MapReduce and Beyond

Steve Ko

Trivia Quiz: What's Common?

Data-intensive computing with MapReduce!

What is MapReduce?

- A system for processing large amounts of data
- Introduced by Google in 2004
- Inspired by map & reduce in Lisp
- OpenSource implementation: Hadoop by Yahoo!
- Used by many, many companies
 - A9.com, AOL, Facebook, The New York Times,
 Last.fm, Baidu.com, Joost, Veoh, etc.

Background: Map & Reduce in Lisp

- Sum of squares of a list (in Lisp)
- (map square '(1 2 3 4))
 - Output: (1 4 9 16)

[processes each record individually]

Background: Map & Reduce in Lisp

- Sum of squares of a list (in Lisp)
- (reduce + '(1 4 9 16))
 - (+ 16 (+ 9 (+ 4 1)))
 - Output: 30

[processes set of all records in a batch]

Background: Map & Reduce in Lisp

- Map
 - processes each record individually
- Reduce
 - processes (combines) set of all records in a batch

What Google People Have Noticed

- Keyword search
- Map Find a keyword in each web page individually, and if it is found, return the URL of the web page
- Reduce Combine all results (URLs) and return it
 - Count of the # of occurrences of each word
- Map Count the # of occurrences in each web page individually, and return the list of <word, #>
- Reduce For each word, sum up (combine) the count
 - Notice the similarities?

What Google People Have Noticed

- Lots of storage + compute cycles nearby
- Opportunity
 - Files are distributed already! (GFS)
 - A machine can processes its own web pages (map)

Google MapReduce

- Took the concept from Lisp, and applied to large-scale dataprocessing
- Takes two functions from a programmer (map and reduce), and performs three steps
- Map
 - Runs map for each file individually in parallel
- Shuffle
 - Collects the output from all map executions
 - Transforms the map output into the reduce input
 - Divides the map output into chunks
- Reduce
 - Runs reduce (using a map output chunk as the input) in parallel

Programmer's Point of View

- Programmer writes two functions map() and reduce()
- The programming interface is fixed
 - map (in_key, in_value) ->
 list of (out_key, intermediate_value)
 - reduce (out_key, list of intermediate_value) -> (out_key, out_value)
- Caution: not exactly the same as Lisp

Inverted Indexing Example

Word -> list of web pages containing the word

Input: web pages Output: word-> urls

Map

- Interface
 - Input: <in_key, in_value> pair => <url, content>
 - Output: list of intermediate <key, value> pairs

Shuffle

- MapReduce system
 - Collects outputs from all map executions
 - Groups all intermediate values by the same key

Map Output: list of <word, url>

Reduce Input: <word, list of urls>

Reduce

- Interface
 - Input: <out_key, list of intermediate_value>
 - Output: <out_key, out_value>

Reduce Input: <word, list of urls>

Reduce Output: <word, string of urls>

Execution Overview

Implementing MapReduce

- Externally for user
 - Write a map function, and a reduce function
 - Submit a job; wait for result
 - No need to know anything about the environment (Google: 4000 servers + 48000 disks, many failures)
- Internally for MapReduce system designer
 - Run map in parallel
 - Shuffle: combine map results to produce reduce input
 - Run reduce in parallel
 - Deal with failures

Execution Overview

Task Assignment

Fault-tolerance: re-execution

Machines share roles

- So far, logical view of cluster
- In reality
 - Each cluster machine stores data
 - And runs MapReduce workers
- Lots of storage + compute cycles nearby

MapReduce Summary

- Programming paradigm for data-intensive computing
- Simple to program (for programmers)
- Distributed & parallel execution model
- The framework automates many tedious tasks (machine selection, failure handling, etc.)

Hadoop Demo

Beyond MapReduce

- As a programming model
 - Limited: only Map and Reduce
 - Improvements: Pig, Dryad, Hive, Sawzall, Map-Reduce-Merge, etc.
- As a runtime system
 - Better scheduling (e.g., LATE scheduler)
 - Better fault handling (e.g., ISS)
 - Pipelining (e.g., HOP)
 - Etc.

