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Last time… 
•  Directory-based coherence protocol 
•  4 cache states: C-invalid, C-shared, C-modified, and 

C-transient 
•  4 memory states: R(dir), W(id), TR(dir), TW(id) 
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Outline 
•  Types of Virtual Machine 

–  User-level 
–  System-level 

•  Techniques for implementing all or parts of a non-
native ISA on a host machine: 

–  Interpreter 
–  Static binary translation 
–  Dynamic binary translation 
–  Hardware emulation 
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Types of Virtual Machine (VM) 
•  User Virtual Machines run a single application 

according to some standard application binary 
interface (ABI). 

–  Example user ABIs include Win32 for windows and Java Virtual 
Machine (JVM) 

•  “(Operating) System Virtual Machines” provide a 
complete system level environment at binary ISA 

–  E.g., IBM VM/370, VMware ESX Server, and Xen 
–  Single computer runs multiple VMs, and can support a multiple, 

different OSes  
»  On conventional platform, single OS “owns” all HW resources  
»  With a VM, multiple OSes all share HW resources 

•  Underlying HW platform is called the host, where its 
resources used to run guest VMs (user and/or system) 
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Software Applications 

How is a software application encoded? 
–  What are you getting when you buy a software application? 
–  What machines will it work on? 
–  Who do you blame if it doesn’t work, i.e., what contract(s) were 

violated? 
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User Virtual Machine = ISA + Environment 
ISA alone not sufficient to write useful programs, need I/O too! 
•  Direct access to memory mapped I/O via load/store 

instructions problematic 
–  time-shared systems 
–  portability 

•  Operating system usually responsible for I/O 
–  sharing devices and managing security 
–  hiding different types of hardware (e.g., EIDE vs. SCSI disks) 

•  ISA communicates with operating system through some 
standard mechanism, i.e., syscall instructions 

–  example convention to open file: 
addi r1, r0, 27   # 27 is code for file open 
addu r2, r0, rfname  # r2 points to filename string 
syscall    # cause trap into OS 
# On return from syscall, r1 holds file descriptor 
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Application Binary Interface (ABI) 
•  Programs are usually distributed in a binary format that 

encodes the program text (instructions) and initial values 
of some data segments 

•  Virtual machine specifications include 
–  what state is available at process creation 
–  which instructions are available (the ISA) 
–  what system calls are possible (I/O, or the environment) 

•  The ABI is a specification of the binary format used to 
encode programs for a virtual machine 

•  Operating system implements the virtual machine 
–  at process startup, OS reads the binary program, creates an 

environment for it, then begins to execute the code, handling traps for I/
O calls, emulation, etc. 
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OS Can Support Multiple User VMs 
•  Virtual machine features change over time with new 

versions of operating system 
–  new ISA instructions added 
–  new types of I/O are added (e.g., asynchronous file I/O) 

•  Common to provide backwards compatibility so old 
binaries run on new OS 

–  SunOS 5 (System V Release 4 Unix, Solaris) can run binaries 
compiled for SunOS4 (BSD-style Unix) 

–  Windows 98 runs MS-DOS programs 

•  If ABI needs instructions not supported by native 
hardware, OS can provide in software 
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ISA Implementations Partly in Software 
Often good idea to implement part of ISA in software: 
•  Expensive but rarely used instructions can cause trap to 

OS emulation routine: 
–  e.g., decimal arithmetic instructions in MicroVax implementation of 

VAX ISA 

•  Infrequent but difficult operand values can cause trap 
–  e.g., IEEE floating-point denormals cause traps in almost all 

floating-point unit implementations 

•  Old machine can trap unused opcodes, allows binaries for 
new ISA to run on old hardware 

–  e.g., Sun SPARC v8 added integer multiply instructions, older v7 
CPUs trap and emulate 
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Supporting Non-Native ISAs 
Run programs for one ISA on hardware with different ISA 

•  Software Interpreter (OS software interprets instructions at run-time) 
–  E.g., OS 9 for PowerPC Macs had interpreter for 68000 code 

•  Binary Translation (convert at install and/or load time) 
–  IBM AS/400 to modified PowerPC cores 
–  DEC tools for VAX->MIPS->Alpha 

•  Dynamic Translation (non-native ISA to native ISA at run time) 
–  Sun’s HotSpot Java JIT (just-in-time) compiler 
–  Transmeta Crusoe, x86->VLIW code morphing 
–  OS X for Intel Macs has dynamic binary translator for PowerPC (Rosetta) 

