MapReduce and Beyond

Trivia Quiz: What’s Common?

oStim yaroOo!

Data-intensive computing
with MapReduce!

€he New York Eimes

facebook

What is MapReduce? 1‘%@

A system for processing large amounts of data
Introduced by Google in 2004
Inspired by map & reduce in Lisp

OpenSource implementation: Hadoop by
Yahoo!

Used by many, many companies

— A9.com, AOL, Facebook, The New York Times,
Last.fm, Baidu.com, Joost, Veoh, etc.

Background: Map & Reduce in Lisp

e Sum of squares of a list (in Lisp)

* (map square (12 3 4))
— Output: (149 16)
[processes each record individually]

yeee

o K

Background: Map & Reduce in Lisp

e Sum of squares of a list (in Lisp)
* (reduce + ‘(149 16))
—(+16(+9(+41)))
— QOutput: 30
[processes set of all records in a batch]

?‘P?

f f V returned
initial H

Background: Map & Reduce in Lisp

* Map
— processes each record individually

e Reduce

— processes (combines) set of all records in a batch

What Google People Have Noticed

* Keyword search

Map

Reduce

Find a keyword in each web page individually, and
if it is found, return the URL of the web page

Combine all results (URLs) and return it

e Count of the # of occurrences of each word

Map

Reduce

Count the # of occurrences in each web page
individually, and return the list of <word, #>

For each word, sum up (combine) the count

e Notice the similarities?

What Google People Have Noticed

* Lots of storage + compute cycles nearby

* Opportunity
— Files are distributed already! (GFS)
— A machine can processes its own web pages (map)

= =

Google MapReduce

Took the concept from Lisp, and applied to large-scale data-
processing

Takes two functions from a programmer (map and reduce),
and performs three steps

Map
— Runs map for each file individually in parallel
Shuffle
— Collects the output from all map executions
— Transforms the map output into the reduce input
— Divides the map output into chunks
Reduce
— Runs reduce (using a map output chunk as the input) in parallel

Programmer’s Point of View

* Programmer writes two functions — map() and
reduce()
 The programming interface is fixed

— map (in_key, in_value) ->
list of (out_key, intermediate_value)

— reduce (out_key, list of intermediate_value) ->
(out_key, out_value)

e Caution: not exactly the same as Lisp

Inverted Indexing Example

 Word -> list of web pages containing the word

every ->
http://m-w.com/...
http://answers.....

its ->
http://itsa.org/....
http://youtube...

N

Input: web pages Output: word-> urls

Interface

Map

1

I

e)p'\;/a’\(é} /'/“\\
PN
V4N

— Input: <in_key, in_value> pair => <url, content>

— Output: list of intermediate <key, value> pairs
=> list of <word, url>

key = http://url0.com
value = “every happy family is
alike.”

key = http://urll.com
value = “every unhappy family
is unhappy in its own way.”

map()

<every, http://url0.com>
<happy, http://url0.com>
<family, http://url0.com>

Map Input: <url, content>

<every, http://urll.com>
<unhappy, http://urll.com>
<family, http://urll.com>

Map Output: list of <word, url>

12

Shuffle J ¢ ;_I

* MapReduce system
— Collects outputs from all map executions

— Groups all intermediate values by the same key

<every, http://url0.com> every -> http://url0.com
<happy, http://url0.com> http://urll.com
. \
<family, http://url0.com>
\ happy -> http://url0.com

<every, http://urll.com>/ unhappy ->

\ N
<unhappy, http://urll.com> http://urll.com
<family, http://urll.com>
v, hitp:// family -> http://url0.com
http://urll.com

Map Output: list of <word, url> Reduce Input: <word, list of urls>
13

* Interface

Reduce l_“

— Input: <out_key, list of intermediate_value>

— Output: <out_key, out_value>

every -> http://url0.com
http://urll.com

<every, “http://url0.com,

happy -> http://url0.com

reduce()

>
http://urll.com”>

.| <happy,

unhappy ->
http://urll.com

“http://url0.com”>

<unhappy,

family -> http://url0.com

“http://urll.com”>

<family, “http://url0.com,

http://urll.com

Reduce Input: <word, list of urls>

http://urll.com”>

Reduce Output: <word, string of urls>

14

Execution Overview

Input

Reduce phase

Implementing MapReduce

e Externally for user
— Write a map function, and a reduce function
— Submit a job; wait for result

— No need to know anything about the environment
(Google: 4000 servers + 48000 disks, many failures)

* Internally for MapReduce system designer
— Run map in parallel
— Shuffle: combine map results to produce reduce input
— Run reduce in parallel
— Deal with failures

Execution Overview

Input files sent to
map tasks

Input Files

>E
.

