
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

Virtual Machines I

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  Directory-based coherence protocol
•  4 cache states: C-invalid, C-shared, C-modified, and

C-transient
•  4 memory states: R(dir), W(id), TR(dir), TW(id)

CSE 490/590, Spring 2011
3

Outline
•  Types of Virtual Machine

–  User-level
–  System-level

•  Techniques for implementing all or parts of a non-
native ISA on a host machine:

–  Interpreter
–  Static binary translation
–  Dynamic binary translation
–  Hardware emulation

CSE 490/590, Spring 2011
4

Types of Virtual Machine (VM)
•  User Virtual Machines run a single application

according to some standard application binary
interface (ABI).

–  Example user ABIs include Win32 for windows and Java Virtual
Machine (JVM)

•  “(Operating) System Virtual Machines” provide a
complete system level environment at binary ISA

–  E.g., IBM VM/370, VMware ESX Server, and Xen
–  Single computer runs multiple VMs, and can support a multiple,

different OSes
»  On conventional platform, single OS “owns” all HW resources
»  With a VM, multiple OSes all share HW resources

•  Underlying HW platform is called the host, where its
resources used to run guest VMs (user and/or system)

CSE 490/590, Spring 2011
5

Software Applications

How is a software application encoded?
–  What are you getting when you buy a software application?
–  What machines will it work on?
–  Who do you blame if it doesn’t work, i.e., what contract(s) were

violated?

CSE 490/590, Spring 2011
6

User Virtual Machine = ISA + Environment
ISA alone not sufficient to write useful programs, need I/O too!
•  Direct access to memory mapped I/O via load/store

instructions problematic
–  time-shared systems
–  portability

•  Operating system usually responsible for I/O
–  sharing devices and managing security
–  hiding different types of hardware (e.g., EIDE vs. SCSI disks)

•  ISA communicates with operating system through some
standard mechanism, i.e., syscall instructions

–  example convention to open file:
addi r1, r0, 27 # 27 is code for file open
addu r2, r0, rfname # r2 points to filename string
syscall # cause trap into OS
On return from syscall, r1 holds file descriptor

C 2

CSE 490/590, Spring 2011
7

Application Binary Interface (ABI)
•  Programs are usually distributed in a binary format that

encodes the program text (instructions) and initial values
of some data segments

•  Virtual machine specifications include
–  what state is available at process creation
–  which instructions are available (the ISA)
–  what system calls are possible (I/O, or the environment)

•  The ABI is a specification of the binary format used to
encode programs for a virtual machine

•  Operating system implements the virtual machine
–  at process startup, OS reads the binary program, creates an

environment for it, then begins to execute the code, handling traps for I/
O calls, emulation, etc.

CSE 490/590, Spring 2011
8

OS Can Support Multiple User VMs
•  Virtual machine features change over time with new

versions of operating system
–  new ISA instructions added
–  new types of I/O are added (e.g., asynchronous file I/O)

•  Common to provide backwards compatibility so old
binaries run on new OS

–  SunOS 5 (System V Release 4 Unix, Solaris) can run binaries
compiled for SunOS4 (BSD-style Unix)

–  Windows 98 runs MS-DOS programs

•  If ABI needs instructions not supported by native
hardware, OS can provide in software

CSE 490/590, Spring 2011
9

ISA Implementations Partly in Software
Often good idea to implement part of ISA in software:
•  Expensive but rarely used instructions can cause trap to

OS emulation routine:
–  e.g., decimal arithmetic instructions in MicroVax implementation of

VAX ISA

•  Infrequent but difficult operand values can cause trap
–  e.g., IEEE floating-point denormals cause traps in almost all

floating-point unit implementations

•  Old machine can trap unused opcodes, allows binaries for
new ISA to run on old hardware

–  e.g., Sun SPARC v8 added integer multiply instructions, older v7
CPUs trap and emulate

CSE 490/590, Spring 2011
10

Supporting Non-Native ISAs
Run programs for one ISA on hardware with different ISA

•  Software Interpreter (OS software interprets instructions at run-time)
–  E.g., OS 9 for PowerPC Macs had interpreter for 68000 code

•  Binary Translation (convert at install and/or load time)
–  IBM AS/400 to modified PowerPC cores
–  DEC tools for VAX->MIPS->Alpha

•  Dynamic Translation (non-native ISA to native ISA at run time)
–  Sun’s HotSpot Java JIT (just-in-time) compiler
–  Transmeta Crusoe, x86->VLIW code morphing
–  OS X for Intel Macs has dynamic binary translator for PowerPC (Rosetta)

•  Run-time Hardware Emulation
–  IBM 360 had optional IBM 1401 emulator in microcode
–  Intel Itanium converts x86 to native VLIW (two software-visible ISAs)
–  ARM cores support 32-bit ARM, 16-bit Thumb, and JVM (three software-

visible ISAs!)