•  Run-time Hardware Emulation 
–  IBM 360 had optional IBM 1401 emulator in microcode 
–  Intel Itanium converts x86 to native VLIW (two software-visible ISAs) 
–  ARM cores support 32-bit ARM, 16-bit Thumb, and JVM (three software-

visible ISAs!) 
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Software Interpreter 
•  Fetch and decode one instruction at a time in software 

Memory image of 
guest VM lives in 
host interpreter 
data memory 

Interpreter Data 

Interpreter Code 

Interpreter Stack 

while(!stop) 
{ 
 inst = Code[PC]; 
 PC += 4; 
 execute(inst); 
} 

fetch-decode loop 

Guest 
ISA 
Code 

Guest 
ISA 
Data 

Executable 
on Disk 

Guest 
ISA 
Code 

Guest 
ISA 
Data 

Guest 
Stack 

Load into 
interpreter 
process 
memory 
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Software Interpreter 

•  Easy to code, small code footprint 
•  Slow, approximately 100x slower than native 

execution for RISC ISA hosted on RISC ISA 
•  Problem is time taken to decode instructions 

–  fetch instruction from memory 
–  switch tables to decode opcodes 
–  extract register specifiers using bit shifts 
–  access register file data structure 
–  execute operation 
–  return to main fetch loop 
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CSE 490/590 Administrivia 
•  Keyboards available for pickup at my office 
•  Project 2: less than 1 week left (Deadline 5/2) 

– Will have demo sessions 

•  No class on 5/2 (finish the project!) 
•  Final exam: Thursday 5/5, 11:45pm – 2:45pm, NSC 

216 
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Binary Translation 
•  Each guest ISA instruction translates into some set of host 

(or native) ISA instructions 
•  Instead of dynamically fetching and decoding instructions at 

run-time, translate entire binary program and save result as 
new native ISA executable 

•  Removes interpretive fetch-decode overhead 
•  Can do compiler optimizations on translated code to 

improve performance 
–  register allocation for values flowing between guest ISA instructions 
–  native instruction scheduling to improve performance 
–  remove unreachable code 
–  inline assembly procedures 
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Binary Translation, Take 1 

Guest 
ISA 
Code 

Guest 
ISA 
Data 

Executable 
on Disk 

Native 
ISA 
Code 

Guest 
ISA 
Data 

Executable 
on Disk 

Native 
Data Translate to 

native ISA code 

Data 
unchanged 

Native translation 
might need extra data 
workspace 
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Binary Translation Problems 
Branch and Jump targets 

–  guest code: 
      j L1 
        ... 
  L1: lw r1, (r4) 
      jr (r1) 

–  native code       

j 
translation 

lw 
translation 

jr 
translation 

native jump at end of 
block jumps to native 
translation of lw 

Where should the jump register go? 
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PC Mapping Table 
•  Table gives translated PC for each guest PC 
•  Indirect jumps translated into code that looks in table to 

find where to jump to 
–  can optimize well-behaved guest code for subroutine call/return by using 

native PC in return links 

•  If can branch to any guest PC, then need one table entry 
for every instruction in hosted program  big table 

•  If can branch to any PC, then either 
–  limit inter-instruction optimizations 
–  large code explosion to hold optimizations for each possible entry into 

sequential code sequence 

•  Only minority of guest instructions are indirect jump 
targets, want to find these 

–  design a highly structured VM design 
–  use run-time feedback of target locations 
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Binary Translation Problems 
•  Self-modifying code! 

–  sw r1, (r2)  # r2 points into code space 

•  Rare in most code, but has to be handled if allowed by 
guest ISA 

•  Usually handled by including interpreter and marking 
modified code pages as “interpret only” 

•  Have to invalidate all native branches into modified code 
pages 
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Binary Translation, Take 2 

Guest 
ISA 
Code 

Guest 
ISA 
Data 

Executable 
on Disk 

Native 
ISA Code 

Executable 
on Disk 

PC 
Mapping 
Table 

Guest 
ISA Code 

Guest 
ISA Data 

Native 
Interpreter 

Translate to 
native ISA code 

Keep copy 
of code and 
data in 
native data 
segment 

Interpreter used for 
run-time modified 
code, checks for 
jumps back into 
native code using PC 
mapping table 

Translation has to 
check for modified 
code pages then jump 
to interpeter 

Mapping table used 
for indirect jumps and 
to jump from 
interpreter back into 
native translations  
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IBM System/38 and AS/400 
•  System/38 announced 1978 