Map workers

Master

|

)

i

Intermediate keys

partitioned into
reduce tasks

>
~——
E
o
——
E

/

Reduce workers

=l

Output

17

Task Assignment

Master

.
.
.
.
.

:
:

:

:
:
:
.

Worker pull

1. Worker signals idle
2. Master assigns task
3. Task retrieves data

4. Task executes

5
B
B
4
4
5
5
5
.
K
o
o
* L
.
.
.
}|/ E <“

N

N
Input Splits

Reduce workers

Map workers

18

Fault-tolerance: re-execution

Master

N

Re-execute on failure

o
R
.
.
.
.
.
.
o
.
. o
. Q
.
.
.
.
.
.
.
.
.
.
o
.

\

N

N
Input Splits

Reduce workers

Map workers

19

Machines share roles

Master

L

e So far, logical view of cluster

* |n reality

— Each cluster machine
stores data

— And runs MapReduce workers

e Lots of storage + compute
cycles nearby

il

20

MapReduce Summary

Programming paradigm for data-intensive
computing

Simple to program (for programmers)
Distributed & parallel execution model

The framework automates many tedious tasks
(machine selection, failure handling, etc.)

Hadoop Demo

Beyond MapReduce

* As a programming model
— Limited: only Map and Reduce

— Improvements: Pig, Dryad, Hive, Sawzall, Map-
Reduce-Merge, etc.

* As aruntime system
— Better scheduling (e.g., LATE scheduler)
— Better fault handling (e.g., ISS)
— Pipelining (e.g., HOP)
— Etc.

Making Cloud Intermediate
Data Fault-Tolerant

Steve Ko* (Princeton University),
Imranul Hoque (UIUC),
Brian Cho (UIUC),
and Indranil Gupta (UIUC)

* work done at UIUC

Our Position

* Intermediate data as a first-class citizen for
dataflow programming frameworks in clouds

Our Position

* |Intermediate data as a first-class citizen for
dataflow programming frameworks in clouds

— Dataflow programming frameworks

Our Position

* Intermediate data as a first-class citizen for
dataflow programming frameworks in clouds

— Dataflow programming frameworks
— The importance of intermediate data

27

Our Position

* |Intermediate data as a first-class citizen for
dataflow programming frameworks in clouds
— Dataflow programming frameworks
— The importance of intermediate data
— ISS (Intermediate Storage System)

* Not to be confused with,
International Space Station
IBM Internet Security Systems

28

Dataflow Programming Frameworks

* Runtime systems that execute dataflow
programs

— MapReduce (Hadoop), Pig, Hive, etc.

— Gaining popularity for massive-scale data
processing

— Distributed and parallel execution on clusters
* A dataflow program consists of

— Multi-stage computation

— Communication patterns between stages

Example 1: MapReduce

 Two-stage computation with all-to-all comm.

— Google introduced, Yahoo! open-sourced (Hadoop)

— Two functions — Map and Reduce — supplied by a
programmer

— Massively parallel execution of Map and Reduce

Stage 1: Map

Shuffle (all-to-all)

Stage 2: Reduce

\/ \/ \/

30

Example 2: Pig and Hive

* Multi-stage with eit

ner al

-o-al

or 1-to-1

Stage 1: Map

Shuffle (all-to-all)

Stage 2: Reduce

1-to-1 comm.

Stage 3: Map

Stage 4: Reduce

31

Usage

Google (MapReduce)

— Indexing: a chain of 24 MapReduce jobs

— ~200K jobs processing 50PB/month (in 2006)
Yahoo! (Hadoop + Pig)

— WebMap: a chain of 100 MapReduce jobs
Facebook (Hadoop + Hive)

— ~300TB total, adding 2TB/day (in 2008)

— 3K jobs processing 55TB/day
Amazon

— Elastic MapReduce service (pay-as-you-go)
Academic clouds

— Google-IBM Cluster at UW (Hadoop service)

— CCT at UIUC (Hadoop & Pig service)

One Common Characteristic

* Intermediate data
— Intermediate data? data between stages

e Similarities to traditional intermediate data
[Bak91, Vog99]
— E.g., .o files
— Critical to produce the final output

— Short-lived, written-once and read-once, & used-
immediately

— Computational barrier

One Common Characteristic
 Computational Barrier

Computational Barrier

Stage 2: Reduce ? ? ?

Why Important?

