
C 1

CSE 490/590, Spring 2011

CSE 490/590 Computer Architecture

VLIW

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 490/590, Spring 2011 2

Last time…
•  BTB allows prediction very early in pipeline
•  In practice, use BHT and BTB together
•  Speculative store buffer holds store values before

commit to allow load-store forwarding
•  Can execute later loads past earlier stores when

addresses known, or predicted no dependence

CSE 490/590, Spring 2011 3

Fetch Decode &
Rename Reorder Buffer PC

Branch
Prediction

Update predictors

Commit

Datapath: Branch Prediction
and Speculative Execution

Branch
Resolution

Branch
Unit ALU

Reg. File

MEM Store
Buffer D$

Execute

kill
kill

kill kill

CSE 490/590, Spring 2011 4

Superscalar Control Logic Scaling

•  Each issued instruction must somehow check against W*L
instructions, i.e., growth in hardware ∝ W*(W*L)

•  For in-order machines, L is related to pipeline latencies and check is
done during issue (interlocks or scoreboard)

•  For out-of-order machines, L also includes time spent in instruction
buffers (instruction window or ROB), and check is done by
broadcasting tags to waiting instructions at write back (completion)

•  As W increases, larger instruction window is needed to find enough
parallelism to keep machine busy => greater L

=> Out-of-order control logic grows faster than W2 (~W3)

Lifetime L

Issue Group

Previously
Issued
Instructions

Issue Width W

CSE 490/590, Spring 2011 5

Out-of-Order Control Complexity:
MIPS R10000

Control
Logic

[SGI/MIPS
Technologies
Inc., 1995]

CSE 490/590, Spring 2011 6

Check instruction
dependencies

Superscalar processor

Sequential ISA Bottleneck

a = foo(b);

for (i=0, i<

Sequential
source code

Superscalar compiler

Find independent
operations

Schedule
operations

Sequential
machine code

Schedule
execution

C 2

CSE 490/590, Spring 2011 7

VLIW: Very Long Instruction Word

•  Multiple operations packed into one instruction
•  Each operation slot is for a fixed function
•  Constant operation latencies are specified
•  Architecture requires guarantee of:

–  Parallelism within an instruction => no cross-operation RAW check
– No data use before data ready => no data interlocks

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

CSE 490/590, Spring 2011

VLIW Compiler Responsibilities

•  Schedules to maximize parallel
execution

• Guarantees intra-instruction parallelism

•  Schedules to avoid data hazards (no
interlocks)
– Typically separates operations with explicit NOPs

8

CSE 490/590, Spring 2011 9

Early VLIW Machines
•  FPS AP120B (1976)

–  scientific attached array processor
–  first commercial wide instruction machine
–  hand-coded vector math libraries using software pipelining and

loop unrolling

•  Multiflow Trace (1987)
–  commercialization of ideas from Fisher’s Yale group including

“trace scheduling”
–  available in configurations with 7, 14, or 28 operations/instruction
–  28 operations packed into a 1024-bit instruction word

•  Cydrome Cydra-5 (1987)
–  7 operations encoded in 256-bit instruction word
–  rotating register file

CSE 490/590, Spring 2011 10

CSE 490/590 Administrivia
•  HW2 is out
•  Midterm solution will be up today
•  Quiz 2 (next Friday 4/8)

CSE 490/590, Spring 2011 11

Loop Execution

for (i=0; i<N; i++)

 B[i] = A[i] + C;
Int1 Int 2 M1 M2 FP+ FPx

loop:

How many FP ops/cycle?

ld add r1

fadd

sd add r2 bne

1 fadd / 8 cycles = 0.125

loop: ld f1, 0(r1)

 add r1, 8

 fadd f2, f0, f1

 sd f2, 0(r2)

 add r2, 8

 bne r1, r3, loop

Compile

Schedule

CSE 490/590, Spring 2011 12

Loop Unrolling
for (i=0; i<N; i++)

 B[i] = A[i] + C;

for (i=0; i<N; i+=4)

{

 B[i] = A[i] + C;

 B[i+1] = A[i+1] + C;

 B[i+2] = A[i+2] + C;

 B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

C 3

CSE 490/590, Spring 2011 13

Scheduling Loop Unrolled Code

loop: ld f1, 0(r1)
 ld f2, 8(r1)
 ld f3, 16(r1)
 ld f4, 24(r1)
 add r1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 sd f5, 0(r2)
 sd f6, 8(r2)
 sd f7, 16(r2)
 sd f8, 24(r2)
add r2, 32
 bne r1, r3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

ld f1
ld f2
ld f3
ld f4 add r1 fadd f5

fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8 add r2 bne

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

CSE 490/590, Spring 2011 14

Software Pipelining

loop: ld f1, 0(r1)
 ld f2, 8(r1)
 ld f3, 16(r1)
 ld f4, 24(r1)
 add r1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 sd f5, 0(r2)
 sd f6, 8(r2)
 sd f7, 16(r2)
 add r2, 32
 sd f8, -8(r2)
 bne r1, r3, loop

Int1 Int 2 M1 M2 FP+ FPx Unroll 4 ways first
ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8

add r1

add r2
bne

ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8

add r1

add r2
bne

ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5

add r1

loop:
iterate

prolog

epilog

How many FLOPS/cycle?
4 fadds / 4 cycles = 1

CSE 490/590, Spring 2011 15

Software Pipelining vs.
Loop Unrolling

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

CSE 490/590, Spring 2011 16

What if there are no loops?

•  Branches limit basic block size in
control-flow intensive irregular
code

•  Difficult to find ILP in individual
basic blocks

Basic block

CSE 490/590, Spring 2011 17

Trace Scheduling [Fisher,Ellis]

•  Pick string of basic blocks, a trace, that
represents most frequent branch path

•  Use profiling feedback or compiler heuristics
to find common branch paths

•  Schedule whole “trace” at once
•  Add fixup code to cope with branches

jumping out of trace

CSE 490/590, Spring 2011 18

Problems with “Classic” VLIW

•  Object-code compatibility
–  have to recompile all code for every machine, even for two machines in

same generation

•  Object code size
–  instruction padding wastes instruction memory/cache
–  loop unrolling/software pipelining replicates code

•  Scheduling variable latency memory operations
–  caches and/or memory bank conflicts impose statically unpredictable

variability

•  Knowing branch probabilities
–  Profiling requires an significant extra step in build process

•  Scheduling for statically unpredictable branches
–  optimal schedule varies with branch path

C 4

CSE 490/590, Spring 2011 19

VLIW Instruction Encoding

•  Schemes to reduce effect of unused fields
– Compressed format in memory, expand on I-cache refill

»  used in Multiflow Trace
»  introduces instruction addressing challenge

– Mark parallel groups
»  used in TMS320C6x DSPs, Intel IA-64

–  Provide a single-op VLIW instruction
»  Cydra-5 UniOp instructions

Group 1 Group 2 Group 3

CSE 490/590, Spring 2011 20

Acknowledgements
•  These slides heavily contain material developed and

copyright by
–  Krste Asanovic (MIT/UCB)
–  David Patterson (UCB)

•  And also by:
–  Arvind (MIT)
–  Joel Emer (Intel/MIT)
–  James Hoe (CMU)
–  John Kubiatowicz (UCB)

•  MIT material derived from course 6.823
•  UCB material derived from course CS252