–  AS/400 is follow-on line, now called “System I” or “iSeries” 
•  High-level instruction set interface designed for binary translation 
•  Memory-memory instruction set, never directly executed by hardware 

Hardware Machine 

Horizontal Microcode 

Vertical Microcode 

High-Level 
Architecture Interface 

Languages, 
Database, 
Utilities 

Control 
Program 
Facility 

User Applications 

Replaced by modified 
PowerPC cores in 
newer iSeries machines 

Used 48-bit CISC 
engine in earlier 
machines 
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Dynamic Translation 
•  Translate code sequences as needed at run-time, but 

cache results 
•  Can optimize code sequences based on dynamic 

information (e.g., branch targets encountered) 
•  Tradeoff between optimizer run-time and time saved by 

optimizations in translated code 
•  Technique used in Java JIT (Just-In-Time) compilers, and 

Virtual Machine Monitors (for system VMs) 
•  Also, Transmeta Crusoe for x86 emulation 
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Dynamic Binary Translation 
Example: 

Data RAM 

Disk 

x86 
Binary 

Runtime -- Execution 

x86 
Binary 

Code Cache Code Cache 
Tags 

Translator 

x86 Parser & 
High Level 
Translator 

High Level 
Optimization 

Low Level 
Code Generation 

Low Level 
Optimization and 
Scheduling 
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Chaining 

Runtime -- 
Execution 

Code Cache 
Code Cache 
Tags 

Pre Chained 
add %r5, %r6, %r7         

li %next_addr_reg, next_addr #load address 

      #of next block 

j dispatch loop 

Chained 
add %r5, %r6, %r7         

j physical location of translated 

 code for next_block 
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Transmeta Crusoe 
(2000) 

•  Converts x86 ISA into internal native VLIW format 
using software at run-time  “Code Morphing” 

•  Optimizes across x86 instruction boundaries to 
improve performance 

•  Translations cached to avoid translator overhead on 
repeated execution 

•  Completely invisible to operating system – looks like 
x86 hardware processor 

[ Following slides contain examples taken from 
“The Technology Behind Crusoe Processors”, 
Transmeta Corporation, 2000 ] 
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Transmeta VLIW Engine 
•  Two VLIW formats, 64-bit and 128-bit, contains 2 or 4 

RISC-like operations 
•  VLIW engine optimized for x86 code emulation 

–  evaluates condition codes the same way as x86 
–  has 80-bit floating-point unit 
–  partial register writes (update 8 bits in 32 bit register) 

•  Support for fast instruction writes 
–  run-time code generation important 

•  Initially, two different VLIW implementations, low-end 
TM3120, high-end TM5400 

–  native ISA differences invisible to user, hidden by translation system 
–  new eight-issue VLIW core planned (TM6000 series) 
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Crusoe System 

VLIW Processor 

Inst. Cache 

Data Cache 

Crusoe CPU 

x86 DRAM  Code Morph DRAM 
x86 BIOS 
Flash 

Code Morph 
Compiler Code 
(VLIW) 
Translation 
Cache (VLIW) 

Workspace 

Portion of system DRAM is 
used by Code Morph 
software and is invisible to 
x86 machine 

Crusoe 
Boot 
Flash 
ROM 

Compressed 
compiler held in 
boot ROM 

System DRAM 
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Transmeta Translation 

addl %eax, (%esp) # load data from stack, add to eax 

addl %ebx, (%esp) # load data from stack, add to ebx 

movl %esi, (%ebp) # load esi from memory 

subl %ecx, 5      # sub 5 from ecx 

x86 code: 

ld %r30, [%esp]        # load from stack into temp 

add.c %eax, %eax, %r30 # add to %eax,set cond.codes 

ld %r31, [%esp] 

add.c %ebx, %ebx, %r31 

ld %esi, [%ebp] 

sub.c %ecx, %ecx, 5 

first step, translate into RISC ops: 
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Compiler Optimizations 
ld %r30, [%esp]        # load from stack into temp 

add.c %eax, %eax, %r30 # add to %eax,set cond.codes 

ld %r31, [%esp] 

add.c %ebx, %ebx, %r31 

ld %esi, [%ebp] 

sub.c %ecx, %ecx, 5 

RISC ops: 

