
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Synchronization and Consistency I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Multithreading executes instructions from different

threads
•  Coarse-grained multithreading switches threads on

cache misses
•  Most of the OoO superscalar units are idle.
•  SMT utilizes most of the circuitry already present.
•  Levels of multithreading

–  OoO superscalar
–  Fine-grained
–  Coarse-grained
–  Multiprocessing
–  SMT

CSE 490/590, Spring 2011
3

A Producer-Consumer Example

The program is written assuming
instructions are executed in order.

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Producer Consumer
tail head

 Rtail Rtail Rhead R

Problems?

CSE 490/590, Spring 2011
4

A Producer-Consumer Example
continued

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences are:
 2, 3, 4, 1
 4, 1, 2, 3

1

2

3

4

CSE 490/590, Spring 2011
5

Sequential Consistency
A Memory Model

“ A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

 Leslie Lamport

Sequential Consistency =
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

CSE 490/590, Spring 2011
6

Sequential Consistency

Sequential concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 10)

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

 Load R2, (X)
 Store (X’), R2 (X’= X)

what are the legitimate answers for X’ and Y’ ?

 (X’,Y’) ε {(1,11), (0,10), (1,10), (0,11)} ?

C 2

CSE 490/590, Spring 2011
7

Sequential Consistency

Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()

 What are these in our example ?

T1: T2:
Store (X), 1 (X = 1) Load R1, (Y)
Store (Y), 11 (Y = 11) Store (Y’), R1 (Y’= Y)

 Load R2, (X)
 Store (X’), R2 (X’= X) additional SC requirements

Does (can) a system with caches or out-of-order
execution capability provide a sequentially consistent
view of the memory ?

 more on this later

CSE 490/590, Spring 2011
8

Multiple Consumer Example

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

What is wrong with this code?

Critical section:
Needs to be executed atomically
by one consumer ⇒ locks

tail head
Producer

 Rtail

Consumer
1

 R Rhead

Rtail

Consumer
2

 R Rhead

Rtail

CSE 490/590, Spring 2011
9

Locks or Semaphores
E. W. Dijkstra, 1965

A semaphore is a non-negative integer, with the
following operations:

P(s): if s>0, decrement s by 1, otherwise wait

V(s): increment s by 1 and wake up one of
 the waiting processes

P’s and V’s must be executed atomically, i.e., without
•  interruptions or
•  interleaved accesses to s by other processors

initial value of s determines
the maximum no. of processes
in the critical section

Process i
P(s)
 <critical section>
V(s)

CSE 490/590, Spring 2011
10

Implementation of Semaphores

Semaphores (mutual exclusion) can be implemented
using ordinary Load and Store instructions in the
Sequential Consistency memory model. However,
protocols for mutual exclusion are difficult to design...

Simpler solution:
 atomic read-modify-write instructions

Test&Set (m), R:
R ← M[m];
if R==0 then

 M[m] ← 1;

Swap (m), R:
Rt ← M[m];
M[m] ← R;
R ← Rt;

Fetch&Add (m), RV, R:
R ← M[m];
M[m] ← R + RV;

Examples: m is a memory location, R is a register

CSE 490/590, Spring 2011 11

CSE 490/590 Administrivia
•  Quiz 2 (Friday 4/8): After midterm until today
•  Project 1 regrading

–  Email and talk to both me and Jangyoung

•  Project 2 revision up soon (with some clarification)
–  Always email me and the TAs together for project-related questions
–  5th (define-your-own) deadline this Wed

CSE 490/590, Spring 2011 12

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

