
Mugshot: Deterministic Capture and Replay for JavaScript Applications
James Mickens, Jeremy Elson, and Jon Howell

Microsoft Research
mickens,jelson,jonh@microsoft.com

Abstract
Mugshot is a system that captures every event in an ex-

ecuting JavaScript program, allowing developers to de-
terministically replay past executions of web applica-
tions. Replay is useful for a variety of reasons: failure
analysis using debugging tools, performance evaluation,
and even usability analysis of a GUI. Because Mugshot
can replay every execution step that led to a failure, it is
far more useful for performing root-cause analysis than
today’s commonly deployed client-based error reporting
systems—core dumps and stack traces can only give de-
velopers a snapshot of the system after a failure has oc-
curred.

Many logging systems require a specially instru-
mented execution environment like a virtual machine or
a custom program interpreter. In contrast, Mugshot’s
client-side component is implemented entirely in stan-
dard JavaScript, providing event capture on unmodified
client browsers. Mugshot imposes low overhead in terms
of storage (20-80KB/minute) and computation (slow-
downs of about 7% for games with high event rates).
This combination of features—a low-overhead library
that runs in unmodified browers—makes Mugshot one
of the first capture systems that is practical to deploy to
every client and run in the common case. With Mugshot,
developers can collect widespread traces from programs
in the field, gaining a visibility into application execution
that is typically only available in a controlled develop-
ment environment.

1 Introduction

Despite developers’ best efforts to release high qual-
ity code, deployed software inevitably contains bugs.
When failures are encountered in the field, many pro-
grams record their state at the point of failure, e.g., in
the form of a core dump, stack trace, or error log. That
snapshot is then sent back to the developers for analysis.

Perhaps the best known example is the Windows Error
Reporting framework, which has collected over a billion
error reports from user programs and the kernel [14].

Unfortunately, isolated snapshots only tell part of the
story. The root cause of a bug is often difficult to deter-
mine based solely on the program’s state after a problem
was detected. Accurate diagnosis often hinges on an un-
derstanding of the events that preceded the failure. For
this reason, systems like Flight Data Recorder [29], De-
jaVu [5], and liblog [13] have implemented deterministic
program replay. These frameworks log enough informa-
tion about a program’s execution to replay it later un-
der the watchful eye of a debugging tool. With a few
notable exceptions, these systems require a specially in-
strumented execution environment like a custom kernel
to capture a program’s execution. This makes them un-
suitable for field deployment to unmodified end-user ma-
chines. Furthermore, no existing capture and replay sys-
tem is specifically targeted for the unique needs of the
web environment.

Mugshot’s goal is to provide low-overhead, “always-
on” capture and replay for web-deployed JavaScript pro-
grams. Our key insight is that JavaScript provides
sufficient reflection capabilities to log client-side non-
determinism in standard JavaScript running on unmod-
ified browsers. As a user interacts with an application,
Mugshot’s JavaScript library logs explicit user activity
like mouse clicks and “behind-the-scenes” activity like
the firing of timer callbacks and random number gener-
ation. When the application fetches external objects like
images, a server-side Mugshot proxy stores the binary
data so that at replay-time, requests for the objects can
access the log-time versions.

The client-side Mugshot log is sent to the devel-
oper in response to a trigger like an unexpected ex-
ception being caught. Once the developer has the log,
he uses Mugshot’s replay mode to recreate the original
JavaScript execution on his unmodified browser. Like
the logging library, the replay driver is implemented in

1



standard JavaScript. The driver provides a “VCR” in-
terface which allows the execution to be run in near-real
time, paused, or advanced one event at a time. The in-
ternal state of the replaying application can be inspected
using unmodified JavaScript debugging tools like Fire-
bug [17]. Developers can also analyze a script’s perfor-
mance or evaluate the usability of a graphical interface
by examining how real end-users interacted with it.

