
Week 5

I/O on the BASYS 2 Board

• Power Supply
– Switch Selectable (SW8)

– Options
• USB

• External (3.5VDC - 5.5VDC

Power Supply)

• Pushbuttons• Pushbuttons
– Four Pushbuttons

– Normally low

– Driven high when button is pressed

– Short Circuit Protection Provided
• Connecting FPGA pin as output could result in short circuit

• Remedied with resistor

– Refer to page 4 of BASYS 2 Reference Manual

• Slider Switches

– Eight Slider Switches

• Constant high or low signal

• Short Circuit Protection Provided

– Connecting FPGA pin as output could result in short circuit

– Remedied with resistor– Remedied with resistor

• Refer to page 4 of BASYS 2 Reference Manual

• LEDs

– Eight LEDs

– Anodes driven from FPGA

• Logic 1 illuminates LED

– Cathodes connected to ground via resistor

– Refer to page 4 of BASYS 2 Reference Manual

• Seven-Segment Displays
– Four Seven-Segment Displays

– Common Anode

– Enabling Digits
• AN0…AN3

• Active Low

• When enabled, cathodes (CA, CB, …,
CF, CG, DP) can be driven

• Low signal illuminates segment• Low signal illuminates segment

– Illuminating multiple digits with
different values

• All digits can APPEAR continuously
illuminated if driven once every 1 to
16 ms (1 KHz to 60 Hz)

– Refer to pages 4-5 of BASYS 2
Reference Manual

• Oscillators

– Primary Oscillator

• User selectable (soldering required)

– 25, 50, or 100 MHz

– Refer to page 3 of BASYS Reference Manual– Refer to page 3 of BASYS Reference Manual

• CLK1

• Pin B8 of FPGA

– Secondary Oscillator

• Socket provided

• CLK2

• PS/2 &VGA Port

– PS/2 & VGA Ports Available

To display Number “1” on First

Segment , then we need to have:

- AN1 to be activated which

means “0” (active low)

- CB, CC are activated which

means “0” and every other pins

to be inactivated which means

“1”

Basys2 I/O circuits

Managing a Large Project
• Managing a Large Project

– Tasks

– Functions

– Modules

• Tasks
– Can enable other tasks & functions

– May execute in non-zero simulation time

– May contain delay, event, or timing control statements– May contain delay, event, or timing control statements

– May have zero or more arguments
• Type

– Input

– Output

– Inout

– Can pass values, but do NOT return a value

– Syntax
• Definition

task Task_Name;

input, Output, & Local Variable List

begin

body

end

endtask

• Call
Task_Name(Argument_List);

• Functions
– Can enable another function

• Not a task

– Execute in zero simulation time

– Can NOT contain
• A delay event

• Timing control statements

– Must have at least one input argument

– Always return a single value
• Output & InOut arguments NOT allowed• Output & InOut arguments NOT allowed

– Syntax
• Definition

function Function_Name; // Note name may represent a vector

Input & Local Variable List

begin

Body - Note the output must be assigned a value

end

endfunction

• Call

Function_Name(Argument_List);

Tasks & Functions

• Local to the module

• They can contain
• Local variables

• Registers

• Time Variables

• Integers• Integers

• Reals

• Events

• Cannot contain

– Wires

– Always Blocks

– Initial Blocks
• Behavioral only!

Modules

• Instantiating modules can help make code

easier to write, modify, read, and debug

Strobe Example

• Description
– The number ‘12’ is displayed on the middle two digits of the 7-

segment display

– LED blinks at the frequency used to strobe the 7-segment display

– Reset
• Switch 0

• When low, the 7-segment display is disabled• When low, the 7-segment display is disabled

• When high, ‘12’ is displayed on the 7-segment display

– Pin Assignments
• Reset (P11)

• Clock (B8)

• LD0 (M5)

• Anodes 1…4 (F12, J12,M13, K14)

• Seg A…G (L14, H12, N14, N11, P12, L13, M12)

• In this example we are going to download

Nonvolatile Designs to the FPGA PROM on the

BASYS 2 BoardBASYS 2 Board

• If you are going to Print your design on PROM

you don’t need to change the clock to JTAG

- Open the ISE project Navigator

- Type the project name

- Select these options then click next

- click finish

- Select Project �new source

- Select Verilog module and write the file name, then click next

- click next

- Click Finish

- The file will be created and it will look like as below

- Add your code

module SevenSegModule(led, clk, Seg, anodes, rst);

input clk, rst;

output [6:0] Seg;

output led;

output [3:0] anodes;

reg [6:0] Seg;

reg [3:0] anodes;

reg [3:0] dig;

reg led;

reg slow_clock;

integer count;

always @(posedge clk)always @(posedge clk)

create_slow_clock(clk, slow_clock);

always @(posedge slow_clock)

begin

led=~led;

if (rst == 0) anodes=4'b 1111;

else

begin

case (anodes)

