(1) IF; 1D;
. X . . v_l_ ASrc|
Each stall or kill introduces a bubble in the pipeline . e —I
rs2
=CPI > 1 S - DR~y
A new datapath, i.e., @ bypass, can get the data from tnst S
the output of the ALU to its input Hemer i
Ext
time t0 tl t2 t3 t4 t5 t6 t7 ... D1
(I,) rl < r0 + 10 IF, 1D, (EXyA, WB
(I)r4 <r1 + 17 IF, ID, EX, MA, WB, When does this bypass help?
1 IF, ID; EX; MA; WB
%Ijg 3 IFj IDj E><43 MAj WB, (I;) ri<ro+10 ri < M[r0 + 10] JAL 500
(1s) IF; IDs EXs MAs WBs (¢5)) r4 <ri+17 r4<~rl +17 r4 < r31 +17
yes no no
CSE 490/590, Spring 2011 21 CSE 490/590, Spring 2011 22
Acknowledgements

» These slides heavily contain material developed and
copyright by
— Krste Asanovic (MIT/UCB)
— David Patterson (UCB)
« And also by:
— Arvind (MIT)
— Joel Emer (Intel/MIT)
— James Hoe (CMU)
— John Kubiatowicz (UCB)

« MIT material derived from course 6.823
* UCB material derived from course CS252

CSE 490/590, Spring 2011 23