CSE 490/590, Spring 2011
11

Software Interpreter
•  Fetch and decode one instruction at a time in software

Memory image of
guest VM lives in
host interpreter
data memory

Interpreter Data

Interpreter Code

Interpreter Stack

while(!stop)
{
 inst = Code[PC];
 PC += 4;
 execute(inst);
}

fetch-decode loop

Guest
ISA
Code

Guest
ISA
Data

Executable
on Disk

Guest
ISA
Code

Guest
ISA
Data

Guest
Stack

Load into
interpreter
process
memory

CSE 490/590, Spring 2011
12

Software Interpreter

•  Easy to code, small code footprint
•  Slow, approximately 100x slower than native

execution for RISC ISA hosted on RISC ISA
•  Problem is time taken to decode instructions

–  fetch instruction from memory
–  switch tables to decode opcodes
–  extract register specifiers using bit shifts
–  access register file data structure
–  execute operation
–  return to main fetch loop

C 3

CSE 490/590, Spring 2011 13

CSE 490/590 Administrivia
•  Keyboards available for pickup at my office
•  Project 2: less than 1 week left (Deadline 5/2)

– Will have demo sessions

•  No class on 5/2 (finish the project!)
•  Final exam: Thursday 5/5, 11:45pm – 2:45pm, NSC

216

CSE 490/590, Spring 2011
14

Binary Translation
•  Each guest ISA instruction translates into some set of host

(or native) ISA instructions
•  Instead of dynamically fetching and decoding instructions at

run-time, translate entire binary program and save result as
new native ISA executable

•  Removes interpretive fetch-decode overhead
•  Can do compiler optimizations on translated code to

improve performance
–  register allocation for values flowing between guest ISA instructions
–  native instruction scheduling to improve performance
–  remove unreachable code
–  inline assembly procedures

CSE 490/590, Spring 2011
15

Binary Translation, Take 1

Guest
ISA
Code

Guest
ISA
Data

Executable
on Disk

Native
ISA
Code

Guest
ISA
Data

Executable
on Disk

Native
Data Translate to

native ISA code

Data
unchanged

Native translation
might need extra data
workspace

CSE 490/590, Spring 2011
16

Binary Translation Problems
Branch and Jump targets

–  guest code:
 j L1
 ...
 L1: lw r1, (r4)
 jr (r1)

–  native code

j
translation

lw
translation

jr
translation

native jump at end of
block jumps to native
translation of lw

Where should the jump register go?

CSE 490/590, Spring 2011
17

PC Mapping Table
•  Table gives translated PC for each guest PC
•  Indirect jumps translated into code that looks in table to

find where to jump to
–  can optimize well-behaved guest code for subroutine call/return by using

native PC in return links

•  If can branch to any guest PC, then need one table entry
for every instruction in hosted program  big table

•  If can branch to any PC, then either
–  limit inter-instruction optimizations
–  large code explosion to hold optimizations for each possible entry into

sequential code sequence

•  Only minority of guest instructions are indirect jump
targets, want to find these

–  design a highly structured VM design
–  use run-time feedback of target locations

CSE 490/590, Spring 2011
18

Binary Translation Problems
•  Self-modifying code!