4'b 1101: anodes=4'b 1011;

4'b 1011: anodes=4'b 1101;

4'b 1111: anodes=4'b 1011;

default: anodes=1111;

endcase

case (anodes)

4'b 1011: dig=1;

4'b 1101: dig=2;

endcase

case (dig)

1: Seg = 7'b 1111001;

2: Seg = 7'b 0100100;

endcase

end

end

task create_slow_clock;

input clock;

inout slow_clock;

integer count;

begin

if (count > 250000)

begin

count=0;

slow_clock = ~slow_clock;

end

count = count+1;

end

endtask

endmodule

-To implement the code on the fpga board go to implementation mode

-- Select circuit.v file and select I/O planning (Planhead-Presynthesis) to open

Planahead application to assign the fpga I/O ports to the code I/O

- Click yes to create UCF file and open Planahead application

-Planahead Application after its opened

-Select I/O ports, drag and drop each of them to Pin in the Package figure, refer

to http://www.digilentinc.com/Data/Products/BASYS2/Basys2_rm.pdf to find

the pin definition

-- Click save design and exit

Create the .bit file, Double click on Generate Programming File in the Processes

Window

Make sure that every thing is compiling and building

Open iMPACT application from Xillinx ISE Deisgn Suite 12.4 tools

Create New Project

In the Welcome to iMPACT popup window, select Prepare a PROM File and click on

OK

- Select Xilinx Flash/PROM

- Click on the green arrow

-Select Platform Flash under PROM Family

-Select xcf02s under Device

-Click on Add Storage Device

-Click on the green arrow

-Checksum Fill Value should be FF

-Enter a filename & location

-Select MCS under File Format

-Select No under Add Data Files

An Add Device window will appear indicated that Xilinx will start adding the device

file to data stream 0, click ok

A popup window will appear Select your design (bit file) click Open

You’ll be asked, “Would you like to add another design file to Data Stream:0?”, click

NO

You’ll be informed that you’ve completed the device file entry, click OK

In the Processes window, double click on Generate File

If all goes well, a blue success message will be displayed

- Open Adept2.1 (Downloaded from Digilent’s Website)

-Click on the Config tab

-Select the .mcs file for the PROM (XCF02S) by clicking on the Browse button

- Click Program

-Wait until the Program successfully loaded

-Turn the board on and off , then run the program

• A 0, 1, 2, or 3 is displayed on the seven-segment display,

depending upon whether button #0, #1, #2, or #3 is

pressed

Example 2:

pressed

• Enable

- Switch #0

module ckt(btn, clk, a, b, c, d, e, f, g, an, rst);

input [3:0] btn;

input clk, rst;

output a, b, c, d, e, f, g;

output [3:0] an;

reg a, b, c, d, e, f, g;

reg [2:0] cstate, nstate;

reg [3:0] an;

always @(posedge clk or negedge rst)

begin

if (~rst) cstate<=7;

else cstate<=nstate;

an=14;an=14;

end

always @(btn or cstate)

case (btn)

4'b1000: nstate=3; // Button 3 pressed

4'b0100: nstate=2; // Button 2 pressed

4'b0010: nstate=1; // Button 1 pressed

4'b0001: nstate=0; // Button 0 pressed

4'b0000: nstate=cstate; // No button pressed

default: nstate=7; // No button pressed yet or

multiple

// buttons pressed

endcase

always @(posedge clk)

case (cstate)

3: begin // Button 3 pressed

a=0; b=0; c=0; d=0; e=1; f=1; g=0;

end

2: begin // Button 2 pressed

a=0; b=0; c=1; d=0; e=0; f=1; g=0;

end

1: begin // Button 1 pressed

a=1; b=0; c=0; d=1; e=1; f=1; g=1;

endend

0: begin // Button 0 pressed

a=0; b=0; c=0; d=0; e=0; f=0; g=1;

end

7: begin // No button pressed yet or multiple

buttons pressed

a=1; b=1; c=1; d=1; e=1; f=1; g=1;

end

endcase

endmodule

References

• Michael D. Ciletti, Advanced Digital Design with the Verilog HDL, Pearson
Education, Inc.

• (Prentice Hall), 2003

• Donald E. Thomas and Philip R. Moorby, The Verilog Hardware Description
Language,

• Kluwer Academic Publishers, 1998

• Samir Palnitkar, Verilog HDL A Guide to Digital Design and Synthesis, • Samir Palnitkar, Verilog HDL A Guide to Digital Design and Synthesis,
Prentice Hall, Inc., 4th

• Edition, 1996

• David R. Smith and Paul D. Franzon, Verilog Styles of Digital Systems,
Prentice Hall, Inc.,

• 2000

• Digilent Basys 2 Board Reference Manual, Digilent, Inc., May 25, 2009

• Digilent BASYS 2 System Board Schematics, Digilent, Inc., December 12,
2008