* Large-scale: possibly very large amount of
intermediate data

 Barrier: Loss of intermediate data
=> the task can’t proceed

Stage 1: Map

Stage 2: Reduce

35

Failure Stats

* 5 average worker deaths per MapReduce job
(Google in 2006)

* One disk failure in every run of a 6-hour
MapReduce job with 4000 machines (Google
in 2008)

* 50 machine failures out of 20K machine
cluster (Yahoo! in 2009)

Hadoop Failure Injection Experiment

 Emulab setting
— 20 machines sorting 36GB
— 4 LANs and a core switch (all 100 Mbps)

e 1 failure after Map
— Re-execution of Map-Shuffle-Reduce

* ~33% increase in completion time
40
35
30
25
20
15
10

of Tasks

37

Re-Generation for Multi-Stage

* Cascaded re-execution: expensive

i

Stage 1: Map

Stage 2: Reduce

AW

Stage 3: Map

Stage 4: Reduce

Importance of Intermediate Data

e Why?
— (Potentially) a lot of data
— When lost, very costly
* Current systems handle it themselves.

— Re-generate when lost: can lead to expensive
cascaded re-execution
 We believe that the storage can provide a
better solution than the dataflow
programming frameworks

39

Our Position

* Intermediate data as a first-class citizen for
dataflow programming frameworks in clouds

v'Dataflow programming frameworks
v'The importance of intermediate data

— ISS (Intermediate Storage System)
* Why storage?
* Challenges
e Solution hypotheses
* Hypotheses validation

Why Storage?

* Replication stops cascaded re-execution

Stage 1: Map

Stage 2: Reduce

-_4
~

Stage 3: Map

Stage 4: Reduce

41

So, Are We Done?

* No!

* Challenge: minimal interference
— Network is heavily utilized during Shuffle.

— Replication requires network transmission too,
and needs to replicate a large amount.

— Minimizing interference is critical for the overall
job completion time.

 HDFS (Hadoop Distributed File System): much
interference

Default HDFS Interference

* Replication of Map and Reduce outputs (2

RS Ny I
X O OI%
\}O&/ X{\O/\GXO«&(O'

copies in total)

4000

Map oo
3500 B Shuffle PR
3000 | Reduce m=

2500
2000 r
1500
1000
500 r

0

Completion Time (sec)

Normal R MR
Replication

Background Transport Protocols

TCP-Nice [Ven02] & TCP-LP [Kuz06]
— Support background & foreground flows

Pros

— Background flows do not interfere with foreground
flows (functionality)

Cons
— Designed for wide-area Internet
— Application-agnostic

— Not a comprehensive solution: not designed for data
center replication

Can do better!

44

Our Position

* Intermediate data as a first-class citizen for
dataflow programming frameworks in clouds
v'Dataflow programming frameworks
v'The importance of intermediate data
— ISS (Intermediate Storage System)
v"Why storage?
v'Challenges

e Solution hypotheses
* Hypotheses validation

Three Hypotheses

1. Asynchronous replication can help.
— HDEFS replication works synchronously.

2. The replication process can exploit the
inherent bandwidth heterogeneity of data
centers (next).

3. Data selection can help (later).

Bandwidth Heterogeneity

* Data center topology: hierarchical
— Top-of-the-rack switches (under-utilized)

Data Selection

* Only replicate locally-consumed data

Stage 1: Map

Stage 2: Reduce

Stage 3: Map

Stage 4: Reduce

48

Three Hypotheses

1. Asynchronous replication can

nelp.

2. The replication process can exploit the
inherent bandwidth heterogeneity of data

centers.

3. Data selection can help.

 The question is not if, but how much.

* |f effective, these become techniques.

Experimental Setting

Emulab with 80 machines

— 4 X 1 LAN with 20 machines

— 4 X 100Mbps top-of-the-rack switch

— 1 X 1Gbps core switch

— Various configurations give similar results.

Input data: 2GB/machine, random-generation
Workload: sort

5 runs

— Std. dev. ~ 100 sec.: small compared to the overall
completion time

2 replicas of Map outputs in total

Asynchronous Replication

* Modification for asynchronous replication
— With an increasing level of interference

* Four levels of interference
— Hadoop: original, no replication, no interference

— Read: disk read, no network transfer, no actual
replication

— Read-Send: disk read & network send, no actual
replication

— Rep.: full replication

Asynchronous Replication

e Network utilization makes the difference

 Both Map & Shuffle get affected
— Some Maps need to read remotely

2200

2000 r
1800 |
1600 r
1400 r
1200 |
1000 r
800 r
600 |
400 |
200 r

0

Completion Time (sec)

Hadoop Read /{ead-Send Rep.
Intexierence Level

Three Hypotheses (Validation)

v Asynchronous replication can help, but still
can’t eliminate the interference.

* The replication process can exploit the

inherent bandwidth heterogeneity of data
centers.

* Data selection can help.

Rack-Level Replication

* Rack-level replication is effective.