At first glance, Mugshot’s logging and replay capabil-
ities may seem to introduce a fundamentally new threat
to user privacy. However, Mugshot does not create new
techniques for logging previously untrackable events—
instead, it leverages the preexisting introspective capa-
bilities found in browsers’ standard JavaScript engines.
Furthermore, the preexisting security policies which pre-
vent cross-site data exchange also prevent Mugshot’s
event logs from leaking across domains. Thus, the
Mugshot log for a particular page can only be accessed
by that page’s domain.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related work in capture and replay. We
then describe the architecture of Mugshot in Section 3.
Section 4 contains our evaluation, which describes mi-
crobenchmarks (§4.1) and Mugshot’s performance in-
side several complex, real-world applications (§4.2). Our
evaluation shows that Mugshot is unobtrusive at logging
time and faithful at replay time, recreating several bugs
that we found in our evaluation applications. We con-
sider the privacy implications of Mugshot in Section 5
and then conclude in Section 6.

2 Related Work

Error Reporting from the Field

There are many frameworks for collecting information
about crashed programs and sending the data back to the
developers. Perhaps the best known is Windows Error
Reporting (WER), which has been included in Windows
since 1999 and has collected billions of error reports
[14]. When a crash, hang, installation failure, or other
error is detected, WER creates a minidump. Minidumps
are snapshots of the system’s essential state: register val-
ues, thread stacks, lists of loaded modules, a portion of
the text segment surrounding the instruction pointer, and
other information. With the user’s permission, this data
is sent back to Microsoft, where it is bucketed according
to likely root-cause for later analysis. WER only records
the state of the application at the moment of the crash;
developers must infer the sequence of events that led
to it. Other deployed systems have similar capabilities
and constraints, including Firefox’s Breakpad [4] and the
iPhone OS [1].

Capture and Replay

As described by the survey papers [8] and [10], de-
terministic replay has been studied for many years in
a variety of contexts. Some of the prior systems are
machine-wide replay frameworks intended to debug op-
erating systems or cache coherence in distributed shared
memory systems [11, 22, 29]. They create high-fidelity
execution logs, but with significant cost: the target soft-
ware must run atop custom hardware, a modified kernel,
or a special virtual machine. This limits opportunities
for widespread deployment. Furthermore, these systems
produce log data at a high rate; generally, these systems
can only report the last few seconds of system state be-
fore an error.

Moving up the stack, a number of application- or
language-specific tools allow deterministic capture and
replay. By restricting themselves to high-level interfaces
and a single-threaded execution model, they obviate the
need to log data at the instruction level. This dramati-
cally reduces the overhead of logging, both in processor
time and storage requirements. The liblog system[13]
is perhaps closest to our work. liblog provides a C-
library interposition layer that records the input and out-
put of all interactions between the application and the C
library (and hence, the operating system) below. As with
Mugshot, one of liblog’s goals was to make logging suffi-
ciently lightweight that it can be run in the common case.
Other application-specific logging environments include
DejaVu [5] for Java programs and Retrospect [3] for par-
allel programs written using the MPI interface.

Ripley [20] is a framework for preserving the compu-
tational integrity of AJAX applications. Client and server
code is written in .NET, but Ripley automatically trans-
lates the client-side portion into JavaScript for execution
in a browser. The instrumented JavaScript sends an event
stream to the web server, which replays the events to a
server-side replica of the client. The server only executes
a client RPC if it is also generated by the replica.

Mugshot differs from Ripley in three important ways.
First, Mugshot works on arbitrary JavaScript applica-
tions and does not require applications to be developed
in a special environment. Second, Ripley’s current im-
plementation does not capture all sources of nondeter-
minism. For example, Ripley does not handle calls to
Date(). It could treat Date() as an RPC and have
the client synchronously fetch a value from the server (a
value which would also be fed to the server-side client
replica). However, this incurs a round trip for each time
request, making it infeasible for applications like games
that rapidly generate events. Third, for performance rea-
sons, Ripley’s server-side client replicas are not actual
web browsers—they are lightweight browser emulators
that track DOM state (§3.1.3) but do not perform layout

2



or rendering. In contrast, Mugshot replays events inside
the same browser type used at logging time. This greatly
increases the likelihood that a buggy execution can be
recreated.

Debugging for Web Applications

There are a variety of tools for debugging web appli-
cations. For example, Fiddler [21] is a web proxy that al-
lows the local user to inspect, modify, and replay HTTP
messages. Firebug [17], an extension to Firefox, is an
advanced JavaScript debugger that supports breakpoints,
arbitrary expression evaluation, and performance profil-
ing. Internet Explorer 8 has a built-in debugger with sim-
ilar features. All of these tools provide rich introspection
upon the local execution environment. However, none of
them provide a way to capture remote bugs in the wild
and explore the execution paths that led to faulty behav-
ior.

