
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Snoopy Caches II

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Cache coherence protocol

– How to propagate writes by one processor to others

•  Cache coherence protocol vs. memory consistency
– Cache coherence protocol makes sure that writes are

eventually propagated.
– Memory consistency protocol guarantees when writes

become visible.

CSE 490/590, Spring 2011

More on Coherence
•  A memory system is coherent if:
•  A read by a processor P to a location X that follows a

write by P to X, with no writes of X by another
processor occurring between the write and the read
by P, always returns the value written by P.

•  A read by a processor to location X that follows a
write by another processor to X returns the written
value if the read and write are sufficiently separated
in time and no other writes to X occur between the
two accesses.

•  Writes to the same location are serialized; that is, two
writes to the same location by any two processors
are seen in the same order by all processors.

3 CSE 490/590, Spring 2011
4

Memory Coherence in SMPs

Suppose CPU-1 updates A to 200.
 write-back: memory and cache-2 have stale values
 write-through: cache-2 has a stale value

Do these stale values matter?
What is the view of shared memory for programming?

cache-1 A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2 A 100

memory A 100

CSE 490/590, Spring 2011
5

Problems with Parallel I/O

Memory Disk: Physical memory may be
 stale if cache copy is dirty

Disk Memory: Cache may hold stale data and not
 see memory writes

 DISK

 DMA

Physical
Memory

Proc.
Cache

Memory
 Bus

Cached portions
 of page

 DMA transfers

CSE 490/590, Spring 2011
6

Snoopy Cache Goodman 1983

•  Idea: Have cache watch (or snoop upon) DMA
transfers, and then “do the right thing”

•  Snoopy cache tags are dual-ported

 Proc.

 Cache

Snoopy read port
attached to Memory
Bus

 Data
(lines)

Tags and
 State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

C 2

CSE 490/590, Spring 2011
7

Snoopy Cache Actions for DMA

Observed Bus
 Cycle Cache State Cache Action

 Address not cached

DMA Read Cached, unmodified

Memory Disk Cached, modified
 Address not cached

DMA Write Cached, unmodified
Disk Memory Cached, modified

No action

No action

No action

Cache intervenes

Cache purges its copy

???

CSE 490/590, Spring 2011
8

Shared Memory Multiprocessor

 Use snoopy mechanism to keep all processors’
view of memory coherent

M1

M2

M3

Snoopy
 Cache

DMA

Physical
 Memory

Memory
 Bus

Snoopy
 Cache

Snoopy
 Cache

 DISKS

CSE 490/590, Spring 2011
9

Snoopy Cache Coherence Protocols

write miss:
the address is invalidated in all other
caches before the write is performed

read miss:
if a dirty copy is found in some cache, a write-
back is performed before the memory is read

CSE 490/590, Spring 2011
10

Cache State Transition Diagram
The MSI protocol

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has state bits

Address tag
state
 bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

 Read miss
(P1 gets line from memory)

P 1
 in

ten
t t

o w
rit

e

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

CSE 490/590, Spring 2011
11

Two Processor Example
(Reading and writing the same cache line)

M

S I

Write miss

 Read
 miss

P1
 in

ten
t to

 write

P2 intent to write

P2 reads,
P1 writes back

P1 reads
or writes

P2 intent to write

P1

M

S I

Write miss

 Read
 miss

P2
 in

ten
t to

 write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

P1 reads
P1 writes

P2 reads
P2 writes

P1 writes
P2 writes

P1 reads

P1 writes

CSE 490/590, Spring 2011
12

Observation

•  If a line is in the M state then no other cache can have
a copy of the line!

–  Memory stays coherent, multiple differing copies cannot exist

M

S I

Write miss

Other processor
intent to write

 Read
 miss

P 1
 in

ten
t t

o w
rit

e

Other processor
intent to write

Read by any
 processor

P1 reads
or writes Other processor reads

P1 writes back

C 3

CSE 490/590, Spring 2011
13

MESI: An Enhanced MSI protocol
 increased performance for private data

M E

S I

M: Modified Exclusive
E: Exclusive but unmodified
S: Shared
 I: Invalid

Each cache line has a tag

Address tag
state
 bits

Write miss

Other processor
intent to write

Read miss,
shared

Other processor
intent to write

P1 write

Read by any
 processor

Other processor reads
P1 writes back

P1 read
P1 write
or read

Cache state in
processor P1

P1 intent
to write

Read miss,
not shared Other

processor
reads

Other processor
intent to write, P1
writes back

CSE 490/590, Spring 2011 14

CSE 490/590 Administrivia
•  Keyboards available for pickup at my office
•  Project 2: 2 weeks left (Deadline 5/2)

– Will have demo sessions
–  Keyboard helper code will be available

•  Final exam: Thursday 5/5, 11:45pm – 2:45pm

CSE 490/590, Spring 2011 15

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