–  sw r1, (r2) # r2 points into code space

•  Rare in most code, but has to be handled if allowed by
guest ISA

•  Usually handled by including interpreter and marking
modified code pages as “interpret only”

•  Have to invalidate all native branches into modified code
pages

C 4

CSE 490/590, Spring 2011
19

Binary Translation, Take 2

Guest
ISA
Code

Guest
ISA
Data

Executable
on Disk

Native
ISA Code

Executable
on Disk

PC
Mapping
Table

Guest
ISA Code

Guest
ISA Data

Native
Interpreter

Translate to
native ISA code

Keep copy
of code and
data in
native data
segment

Interpreter used for
run-time modified
code, checks for
jumps back into
native code using PC
mapping table

Translation has to
check for modified
code pages then jump
to interpeter

Mapping table used
for indirect jumps and
to jump from
interpreter back into
native translations

CSE 490/590, Spring 2011
20

IBM System/38 and AS/400
•  System/38 announced 1978

–  AS/400 is follow-on line, now called “System I” or “iSeries”
•  High-level instruction set interface designed for binary translation
•  Memory-memory instruction set, never directly executed by hardware

Hardware Machine

Horizontal Microcode

Vertical Microcode

High-Level
Architecture Interface

Languages,
Database,
Utilities

Control
Program
Facility

User Applications

Replaced by modified
PowerPC cores in
newer iSeries machines

Used 48-bit CISC
engine in earlier
machines

CSE 490/590, Spring 2011
21

Dynamic Translation
•  Translate code sequences as needed at run-time, but

cache results
•  Can optimize code sequences based on dynamic

information (e.g., branch targets encountered)
•  Tradeoff between optimizer run-time and time saved by

optimizations in translated code
•  Technique used in Java JIT (Just-In-Time) compilers, and

Virtual Machine Monitors (for system VMs)
•  Also, Transmeta Crusoe for x86 emulation

CSE 490/590, Spring 2011
22

Dynamic Binary Translation
Example:

Data RAM

Disk

x86
Binary

Runtime -- Execution

x86
Binary

Code Cache Code Cache
Tags

Translator

x86 Parser &
High Level
Translator

High Level
Optimization

Low Level
Code Generation

Low Level
Optimization and
Scheduling

CSE 490/590, Spring 2011
23

Chaining

Runtime --
Execution

Code Cache
Code Cache
Tags

Pre Chained
add %r5, %r6, %r7

li %next_addr_reg, next_addr #load address

 #of next block

j dispatch loop

Chained
add %r5, %r6, %r7

j physical location of translated

 code for next_block

CSE 490/590, Spring 2011
24

Transmeta Crusoe
(2000)

•  Converts x86 ISA into internal native VLIW format
using software at run-time  “Code Morphing”

•  Optimizes across x86 instruction boundaries to
improve performance

•  Translations cached to avoid translator overhead on
repeated execution

•  Completely invisible to operating system – looks like
x86 hardware processor

[Following slides contain examples taken from
“The Technology Behind Crusoe Processors”,
Transmeta Corporation, 2000]

C 5

CSE 490/590, Spring 2011
25

Transmeta VLIW Engine
•  Two VLIW formats, 64-bit and 128-bit, contains 2 or 4

RISC-like operations
•  VLIW engine optimized for x86 code emulation

–  evaluates condition codes the same way as x86
–  has 80-bit floating-point unit
–  partial register writes (update 8 bits in 32 bit register)

•  Support for fast instruction writes
–  run-time code generation important

•  Initially, two different VLIW implementations, low-end
TM3120, high-end TM5400

–  native ISA differences invisible to user, hidden by translation system
–  new eight-issue VLIW core planned (TM6000 series)

CSE 490/590, Spring 2011
26

Crusoe System

VLIW Processor

Inst. Cache

Data Cache

Crusoe CPU

x86 DRAM Code Morph DRAM
x86 BIOS
Flash

Code Morph
Compiler Code
(VLIW)
Translation
Cache (VLIW)

Workspace

Portion of system DRAM is
used by Code Morph
software and is invisible to
x86 machine

Crusoe
Boot
Flash
ROM

Compressed
compiler held in
boot ROM

System DRAM

CSE 490/590, Spring 2011
27

Transmeta Translation

addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

x86 code:

ld %r30, [%esp] # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax,set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5

first step, translate into RISC ops:

CSE 490/590, Spring 2011
28

Compiler Optimizations
ld %r30, [%esp] # load from stack into temp

add.c %eax, %eax, %r30 # add to %eax,set cond.codes

ld %r31, [%esp]

add.c %ebx, %ebx, %r31

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5

RISC ops:

ld %r30, [%esp] # load from stack only once

add %eax, %eax, %r30

add %ebx, %ebx, %r30 # reuse data loaded earlier

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5 # only this cond. code needed

Optimize:

CSE 490/590, Spring 2011
29

Scheduling

ld %r30, [%esp] # load from stack only once

add %eax, %eax, %r30

add %ebx, %ebx, %r30 # reuse data loaded earlier

ld %esi, [%ebp]

sub.c %ecx, %ecx, 5 # only this cond. code needed

Optimized RISC ops:

ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Schedule into VLIW code:

CSE 490/590, Spring 2011
30

Translation Overhead
•  Highly optimizing compiler takes considerable time to

run, adds run-time overhead
•  Only worth doing for frequently executed code
•  Translation adds instrumentation into translations that

counts how often code executed, and which way
branches usually go

•  As count for a block increases, higher optimization
levels are invoked on that code

C 6

CSE 490/590, Spring 2011
31

Exceptions

ld %r30, [%esp]; sub.c %ecx, %ecx, 5

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30

Scheduled VLIW code:

addl %eax, (%esp) # load data from stack, add to eax

addl %ebx, (%esp) # load data from stack, add to ebx

movl %esi, (%ebp) # load esi from memory

subl %ecx, 5 # sub 5 from ecx

Original x86 code:

•  x86 instructions executed out-of-order with respect to
original program flow
•  Need to restore state for precise traps

CSE 490/590, Spring 2011
32

Shadow Registers and Store Buffer
•  All registers have working copy and shadow copy
•  Stores held in software controlled store buffer, loads

can snoop
•  At end of translation block, commit changes by

copying values from working regs to shadow regs,
and by releasing stores in store buffer

•  On exception, re-execute x86 code using interpreter

CSE 490/590, Spring 2011
33

Handling Self-Modifying Code

•  When a translation is made, mark the associated x86
code page as being translated in page table

•  Store to translated code page causes trap, and
associated translations are invalidated

CSE 490/590, Spring 2011
34

System VMs: Supporting Multiple
OSs on Same Hardware

•  Can virtualize the environment that an operating system
sees, an OS-level VM, or system VM

•  Hypervisor layer implements sharing of real hardware
resources by multiple OS VMs that each think they have a
complete copy of the machine

–  Popular in early days to allow mainframe to be shared by multiple groups
developing OS code

–  Used in modern mainframes to allow multiple versions of OS to be
running simultaneously  OS upgrades with no downtime!

–  Example for PCs: VMware allows Windows OS to run on top of Linux (or
vice-versa)

•  Requires trap on access to privileged hardware state
–  easier if OS interface to hardware well defined

CSE 490/590, Spring 2011
35

Introduction to System Virtual
Machines

•  VMs developed in late 1960s
– Remained important in mainframe computing over the years
–  Largely ignored in single user computers of 1980s and 1990s

•  Recently regained popularity due to
–  increasing importance of isolation and security in modern systems,
–  failures in security and reliability of standard operating systems,
–  sharing of a single computer among many unrelated users,
–  and the dramatic increases in raw speed of processors, which

makes the overhead of VMs more acceptable

CSE 490/590, Spring 2011
36

Virtual Machine Monitors (VMMs)
•  Virtual machine monitor (VMM) or hypervisor is

software that supports VMs
•  VMM determines how to map virtual resources to

physical resources
•  Physical resource may be time-shared, partitioned, or

emulated in software
•  VMM is much smaller than a traditional OS;

–  isolation portion of a VMM is ≈ 10,000 lines of code

C 7

CSE 490/590, Spring 2011
37

VMM Overhead?
•  Depends on the workload
•  User-level processor-bound programs (e.g., SPEC)

have zero-virtualization overhead
–  Runs at native speeds since OS rarely invoked

•  I/O-intensive workloads that are OS-intensive
execute many system calls and privileged
instructions, can result in high virtualization overhead

–  For System VMs, goal of architecture and VMM is to run almost all
instructions directly on native hardware

•  If I/O-intensive workload is also I/O-bound, low
processor utilization since waiting for I/O

–  processor virtualization can be hidden, so low virtualization
overhead

CSE 490/590, Spring 2011
38

Other Uses of VMs
1.  Managing Software

–  VMs provide an abstraction that can run the complete SW stack,
even including old OSes like DOS

–  Typical deployment: some VMs running legacy OSes, many
running current stable OS release, few testing next OS release

2.  Managing Hardware
–  VMs allow separate SW stacks to run independently yet share HW,

thereby consolidating number of servers
»  Some run each application with compatible version of OS on

separate computers, as separation helps dependability
–  Migrate running VM to a different computer