AjaxScope [18] uses a web proxy to dynamically
instrument JavaScript code before sending it to re-
mote clients. Developers express their debugging intent
through functions inserted at specific places in the code’s
abstract syntax tree. For example, to check for infinite
loops, a programmer can attach a diagnostic function to
each for, while, and do-while statement. Whereas
AjaxScope’s goal is to let developers express specific de-
bugging policies, Mugshot focuses on recreating entire
remote execution contexts.

The commercial Selenium [27] Firefox extension
records user activity for later playback. Recording can
only be done in Firefox, but playback is portable across
browsers using synthetic JavaScript events. Because
Selenium does not log the full set of nondeterministic
events, it is suitable for automating tests, but it cannot
reproduce many nondeterministic bugs.

The commercial products ClickTale [7] and CS Ses-
sionReplay [12] capture mouse and keyboard events in
browser-based applications. However, neither of these
products expose a full, browser-neutral environment for
logging all sources of browser nondeterminism, includ-
ing both client-side nondeterminism like timer inter-
rupts and server-side nondeterminism like dynamic im-
age generation. The services provide click analytics and
a movie of client-visible interactions, but not the underly-
ing internal state of the JavaScript heap and the browser
DOM tree.

3 Design and Implementation

Mugshot’s goal is to record the execution of a web ap-
plication on an end user’s machine, then recreate that ex-
ecution on a developer’s machine. To capture applica-
tion activity, one could exhaustively record every inter-
mediate state of the program. Mugshot instead takes the

approach of many other systems: recording all sources
of nondeterminism. If an application is run again and
injected with the same nondeterministic events, the pro-
gram will follow the same execution path that was ob-
served at logging time.

Past systems have recorded nondeterminism at the in-
struction level [11] or the libc level [13]. However,
the former may introduce prohibitive logging overheads,
and both require users to modify standard browsers or
operating systems. Both approaches also record nonde-
terminism at a granularity that is unnecessarily fine for
JavaScript-driven web applications. JavaScript programs
are non-preemptively single threaded and event driven.
Applications register callback functions for events like
key strokes or the completion of an asynchronous HTTP
request. When the browser detects such an event, it in-
vokes the appropriate application handlers. The browser
will never interrupt the execution of one handler to run
another. Thus, the execution path of the application is
solely determined by the event interleavings encountered
during a particular run. This means that logging the con-
tent and the ordering of events provides sufficient infor-
mation for replay.

Logging nondeterminism at the level of JavaScript
events would be easy if we could insert logging code
directly into the browser. However, this solution is un-
appealing to developers since it requires users to down-
load a special browser or install a logging plug-in. Many
users will not opt into such a scheme, dramatically re-
ducing the size and diversity of the developer’s logging
demographic.

To avoid these problems, we implemented the client
portion of Mugshot entirely in JavaScript. Compared
to an in-browser solution, a JavaScript implementation
is more complex and more difficult to make performant.
However, it has the enormous advantage of being trans-
parent to users and hence much easier to deploy. As we
will see in the sections that follow, JavaScript offers suf-
ficient introspection and self-modification capabilities to
enable insertion of shims that log most sources of non-
determinism.

In Section 3.1, we enumerate the sources of nondeter-
minism in web applications and describe how Mugshot
captures them in Firefox and IE. Although conceptu-
ally straightforward, the logging process is complicated
by various browser incompatibilities and implementation
deficiencies, particularly with respect to keyboard events.
In Section 3.2, we describe how Mugshot replays an ex-
ecution by dispatching synthetic events from its log.

3.1 Capturing Nondeterministic Events
To add Mugshot recording to an application, the

developer delivers an application through a server-side
web proxy. The proxy’s first job is to insert a single tag

3



at the beginning of the application’s <head> block:
<script src=’Mugshot.js’></script>

When the page loads, the Mugshot library runs before
the rest of the application code has a chance to execute.
Mugshot interposes on the sources of nondeterminism
that we describe below and begins to write to an in-
memory log. Event recording continues until the page is
closed.

If the application contains multiple frames, the proxy
injects the Mugshot <script> tag into each frame.
Child frames report all events to the Mugshot library run-
ning in the topmost frame; this frame is responsible for
collating the aggregate event log and sending it back to
the developer.