— Only 20~30 rack failures per year, mostly planned
(Google 2008)

1499 Map Cooccd
122()() i E;r"Jfflee S SORKORAL04C
1000 | Reduce mmm i

X X X
O RROoS

NSNS EXSRS,

8 O O RSNt F
X X X X

O RS

RIS

600 - CTTTION MO

RS2 oo X RS2

X X X X
P R R]
BRIt

SIOIONS
s R R 0]
4()() B RTINS 7

Completion Time (sec)

Hadoop HDFS Rack-Rep.
Replication Type

Three Hypotheses (Validation)

v Asynchronous replication can help, but still
can’t eliminate the interference

v'The rack-level replication can reduce the
interference significantly.

e Data selection can help.

55

Locally-Consumed Data Replication

* |t significantly reduces the amount of
replication.

- 1400

d 1200 | Map -
2 Shuffle === Y
2 1000 r Reduce wmmmm |
- 800 LS
c

S 600

© !

El 400

€ 200

O 0

Hadoop HDFS Local-Rep.
Replication Type

Three Hypotheses (Validation)

v Asynchronous replication can help, but still
can’t eliminate the interference

v'The rack-level replication can reduce the
interference significantly.

v’ Data selection can reduce the interference
significantly.

57

ISS Design Overview

* Implements asynchronous rack-level selective
replication (all three hypotheses)

* Replaces the Shuffle phase

— MapReduce does not implement Shuffle.

— Map tasks write intermediate data to ISS, and
Reduce tasks read intermediate data from ISS.

* Extends HDFS (next)

ISS Design Overview

* Extends HDFS

— iss_create()

— iss_open()

— iss_write()

— iss_read()

— iss_close()
 Map tasks

— iss_create() => iss_write() => iss_close()
* Reduce tasks

— iss_open() => iss_read() => iss_close()

Performance under Failure

e 5 scenarios

— Hadoop (no rep) with one permanent machine
failure

— Hadoop (reduce rep=2) with one permanent
machine failure

— ISS (map & reduce rep=2) with one permanent
machine failure

— Hadoop (no rep) with one transient failure

— ISS (map & reduce rep=2) with one transient
failure

Summary of Results

 Comparison to no failure Hadoop
— One failure ISS: 18% increase in completion time

— One failure Hadoop: 59% increase

* One failure Hadoop vs. One failure ISS
— 45% speedup

Performance under Failure

 Hadoop (rep=1) with one machine failure

of Tasks

40 i
35 Shufﬂg
30 pronnm s Reduce
10 }
0 | P A — =g |

0 500 1000 15038 2000 2500

Time (sec)

Performance under Failure

 Hadoop (rep=2) with one machine failure

of Tasks

40 VA
35 STIGELD wrvmsnmnan .
30 g em—— . Reduce -
25 . (Y .
15 | p e B -
10 } 1 k_‘ -
0t S, 1 P — b "
500 1000 1500 2000 2500

Time (sec)

Performance under Failure

e |SS with one machine failure

Mép

Shuffle ===s=s=sss== y

Reduce]
g —
7))
©
I_ —
Ha —
H

0 500 1000 1500 2000 2500

Time (sec)

Performance under Failure

 Hadoop (rep=1) with one transient failure

40
35
30
25
20 |
15
10
5 1
0

Mép
Shuffle ====s=sss== y
Reduce]

of Tasks

0 500 1000 wSau 2000 2500
Time (sec)

Performance under Failure

* |SS-Hadoop with one transient failure

40
35
30
25
20
15
10 }
5 :
O ; | -n ! ! !

0 500 =566 1500 2000 2500

Time (sec)

Mép
Shuffle =s===sse==s .
Reduce |

of Tasks

Replication Completion Time

* Replication completes before Reduce
— ‘+’ indicates replication time for each block

T

I I 1200
Map

200
YT 11— 1 1000

2 150 _Reduge 1 800
G e

= 100 g\ v] 000
- At LY 1 400

3

O 200 400/ 600 800 1000 1200

Time (sec)

Rep. Duration (sec)

Summary

Our position

— Intermediate data as a first-class citizen for dataflow programming
frameworks in clouds

Problem: cascaded re-execution
Requirements

— Intermediate data availability (scale and dynamism)
— Interference minimization (efficiency)

Asynchronous replication can help, but still can’t eliminate the
interference

The rack-level replication can reduce the interference significantly.
Data selection can reduce the interference significantly.
Hadoop & Hadoop + ISS show comparable completion times.

References

[Vog99] W. Vogels. File System Usage in Windows NT 4.0. In SOSP,
1999.

[Bak91] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and
J. K. Ousterhout. Measurements of a Distributed File System.
SIGOPS OSR, 25(5), 1991.

[Ven02] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A
Mechanism for Background Transfers. In OSDI, 2002.

[Kuz06] A. Kuzmanovic and E. W. Knightly. TCP-LP: Low-Priority
Service via End-Point Congestion Control. IEEE/ACM TON, 14(4):
739-752, 2006.