Making Cloud Intermediate Data Fault-Tolerant

Steve Ko* (Princeton University),
Imranul Hoque (UIUC),
Brian Cho (UIUC),
and Indranil Gupta (UIUC)

* work done at UIUC

 Intermediate data as a first-class citizen for dataflow programming frameworks in clouds

- Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 - Dataflow programming frameworks

- Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 - Dataflow programming frameworks
 - The importance of intermediate data

- Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 - Dataflow programming frameworks
 - The importance of intermediate data
 - ISS (Intermediate Storage System)
 - Not to be confused with,
 International Space Station
 IBM Internet Security Systems

Dataflow Programming Frameworks

- Runtime systems that execute dataflow programs
 - MapReduce (Hadoop), Pig, Hive, etc.
 - Gaining popularity for massive-scale data processing
 - Distributed and parallel execution on clusters
- A dataflow program consists of
 - Multi-stage computation
 - Communication patterns between stages

Example 1: MapReduce

- Two-stage computation with all-to-all comm.
 - Google introduced, Yahoo! open-sourced (Hadoop)
 - Two functions Map and Reduce supplied by a programmer

Example 2: Pig and Hive

Multi-stage with either all-to-all or 1-to-1

Usage

- Google (MapReduce)
 - Indexing: a chain of 24 MapReduce jobs
 - ~200K jobs processing 50PB/month (in 2006)
- Yahoo! (Hadoop + Pig)
 - WebMap: a chain of 100 MapReduce jobs
- Facebook (Hadoop + Hive)
 - ~300TB total, adding 2TB/day (in 2008)
 - 3K jobs processing 55TB/day
- Amazon
 - Elastic MapReduce service (pay-as-you-go)
- Academic clouds
 - Google-IBM Cluster at UW (Hadoop service)
 - CCT at UIUC (Hadoop & Pig service)

One Common Characteristic

- Intermediate data
 - Intermediate data? data between stages
- Similarities to traditional intermediate data [Bak91, Vog99]
 - E.g., .o files
 - Critical to produce the final output
 - Short-lived, written-once and read-once, & usedimmediately
 - Computational barrier

One Common Characteristic

Computational Barrier

Why Important?

- Large-scale: possibly very large amount of intermediate data
- Barrier: Loss of intermediate data
 => the task can't proceed

Failure Stats

- 5 average worker deaths per MapReduce job (Google in 2006)
- One disk failure in every run of a 6-hour MapReduce job with 4000 machines (Google in 2008)
- 50 machine failures out of 20K machine cluster (Yahoo! in 2009)

Hadoop Failure Injection Experiment

- Emulab setting
 - 20 machines sorting 36GB
 - 4 LANs and a core switch (all 100 Mbps)
- 1 failure after Map
 - Re-execution of Map-Shuffle-Reduce
- ~33% increase in completion time

Re-Generation for Multi-Stage

 Cascaded re-execution: expensive Stage 1: Map Stage 2: Reduce Stage 3: Map Stage 4: Reduce 38

Importance of Intermediate Data

- Why?
 - (Potentially) a lot of data
 - When lost, very costly
- Current systems handle it themselves.
 - Re-generate when lost: can lead to expensive cascaded re-execution
- We believe that the storage can provide a better solution than the dataflow programming frameworks

Our Position

- Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 - ✓ Dataflow programming frameworks
 - √ The importance of intermediate data
 - ISS (Intermediate Storage System)
 - Why storage?
 - Challenges
 - Solution hypotheses
 - Hypotheses validation

Why Storage?

Replication stops cascaded re-execution

So, Are We Done?

- No!
- Challenge: minimal interference
 - Network is heavily utilized during Shuffle.
 - Replication requires network transmission too,
 and needs to replicate a large amount.
 - Minimizing interference is critical for the overall job completion time.
- HDFS (Hadoop Distributed File System): much interference

Default HDFS Interference

Replication of Map and Reduce outputs (2 copies in total)

Background Transport Protocols

- TCP-Nice [Ven02] & TCP-LP [Kuz06]
 - Support background & foreground flows
- Pros
 - Background flows do not interfere with foreground flows (functionality)
- Cons
 - Designed for wide-area Internet
 - Application-agnostic
 - Not a comprehensive solution: not designed for data center replication
- Can do better!

Our Position

- Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
 - ✓ Dataflow programming frameworks
 - ✓ The importance of intermediate data
 - ISS (Intermediate Storage System)
 - √ Why storage?
 - √ Challenges
 - Solution hypotheses
 - Hypotheses validation

Three Hypotheses

- 1. Asynchronous replication can help.
 - HDFS replication works synchronously.
- 2. The replication process can exploit the inherent bandwidth heterogeneity of data centers (next).
- 3. Data selection can help (later).