The developer controls when the application uploads
event logs. For example, the application may post logs at
predefined intervals, or only if an unexpected exception
is thrown. Alternatively, the developer may add an ex-
plicit “Send error report” button to the application which
triggers a log post.

Figure 1 lists the various sources of nondeterminism
in web applications. In the sections below, we discuss
each of the broad categories and describe how we cap-
ture them on Firefox and IE. Our discussion proceeds
in ascending order of the technical difficulty of logging
each event category.

Importantly, Mugshot does not log events for media
objects that are opaque to JavaScript code. For exam-
ple, Mugshot does not record when users pause a Flash
movie or click a region inside a Java applet. Since these
objects do not expose a JavaScript-accessible event inter-
face, Mugshot can make no claims about their state. The
current implementation of Mugshot also does not capture
nondeterministic events arriving from opaque containers
like Flash’s ExternalInterface; such events are
rarely used in practice.

For each new event that it does capture, Mugshot cre-
ates a log entry containing a sequence number and the
wall clock time. The entry also contains the event type
and enough type-specific data to recreate the event at re-
play time. For example, for keyboard events, Mugshot
records the GUI element that received the event, the
character code for the relevant key, and whether any of
the shift, alt, control, or meta keys were simultaneously
pressed.

3.1.1 Nondeterministic Function Calls

Applications call new Date() to get the current
time and Math.random() to get a random number. To
log time queries, Mugshot wraps the original construc-
tor for the Date object with one that logs the returned
time. To log random number generation, Mugshot re-
places the built-in Math.random() with a simple lin-

ear congruential generator [23]. Mugshot uses the appli-
cation’s load date to seed the generator, and it writes this
seed to the log. Given this seed, subsequent calls to the
random number generator are deterministic and do not
require subsequent log entries.

Our initial implementation of Mugshot did not de-
fine a custom random number generator—instead, it sim-
ply wrapped Math.random() in the same way that it
wrapped Date(). However, we found that games of-
ten made frequent requests for random numbers, e.g., to
determine whether a space invader should move up or
down. The resulting logs were filled with random num-
bers and did not compress well (which was important,
since uncompressed logs can be large (§ 4.2.1)). Thus,
we decided to use the logging scheme described above.

3.1.2 Interrupts

JavaScript interrupts allow applications to sched-
ule callbacks for later invocation. Callbacks
can be scheduled for one-time execution using
setTimeout(callback, waitTime). A
callback can be scheduled for periodic execution using
setInterval(callback, period). JavaScript
is cooperatively single threaded, so interrupt callbacks
(and event handlers in general) execute atomically and
do not preempt each other.

Mugshot logs interrupts by wrapping the standard
versions of setTimeout() and setInterval().
The wrapped registration functions take an application-
provided callback, wrap it with logging code, and regis-
ter the wrapped callback with the native interrupt sched-
uler. Mugshot also assigns the callback a unique id; since
JavaScript functions are first class objects, Mugshot
stores this id as a property of the callback object. Later,
when the browser invokes the callback, the wrapper code
logs the fact that a callback with that id executed at the
current wall clock time.

Although simple in concept, IE does not support this
straightforward interposition on setTimeout()
and setInterval(). Mugshot’s modified
setTimeout() must hold a reference to the browser’s
original setTimeout() function; however, IE some-
times garbage collects this reference, leading to a
“function not defined” error from the Mugshot wrapper.
To mitigate this problem, Mugshot creates an invisible
<iframe> tag, which comes with its own namespace
and hence its own references to setTimeout() and
setInterval(). The Mugshot wrapper invokes
copies of these references when it needs to schedule a
wrapped application callback.

Although this trick gives Mugshot references to the
native scheduling functions, it prevents Mugshot from
actually scheduling callbacks until the hidden frame

4



Event type Examples Captured by Mugshot
Mouse click, mouseover Yes
Key keyup, keydown Yes

DOM Events Loads load Yes
§3.1.3 Form focus, blur, select, change Yes

Body scroll, resize Yes
Interrupts Timers setTimeout(f, 50) Yes
§3.1.2 AJAX req.onreadystatechange = f Yes

Nondeterministic functions Time query (new Date()).getTime() Yes
§3.1.1 Random number query Math.random() Yes