ld %r30, [%esp]        # load from stack only once 

add %eax, %eax, %r30 

add %ebx, %ebx, %r30   # reuse data loaded earlier 

ld %esi, [%ebp] 

sub.c %ecx, %ecx, 5    # only this cond. code needed 

Optimize: 
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Scheduling 

ld %r30, [%esp]        # load from stack only once 

add %eax, %eax, %r30 

add %ebx, %ebx, %r30   # reuse data loaded earlier 

ld %esi, [%ebp] 

sub.c %ecx, %ecx, 5    # only this cond. code needed 

Optimized RISC ops: 

ld %r30, [%esp]; sub.c %ecx, %ecx, 5 

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30 

Schedule into VLIW code: 
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Translation Overhead 
•  Highly optimizing compiler takes considerable time to 

run, adds run-time overhead 
•  Only worth doing for frequently executed code 
•  Translation adds instrumentation into translations that 

counts how often code executed, and which way 
branches usually go 

•  As count for a block increases, higher optimization 
levels are invoked on that code 
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Exceptions 

ld %r30, [%esp]; sub.c %ecx, %ecx, 5 

ld %esi, [%ebp]; add %eax, %eax, %r30; add %ebx, %ebx, %r30 

Scheduled VLIW code: 

addl %eax, (%esp) # load data from stack, add to eax 

addl %ebx, (%esp) # load data from stack, add to ebx 

movl %esi, (%ebp) # load esi from memory 

subl %ecx, 5      # sub 5 from ecx 

Original x86 code: 

•  x86 instructions executed out-of-order with respect to 
original program flow 
•  Need to restore state for precise traps 
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Shadow Registers and Store Buffer 
•  All registers have working copy and shadow copy 
•  Stores held in software controlled store buffer, loads 

can snoop 
•  At end of translation block, commit changes by 

copying values from working regs to shadow regs, 
and by releasing stores in store buffer 

•  On exception, re-execute x86 code using interpreter 
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Handling Self-Modifying Code 

•  When a translation is made, mark the associated x86 
code page as being translated in page table 

•  Store to translated code page causes trap, and 
associated translations are invalidated 
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System VMs: Supporting Multiple 
OSs on Same Hardware 

•  Can virtualize the environment that an operating system 
sees, an OS-level VM, or system VM 

•  Hypervisor layer implements sharing of real hardware 
resources by multiple OS VMs that each think they have a 
complete copy of the machine 

–  Popular in early days to allow mainframe to be shared by multiple groups 
developing OS code 

–  Used in modern mainframes to allow multiple versions of OS to be 
running simultaneously  OS upgrades with no downtime! 

–  Example for PCs: VMware allows Windows OS to run on top of Linux (or 
vice-versa) 

•  Requires trap on access to privileged hardware state  
–  easier if OS interface to hardware well defined 
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Introduction to System Virtual 
Machines 

•  VMs developed in late 1960s 
– Remained important in mainframe computing over the years 
–  Largely ignored in single user computers of 1980s and 1990s 

•  Recently regained popularity due to 
–  increasing importance of isolation and security in modern systems,  
–  failures in security and reliability of standard operating systems,  
–  sharing of a single computer among many unrelated users, 
–  and the dramatic increases in raw speed of processors, which 

makes the overhead of VMs more acceptable 
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Virtual Machine Monitors (VMMs) 
•  Virtual machine monitor (VMM) or hypervisor is 

software that supports VMs 
•  VMM determines how to map virtual resources to 

physical resources 
•  Physical resource may be time-shared, partitioned, or 

emulated in software  
•  VMM is much smaller than a traditional OS;  

–  isolation portion of a VMM is ≈ 10,000 lines of code 
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VMM Overhead? 
•  Depends on the workload 
•  User-level processor-bound programs (e.g., SPEC) 

have zero-virtualization overhead  
–  Runs at native speeds since OS rarely invoked 

•  I/O-intensive workloads that are OS-intensive 
execute many system calls and privileged 
instructions, can result in high virtualization overhead  

–  For System VMs, goal of architecture and VMM is to run almost all 
instructions directly on native hardware 

•  If I/O-intensive workload is also I/O-bound, low 
processor utilization since waiting for I/O 

–  processor virtualization can be hidden, so low virtualization 
overhead 
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Other Uses of VMs 
1.  Managing Software 

–  VMs provide an abstraction that can run the complete SW stack, 
even including old OSes like DOS 

–  Typical deployment: some VMs running legacy OSes, many 
running current stable OS release, few testing next OS release 

