
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Synchronization and Consistency II

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Consistency problem

–  Producer-consumer

•  Sequential consistency
•  Semaphores
•  Instructions that can implement semaphores

–  Test&set
–  Fetch&add
–  Swap

CSE 490/590, Spring 2011
3

Locks or Semaphores
E. W. Dijkstra, 1965

A semaphore is a non-negative integer, with the
following operations:

P(s): if s>0, decrement s by 1, otherwise wait

V(s): increment s by 1 and wake up one of
 the waiting processes

P’s and V’s must be executed atomically, i.e., without
•  interruptions or
•  interleaved accesses to s by other processors

initial value of s determines
the maximum no. of processes
in the critical section

Process i
P(s)
 <critical section>
V(s)

CSE 490/590, Spring 2011
4

Implementation of Semaphores

Semaphores (mutual exclusion) can be implemented
using ordinary Load and Store instructions in the
Sequential Consistency memory model. However,
protocols for mutual exclusion are difficult to design...

Simpler solution:
 atomic read-modify-write instructions

Test&Set (m), R:
R ← M[m];
if R==0 then

 M[m] ← 1;

Swap (m), R:
Rt ← M[m];
M[m] ← R;
R ← Rt;

Fetch&Add (m), RV, R:
R ← M[m];
M[m] ← R + RV;

Examples: m is a memory location, R is a register

CSE 490/590, Spring 2011
5

Critical
Section

P: Test&Set (mutex),Rtemp
 if (Rtemp!=0) goto P
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead

V: Store (mutex),0
 process(R)

Multiple Consumers Example
using the Test&Set Instruction

Other atomic read-modify-write instructions (Swap,
Fetch&Add, etc.) can also implement P’s and V’s

What if the process stops or is swapped out while
in the critical section?

CSE 490/590, Spring 2011
6

Nonblocking Synchronization
Compare&Swap(m), Rt, Rs:
 if (Rt==M[m])
 then M[m]=Rs;
 Rs=Rt ;
 status ← success;
 else status ← fail;

try: Load Rhead, (head)
spin: Load Rtail, (tail)

 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rnewhead = Rhead+1
 Compare&Swap(head), Rhead, Rnewhead
 if (status==fail) goto try
 process(R)

status is an
implicit
argument

C 2

CSE 490/590, Spring 2011
7

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and address,
and the outcome of store-conditional

try: Load-reserve Rhead, (head)
spin: Load Rtail, (tail)

 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead = Rhead + 1
 Store-conditional (head), Rhead
 if (status==fail) goto try
 process(R)

Load-reserve R, (m):
<flag, adr> ← <1, m>;
R ← M[m];

Store-conditional (m), R:
if <flag, adr> == <1, m>
then cancel other procs’

 reservation on m;
 M[m] ← R;
 status ← succeed;

else status ← fail;

CSE 490/590, Spring 2011
8

Performance of Locks
Blocking atomic read-modify-write instructions

 e.g., Test&Set, Fetch&Add, Swap
 vs

Non-blocking atomic read-modify-write instructions
 e.g., Compare&Swap,
 Load-reserve/Store-conditional
 vs

Protocols based on ordinary Loads and Stores

Performance depends on several interacting factors:
 degree of contention,
 caches,
 out-of-order execution of Loads and Stores

 later ...

CSE 490/590, Spring 2011
9

Issues in Implementing
Sequential Consistency

Implementation of SC is complicated by two issues

•  Out-of-order execution capability
Load(a); Load(b) yes
Load(a); Store(b) yes if a ≠ b
Store(a); Load(b) yes if a ≠ b
Store(a); Store(b) yes if a ≠ b

•  Caches
Caches can prevent the effect of a store from
being seen by other processors

M

P P P P P P

CSE 490/590, Spring 2011 10

CSE 490/590 Administrivia
•  No class on Friday, 4/15
•  Keyboards available for pickup at my office

–  Today after 2pm

CSE 490/590, Spring 2011
11

Memory Fences
Instructions to sequentialize memory accesses

Processors with relaxed or weak memory models (i.e.,
permit Loads and Stores to different addresses to be
reordered) need to provide memory fence instructions
to force the serialization of memory accesses

Examples of processors with relaxed memory models:

Sparc V8 (TSO,PSO): Membar
Sparc V9 (RMO):

 Membar #LoadLoad, Membar #LoadStore
 Membar #StoreLoad, Membar #StoreStore

PowerPC (WO): Sync, EIEIO

Memory fences are expensive operations, however, one
pays the cost of serialization only when it is required

CSE 490/590, Spring 2011
12

Using Memory Fences

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 MembarSS
 Rtail=Rtail+1
 Store (tail), Rtail

Consumer:
 Load Rhead, (head)

spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 MembarLL
 Load R, (Rhead)
 Rhead=Rhead+1
 Store (head), Rhead
 process(R)

Producer Consumer
tail head

 Rtail Rtail Rhead R

ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

C 3

CSE 490/590, Spring 2011
13

Mutual Exclusion Using Load/Store

A protocol based on two shared variables c1 and c2.
Initially, both c1 and c2 are 0 (not busy)

What is wrong?

Process 1
 ...
c1=1;

L: if c2=1 then go to L
 < critical section>
c1=0;

Process 2
 ...
c2=1;

L: if c1=1 then go to L
 < critical section>
c2=0;

CSE 490/590, Spring 2011
14

Mutual Exclusion: second attempt

To avoid deadlock, let a process give up the reservation
(i.e. Process 1 sets c1 to 0) while waiting.

•  Deadlock is not possible but with a low probability
 a livelock may occur.

•  An unlucky process may never get to enter the
 critical section ⇒ 	
 	
 	
starvation

Process 1
 ...

L: c1=1;
if c2=1 then

 { c1=0; go to L}
 < critical section>
c1=0

Process 2
 ...

L: c2=1;
if c1=1 then

 { c2=0; go to L}
 < critical section>
c2=0

CSE 490/590, Spring 2011 15

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