Text selection Firefox: window.getSelection() Highlighting text w/mouse Yes
§3.1.8 IE: document.selection Highlighting text w/mouse Partially

Opaque browser objects Flash movie User pauses movie No
§3.1 Java applet Applet updates the screen No

Figure 1: Sources of nondeterminism in browsers.

is loaded. This problem has three cascading con-
sequences. First, since JavaScript is single-threaded,
Mugshot cannot block until the hidden frame is loaded
without hanging the application. Instead, it must queue
application timer requests and install them once the
hidden frame loads. Second, setTimeout() and
setInterval() return opaque scheduling identifiers
that the application can use to cancel the callback via
clearTimeout() and clearInterval(). For
interrupt registrations issued before the hidden frame
loads, Mugshot cannot call the real registration functions
to get cancellation ids. So, Mugshot generates synthetic
identifiers and maintains a map to the real identifiers it
acquires later. Third, an application may cancel an inter-
rupt before the hidden frame loads; Mugshot responds by
simply removing the callback from its queue of requests.

AJAX requests allow JavaScript applications to is-
sue asynchronous web fetches. The browser repre-
sents each request as an XMLHttpRequest object. To
receive notifications about the status of the request,
applications assign a callback function to the object’s
onreadystatechange property. The browser in-
vokes this function whenever new data arrives or the en-
tire transmission is complete. Upon success or failure,
the various properties of the object contains the status
code for the transfer (e.g., 200 OK) and the fetched data.

Mugshot must employ different techniques to wrap
AJAX callbacks on different browsers. On Firefox,
Mugshot’s wrapped XMLHttpRequest constructor
registers a DOM Level 2 handler (§3.1.3) for the object’s
onreadystatechange event. IE does not support
DOM Level 2 handlers on AJAX objects, so Mugshot in-
terposes on the object’s send method to wrap the appli-
cation handler in logging code before the browser issues
the request. We describe DOM Level 2 handlers in more
detail in the next section.

For each AJAX event, Mugshot logs the current state
of the request (e.g., “waiting for data”), the HTTP head-
ers, and any incremental data that has already returned.
Once the request has completed, Mugshot logs the HTTP
status codes. We also log the raw request data on the
server-side replay proxy (§3.2.1). For the purposes of re-
play, this data only needs to be logged on one side. Thus,
our current implementation consumes more space than
strictly necessary. However, it makes the client-side and
proxy-side logs more understandable to human debug-
gers, since AJAX activity in one log does not have to be
collated with data from the other log.

3.1.3 DOM Events

The Document Object Model (or DOM) is the inter-
face between JavaScript applications and the browser’s
user interface [28]. Using DOM calls, JavaScript ap-
plications register handlers for user events like mouse
clicks. DOM methods also allow the application to dy-
namically modify page content and layout.

The browser binds every element in a page’s HTML to
an application-accessible JavaScript object. Applications
attach event handlers to these DOM objects, informing
the browser of the application code that should run when
a DOM node generates a particular event. In the simplest
handler registration scheme, applications simply assign
functions to specially-named DOM node properties. For
example, to execute code whenever the user clicks on
a <div> element, the application assigns a function to
the onclick property of the corresponding JavaScript
DOM node.

This simple model, called DOM Level 0 registration,
only allows a single handler to be assigned to each DOM
node/event pair. Modern browsers also implement the
DOM 2 model, which allows an application to register
multiple handlers for a particular DOM node/event pair.

5



<div onclick=’handlerA()’>
<div onclick=’handlerB()’>

<div onclick=’handlerC()’>
</div>

</div>
</div>

Figure 2: Event handling after a user clicks within Div
C. In the W3C model’s capturing phase, handlerA() is
called if it is a capturing handler, followed by handlerB()
if it is a capturing handler. After the target’s handlerC()
is called, W3C mandates a bubbling phase in which han-
dlers marked as bubbling are called from the inside out.

An application calls the node’s attachEvent() (IE)
or addEventListener() (Firefox) method, passing
an event name like “click”, a callback, and in Firefox, a
useCapture flag to be discussed shortly.