Bandwidth Heterogeneity

- Data center topology: hierarchical
 - Top-of-the-rack switches (under-utilized)

Data Selection

Only replicate locally-consumed data

Three Hypotheses

- 1. Asynchronous replication can help.
- 2. The replication process can exploit the inherent bandwidth heterogeneity of data centers.
- 3. Data selection can help.

- The question is not if, but how much.
- If effective, these become techniques.

Experimental Setting

- Emulab with 80 machines
 - 4 X 1 LAN with 20 machines
 - 4 X 100Mbps top-of-the-rack switch
 - 1 X 1Gbps core switch
 - Various configurations give similar results.
- Input data: 2GB/machine, random-generation
- Workload: sort
- 5 runs
 - Std. dev. ~ 100 sec.: small compared to the overall completion time
- 2 replicas of Map outputs in total

Asynchronous Replication

- Modification for asynchronous replication
 - With an increasing level of interference
- Four levels of interference
 - Hadoop: original, no replication, no interference
 - Read: disk read, no network transfer, no actual replication
 - Read-Send: disk read & network send, no actual replication
 - Rep.: full replication

Asynchronous Replication

- Network utilization makes the difference
- Both Map & Shuffle get affected
 - Some Maps need to read remotely

Three Hypotheses (Validation)

- ✓ Asynchronous replication can help, but still can't eliminate the interference.
- The replication process can exploit the inherent bandwidth heterogeneity of data centers.
- Data selection can help.

Rack-Level Replication

- Rack-level replication is effective.
 - Only 20~30 rack failures per year, mostly planned (Google 2008)

Three Hypotheses (Validation)

- ✓ Asynchronous replication can help, but still can't eliminate the interference
- ✓ The rack-level replication can reduce the interference significantly.
- Data selection can help.

Locally-Consumed Data Replication

• It significantly reduces the amount of replication.

Three Hypotheses (Validation)

- ✓ Asynchronous replication can help, but still can't eliminate the interference
- ✓ The rack-level replication can reduce the interference significantly.
- ✓ Data selection can reduce the interference significantly.

ISS Design Overview

- Implements asynchronous rack-level selective replication (all three hypotheses)
- Replaces the Shuffle phase
 - MapReduce does not implement Shuffle.
 - Map tasks write intermediate data to ISS, and Reduce tasks read intermediate data from ISS.
- Extends HDFS (next)

ISS Design Overview

- Extends HDFS
 - iss_create()
 - iss_open()
 - iss_write()
 - iss_read()
 - iss_close()
- Map tasks
 - iss_create() => iss_write() => iss_close()
- Reduce tasks
 - iss_open() => iss_read() => iss_close()

5 scenarios

- Hadoop (no rep) with one permanent machine failure
- Hadoop (reduce rep=2) with one permanent machine failure
- ISS (map & reduce rep=2) with one permanent machine failure
- Hadoop (no rep) with one transient failure
- ISS (map & reduce rep=2) with one transient failure

Summary of Results

- Comparison to no failure Hadoop
 - One failure ISS: 18% increase in completion time
 - One failure Hadoop: 59% increase
- One failure Hadoop vs. One failure ISS
 - 45% speedup

Hadoop (rep=1) with one machine failure

Hadoop (rep=2) with one machine failure

ISS with one machine failure

Hadoop (rep=1) with one transient failure

ISS-Hadoop with one transient failure

Replication Completion Time

- Replication completes before Reduce
 - '+' indicates replication time for each block

Summary

- Our position
 - Intermediate data as a first-class citizen for dataflow programming frameworks in clouds
- Problem: cascaded re-execution
- Requirements
 - Intermediate data availability (scale and dynamism)
 - Interference minimization (efficiency)
- Asynchronous replication can help, but still can't eliminate the interference
- The rack-level replication can reduce the interference significantly.
- Data selection can reduce the interference significantly.
- Hadoop & Hadoop + ISS show comparable completion times.

References

- [Vog99] W. Vogels. File System Usage in Windows NT 4.0. In SOSP, 1999.
- [Bak91] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout. Measurements of a Distributed File System. SIGOPS OSR, 25(5), 1991.
- [Ven02] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A Mechanism for Background Transfers. In OSDI, 2002.
- [Kuz06] A. Kuzmanovic and E. W. Knightly. TCP-LP: Low-Priority Service via End-Point Congestion Control. IEEE/ACM TON, 14(4): 739–752, 2006.