»  Either to balance load or to evacuate from failing HW

CSE 490/590, Spring 2011
39

Requirements of a Virtual Machine
Monitor

•  A VM Monitor
–  Presents a SW interface to guest software,
–  Isolates state of guests from each other, and
–  Protects itself from guest software (including guest OSes)

•  Guest software should behave on a VM exactly as if running
on the native HW

–  Except for performance-related behavior or limitations of fixed resources
shared by multiple VMs

•  Guest software should not be able to change allocation of
real system resources directly

•  Hence, VMM must control ≈ everything even though guest
VM and OS currently running is temporarily using them

–  Access to privileged state, Address translation, I/O, Exceptions and
Interrupts, …

CSE 490/590, Spring 2011
40

Requirements of a Virtual Machine
Monitor

•  VMM must be at higher privilege level than guest VM,
which generally run in user mode
⇒  Execution of privileged instructions handled by VMM

•  E.g., Timer interrupt: VMM suspends currently running
guest VM, saves its state, handles interrupt, determine
which guest VM to run next, and then load its state
–  Guest VMs that rely on timer interrupt provided with virtual timer and an

emulated timer interrupt by VMM

•  Requirements of system virtual machines are
same as paged-virtual memory:

1.  At least 2 processor modes, system and user
2.  Privileged subset of instructions available only in system

mode, trap if executed in user mode
–  All system resources controllable only via these instructions

CSE 490/590, Spring 2011
41

ISA Support for Virtual Machines
•  If VMs are planned for during design of ISA, easy to

reduce instructions that must be executed by a VMM
and how long it takes to emulate them

–  Since VMs have been considered for desktop/PC server apps only
recently, most ISAs were created without virtualization in mind,
including 80x86 and most RISC architectures

•  VMM must ensure that guest system only interacts
with virtual resources ⇒ conventional guest OS runs
as user mode program on top of VMM

–  If guest OS attempts to access or modify information related to HW
resources via a privileged instruction--for example, reading or writing
the page table pointer--it will trap to the VMM

•  If not, VMM must intercept instruction and support a
virtual version of the sensitive information as the guest
OS expects (examples soon)

CSE 490/590, Spring 2011
42

Impact of VMs on Virtual Memory
•  Virtualization of virtual memory if each guest OS in every

VM manages its own set of page tables?
•  VMM separates real and physical memory

–  Makes real memory a separate, intermediate level between virtual
memory and physical memory

–  Some use the terms virtual memory, physical memory, and machine
memory to name the 3 levels

–  Guest OS maps virtual memory to real memory via its page tables, and
VMM page tables map real memory to physical memory

•  VMM maintains a shadow page table that maps directly
from the guest virtual address space to the physical
address space of HW

–  Rather than pay extra level of indirection on every memory access
–  VMM must trap any attempt by guest OS to change its page table or to

access the page table pointer

C 8

CSE 490/590, Spring 2011
43

ISA Support for VMs & Virtual
Memory
•  IBM 370 architecture added additional level of

indirection that is managed by the VMM
–  Guest OS keeps its page tables as before, so the shadow pages

are unnecessary

•  To virtualize software TLB, VMM manages the real
TLB and has a copy of the contents of the TLB of
each guest VM

–  Any instruction that accesses the TLB must trap
–  TLBs with Process ID tags support a mix of entries from different

VMs and the VMM, thereby avoiding flushing of the TLB on a VM
switch

•  Recent processor designs have added similar
mechanisms to accelerate VMMs

CSE 490/590, Spring 2011
44

Impact of Virtualization on I/O
•  Most difficult part of virtualization

–  Increasing number of I/O devices attached to the computer
–  Increasing diversity of I/O device types
–  Sharing of a real device among multiple VMs,
–  Supporting the myriad of device drivers that are required, especially

if different guest OSes are supported on the same VM system

•  Give each VM generic versions of each type of I/O
device driver, and let VMM handle real I/O

•  Method for mapping virtual to physical I/O device
depends on the type of device:
–  Disks partitioned by VMM to create virtual disks for guest VMs
–  Network interfaces shared between VMs in short time slices, and

VMM tracks messages for virtual network addresses to ensure that
guest VMs only receive their messages

CSE 490/590, Spring 2011 45

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