The World Wide Web Consortium’s DOM Level 2
specification [28] defines a three-phase dispatch process
for each event (Figure 2). In the capturing phase, the
browser hands the event to the special window and
document JavaScript objects. The event then traces
a path down the DOM tree, starting at the top-level
<html> DOM node and eventually reaching the DOM
node that actually generated the event. The boolean pa-
rameter in addEventListener() allows a handler
to be specified as capturing. Capturing handlers are only
executed in the capturing phase; they allow a DOM node
to execute code when a child element has generated an
event. Importantly, the ancestor’s handler will be called
before any handlers on the child run.

In the target phase, the event is handed to the DOM
node that generated it. The browser executes the appro-
priate handlers at the target, and then sends the event
along the reverse capturing path. In this final bubbling
phase, ancestors of the target can run event handlers
marked as bubbling, allowing them to process the event
after it has been handled by descendant nodes.

In the DOM 2 model, some event types are cancelable,
i.e., an event handler can prevent the event from con-
tinuing through the three phase process. Also, although
all events capture, some do not bubble. For example,
load events, which are triggered when an image has
completely downloaded, do not bubble. Form events also

do not bubble. Examples of form events include focus
and blur, which are triggered when a GUI element like
a text box gains or loses input focus.

3.1.4 DOM Events and Firefox

Firefox supports the W3C model for DOM events.
Thus, Mugshot can record these events in a straightfor-
ward way—it simply attaches capturing logging handlers
to the window object. Since the window object is the
highest ancestor in the DOM event hierarchy, Mugshot’s
logging code is guaranteed to catch every event before
it has an opportunity to be canceled by other nodes in
the capture, target, or bubble phases. Note that canceled
events still need to be logged, since they caused at least
one application handler to run!

Mugshot must ensure that the application does not
accidentally delete or overwrite Mugshot’s logging
handlers. To accomplish this, Mugshot registers the
logging handlers as DOM 2 callbacks, exploiting the fact
that applications cannot iterate over the DOM 2 handlers
for a node, and they cannot deregister a DOM 2 han-
dler via domNode.detachEvent(eventName,
callback) without knowing the callback’s function
pointer.

Mugshot must also ensure that its DOM 2 window
handlers run before any application-installed window
handlers execute and potentially cancel an event. Firefox
invokes a node’s DOM 2 callbacks in the order that they
were registered; since the Mugshot library registers its
handlers before any application code has run, its logging
callbacks are guaranteed to run before any application-
provided DOM 2 window handlers.

Unfortunately, Firefox invokes any DOM 0 handler
on the node before invoking the DOM 2 handlers. To
ensure that Mugshot’s DOM 2 handler runs before any
application-provided DOM 0 callback, Mugshot uses
JavaScript setters and getters to interpose on assignments
to DOM 0 event properties. Setters and getters define
code that is bound to a particular property on a JavaScript
object. The setter is invoked on read accesses to the prop-
erty, and the getter is invoked on writes.

Ideally, Mugshot would define a DOM 2 logging han-
dler for each event type e, and create setter code for
the window.e property which wrapped the the user-
specified handler with a Mugshot-provided logging func-
tion. If the application provided no DOM 0 handler,
Mugshot’s DOM 2 callback would log the event; oth-
erwise, the wrapped DOM 0 handler would log the event
and set a special flag on the event object indicating that
Mugshot’s DOM 2 handler should not duplicate the log
entry. Unfortunately, this scheme will not work because
Firefox’s getter/setter implementation is buggy. Mugshot
can create a getter/setter pair for a DOM node event prop-

6



erty, and application writes to the property will properly
invoke the setter. However, when an actual event of type
e is generated, the browser will not invoke the associated
function. In other words, the setter code, which works
perfectly at the application level, hides the event handler
from the internal browser code.

Luckily, the setter code does not prevent the browser
from invoking DOM 2 handlers. Thus, Mugshot’s setter
also registers the application-provided handler as a DOM
2 callback. The setter code ensures that when the appli-
cation overwrites the DOM 0 property name, Mugshot
deregisters the shadow DOM 2 version of the old DOM
0 handler.

When Mugshot logs a DOM event, it records an iden-
tifier for the DOM node target. If the target has an HTML
id, e.g., <div id=’foo’>, Mugshot tags the log en-
try with that id. Otherwise, it identifies the target by
specifying the capturing path from the root <html> tag.
For example, the id (1, 5) specifies that the target can
be reached by following the first child of the <html>
tag and then the fifth child of that node. Since many
JavaScript applications use dynamic HTML, the path for
a particular node may change throughout a program’s ex-
ecution. Thus, the determination of a target’s path id
must be done at the time the event is seen—it cannot be
deferred until (say) the time that the log is posted to the
developer.