2.  Managing Hardware 
–  VMs allow separate SW stacks to run independently yet share HW, 

thereby consolidating number of servers 
»  Some run each application with compatible version of OS on 

separate computers, as separation helps dependability 
–  Migrate running VM to a different computer  

»  Either to balance load or to evacuate from failing HW 
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Requirements of a Virtual Machine 
Monitor 

•  A VM Monitor  
–  Presents a SW interface to guest software,  
–  Isolates state of guests from each other, and  
–  Protects itself from guest software (including guest OSes) 

•  Guest software should behave on a VM exactly as if running 
on the native HW  

–  Except for performance-related behavior or limitations of fixed resources 
shared by multiple VMs 

•  Guest software should not be able to change allocation of 
real system resources directly 

•  Hence, VMM must control ≈ everything even though guest 
VM and OS currently running is temporarily using them 

–  Access to privileged state, Address translation, I/O, Exceptions and 
Interrupts, … 
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Requirements of a Virtual Machine 
Monitor 

•  VMM must be at higher privilege level than guest VM, 
which generally run in user mode  
⇒  Execution of privileged instructions handled by VMM 

•  E.g., Timer interrupt: VMM suspends currently running 
guest VM, saves its state, handles interrupt, determine 
which guest VM to run next, and then load its state  
–  Guest VMs that rely on timer interrupt provided with virtual timer and an 

emulated timer interrupt by VMM 

•  Requirements of system virtual machines are  
same as paged-virtual memory:  

1.  At least 2 processor modes, system and user 
2.  Privileged subset of instructions available only in system 

mode, trap if executed in user mode 
–  All system resources controllable only via these instructions 
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ISA Support for Virtual Machines 
•  If VMs are planned for during design of ISA, easy to 

reduce instructions that must be executed by a VMM 
and how long it takes to emulate them 

–  Since VMs have been considered for desktop/PC server apps only 
recently, most ISAs were created without virtualization in mind, 
including 80x86 and most RISC architectures 

•  VMM must ensure that guest system only interacts 
with virtual resources ⇒ conventional guest OS runs 
as user mode program on top of VMM 

–  If guest OS attempts to access or modify information related to HW 
resources via a privileged instruction--for example, reading or writing 
the page table pointer--it will trap to the VMM 

•  If not, VMM must intercept instruction and support a 
virtual version of the sensitive information as the guest 
OS expects (examples soon) 
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Impact of VMs on Virtual Memory 
•  Virtualization of virtual memory if each guest OS in every 

VM manages its own set of page tables? 
•  VMM separates real and physical memory  

–  Makes real memory a separate, intermediate level between virtual 
memory and physical memory 

–  Some use the terms virtual memory, physical memory, and machine 
memory to name the 3 levels 

–  Guest OS maps virtual memory to real memory via its page tables, and 
VMM page tables map real memory to physical memory 

•  VMM maintains a shadow page table that maps directly 
from the guest virtual address space to the physical 
address space of HW 

–  Rather than pay extra level of indirection on every memory access 
–  VMM must trap any attempt by guest OS to change its page table or to 

access the page table pointer 
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ISA Support for VMs & Virtual 
Memory 
•  IBM 370 architecture added additional level of 

indirection that is managed by the VMM  
–  Guest OS keeps its page tables as before, so the shadow pages 

are unnecessary 

•  To virtualize software TLB, VMM manages the real 
TLB and has a copy of the contents of the TLB of 
each guest VM 

–  Any instruction that accesses the TLB must trap 
–  TLBs with Process ID tags support a mix of entries from different 

VMs and the VMM, thereby avoiding flushing of the TLB on a VM 
switch 

•  Recent processor designs have added similar 
mechanisms to accelerate VMMs 
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Impact of Virtualization on I/O 
•  Most difficult part of virtualization 

–  Increasing number of I/O devices attached to the computer  
–  Increasing diversity of I/O device types 
–  Sharing of a real device among multiple VMs, 
–  Supporting the myriad of device drivers that are required, especially 

if different guest OSes are supported on the same VM system 

•  Give each VM generic versions of each type of I/O 
device driver, and let VMM handle real I/O 

•  Method for mapping virtual to physical I/O device 
depends on the type of device: 
–  Disks partitioned by VMM to create virtual disks for guest VMs 
–  Network interfaces shared between VMs in short time slices, and 

VMM tracks messages for virtual network addresses to ensure that 
guest VMs only receive their messages 
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