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Last time… 
•  Consistency problem 

–  Producer-consumer 

•  Sequential consistency 
•  Semaphores 
•  Instructions that can implement semaphores 

–  Test&set 
–  Fetch&add 
–  Swap 
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Locks or Semaphores 
E. W. Dijkstra, 1965 

A semaphore is a non-negative integer, with the 
following operations: 

P(s): if s>0, decrement s by 1, otherwise wait 

V(s): increment s by 1 and wake up one of  
    the waiting processes 

P’s and V’s must be executed atomically, i.e., without 
•  interruptions or 
•  interleaved accesses to s by other processors   

initial value of s determines  
the maximum no. of processes 
in the critical section 

Process i   
P(s) 
    <critical section> 
V(s) 
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Implementation of Semaphores 

Semaphores (mutual exclusion) can be implemented  
using ordinary Load and Store instructions in the  
Sequential Consistency memory model. However,  
protocols for mutual exclusion are difficult to design... 

Simpler solution: 
  atomic read-modify-write instructions 

Test&Set (m), R:  
R ←  M[m]; 
if  R==0 then   

 M[m] ← 1; 

Swap (m), R:  
Rt ←  M[m]; 
M[m] ← R; 
R ←  Rt; 

Fetch&Add (m), RV, R: 
R ←  M[m]; 
M[m] ← R + RV; 

Examples: m is a memory location, R is a register 
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Critical 
Section 

P:   Test&Set (mutex),Rtemp 
 if (Rtemp!=0) goto P 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead  

V:  Store (mutex),0 
 process(R) 

Multiple Consumers Example 
using the Test&Set Instruction 

Other atomic read-modify-write instructions (Swap,  
Fetch&Add, etc.) can also implement P’s and V’s 

What if the process stops or is swapped out while 
in the critical section? 
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Nonblocking Synchronization 
Compare&Swap(m), Rt, Rs: 
 if (Rt==M[m]) 
     then  M[m]=Rs; 
   Rs=Rt ; 
   status ← success; 
     else  status ← fail; 

try:   Load Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rnewhead = Rhead+1 
 Compare&Swap(head), Rhead, Rnewhead 
 if (status==fail) goto try 
 process(R) 

status is an 
implicit 
argument  
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Load-reserve & Store-conditional 

Special register(s) to hold reservation flag and address,  
and the outcome of store-conditional 

try:   Load-reserve Rhead, (head) 
spin:  Load Rtail, (tail) 

 if Rhead==Rtail goto spin 
 Load R, (Rhead) 
 Rhead = Rhead + 1 
 Store-conditional (head), Rhead 
 if (status==fail) goto try 
 process(R) 

Load-reserve R, (m): 
<flag, adr> ← <1, m>;  
R ← M[m]; 

Store-conditional (m), R: 
if <flag, adr> == <1, m>  
then  cancel other procs’  

    reservation on m; 
   M[m] ← R;   
   status ← succeed; 

else  status ← fail; 
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Performance of Locks 
Blocking atomic read-modify-write instructions 

 e.g., Test&Set, Fetch&Add, Swap  
   vs 

Non-blocking atomic read-modify-write instructions 
 e.g., Compare&Swap,  
         Load-reserve/Store-conditional 
   vs 

Protocols based on ordinary Loads and Stores 

Performance depends on several interacting factors: 
 degree of contention,  
 caches,  
 out-of-order execution of Loads and Stores 

   later ... 
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Issues in Implementing  
Sequential Consistency 

Implementation of SC is complicated by two issues 

•  Out-of-order execution capability 
Load(a); Load(b)  yes 
Load(a); Store(b)  yes if a ≠ b 
Store(a); Load(b)  yes if a ≠ b 
Store(a); Store(b)  yes if a ≠ b 

•  Caches 
Caches can prevent the effect of a store from  
being seen by other processors 

M 

P P P P P P 
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CSE 490/590 Administrivia 
•  No class on Friday, 4/15 
•  Keyboards available for pickup at my office 

–  Today after 2pm 
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Memory Fences 
Instructions to sequentialize memory accesses 

Processors with relaxed or weak memory models (i.e., 
permit Loads and Stores to different  addresses to be  
reordered) need to provide memory fence instructions  
to force the serialization of memory accesses 

       
Examples of processors with relaxed memory models: 

Sparc V8 (TSO,PSO): Membar  
Sparc V9 (RMO):  

 Membar #LoadLoad, Membar #LoadStore 
 Membar #StoreLoad, Membar #StoreStore 

PowerPC (WO):  Sync, EIEIO 

Memory fences are expensive operations, however, one  
pays the cost of serialization only when it is required 
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Using Memory Fences 

Producer posting Item x: 
 Load Rtail, (tail) 
 Store (Rtail), x 
 MembarSS 
 Rtail=Rtail+1 
 Store (tail), Rtail 

Consumer: 
 Load Rhead, (head) 

spin:  Load Rtail, (tail) 
 if Rhead==Rtail goto spin 
 MembarLL 
 Load R, (Rhead) 
 Rhead=Rhead+1 
 Store (head), Rhead 
 process(R) 

Producer Consumer 
tail head 

  Rtail Rtail Rhead R 

ensures that tail ptr 
is not updated before  
x has been stored 

ensures that R is 
not loaded before  
x has been stored 
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Mutual Exclusion Using Load/Store  

A protocol based on two shared variables c1 and c2.  
Initially, both c1 and c2 are 0 (not busy) 

What is wrong? 

Process 1 
 ... 
c1=1; 

L:  if c2=1 then go to L 
  < critical section> 
c1=0; 

Process 2 
 ... 
c2=1; 

L:  if c1=1 then go to L 
  < critical section> 
c2=0; 
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Mutual Exclusion: second attempt 

To avoid deadlock, let a process give up the reservation  
(i.e. Process 1 sets c1 to 0) while waiting. 

•  Deadlock is not possible but with a low probability  
  a livelock may occur. 

•  An unlucky process may never get to enter the  
  critical section  ⇒ 	
 	
 	
starvation 

Process 1 
 ... 

L:  c1=1; 
if c2=1 then  

 { c1=0; go to L} 
  < critical section> 
c1=0 

Process 2 
 ... 

L:  c2=1; 
if c1=1 then  

 { c2=0; go to L} 
  < critical section> 
c2=0 
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