3.1.5 DOM Events and IE

IE’s event model is only partially compatible with
the W3C one. The most important difference is that
IE does not support the capturing phase of event prop-
agation. This introduces two complications. First, an
event may never have an opportunity to bubble up to
a window-level logging handler—the event might be
canceled by a lower-level handler, or it may be a non-
bubbling event like a load. Second, even if an event bub-
bles up to a window-level logger, the event may have
triggered lower-level event handlers and generated log-
gable nondeterministic events. For example, a mouse
click may trigger a target-level callback that invokes new
Date(). The mouse click is temporally and causally
antecedent to the time query. However, the mouse click
would be logged after the time query, since the time
query is logged at its actual generation time, whereas
the mouse click is logged after it has bubbled up to the
window-level handler.

Mugshot addresses these problems using several tech-
niques. To log non-bubbling events, Mugshot ex-
ploits IE’s facility for extending the object prototypes
for DOM nodes. For DOM types like Images and
Inputs which support non-bubbling events, Mugshot
modifies their class definitions to define custom setters

for DOM 0 event properties. Mugshot also redefines
attachEvent() and detachEvent(), the mech-
anisms by which applications register DOM 2 handlers
for these nodes. The DOM 0 setters and the wrapped
DOM 2 registration methods collaborate to ensure that
if an application defines at least one handler for a DOM
node/event pair, Mugshot will log relevant events pre-
cisely once, and before any application-specified handler
can cancel the event.

Ideally, Mugshot could use the same techniques to
capture bubbling events at the target phase. Unfortu-
nately, IE’s DOM extension facility is fragile: redefining
certain combinations of DOM 0 properties can cause un-
predictable behavior. Therefore, Mugshot uses window-
level handlers to log bubbling events; this is the problem-
atic technique described above that may lead to temporal
violations in the log. Fortunately, Mugshot can mitigate
this problem in IE, because IE stores the current DOM
event in a global variable window.event. Whenever
Mugshot needs to log a source of nondeterminism, it first
checks whether window.event is defined and refers
to a not-yet-logged event. If so, Mugshot logs the event
before examining the causally dependent event.

An application may cancel a bubbling event before
it reaches Mugshot’s window-level handler by setting
its Event.cancelBubble property to true. The
event still must be logged, so Mugshot extends the
class prototype for the Event object, overriding its
cancelBubble setter to log the event before its can-
cellation.

In summary, Mugshot on IE logs all bubbling DOM
events, but only the non-bubbling events for which the
application has installed handlers. This differs from
Mugshot’s behavior on Firefox, where it logs all DOM
events regardless of whether the application cares about
them. Recording these “spurious” events does not af-
fect correctness at replay time, but it does increase
log size. Fortunately, as we show in Section 4.2.1,
Mugshot’s compressed logs are small enough that the
storage penalty for spurious events is small. Thus, we
were not motivated to implement an IE-style logging so-
lution for Firefox—it was technically feasible, but com-
paratively much more difficult to implement correctly
than our capturing-handler solution.

3.1.6 Handling Load Events on IE

In IE, load events do not capture or bubble. Using the
techniques described in the previous section, Mugshot
can capture these events for elements with application-
installed load handlers. However, Mugshot actually
needs to capture all load events so that at replay time,
it can render images in the proper order and ensure that

7



the page layout unfolds in the same fashion observed at
logging time. Otherwise, an application that introspects
the document layout may see different intermediate re-
sults at replay time.

Ideally, Mugshot could modify the prototype for
Image objects such that whenever the browser created
an Image node, the node would automatically install a
logging handler for load events. Unfortunately, pro-
totype extension only works for properties and meth-
ods accessed by application-level code—the browser’s
native code creation of the DOM node cannot be mod-
ified by extending the JavaScript-level prototype. So,
Mugshot uses a hack: whenever it logs an event, it sched-
ules a timeout to check whether that event has created
new Image nodes; if so, Mugshot explicitly adds a
DOM 2 logging handler which records load events for
the image. Mugshot specifies this callback by invoking
a non-logged setTimeout(imageCheck, 0). The
0 value for the timeout period makes the browser invoke
the imageCheck callback “as soon as possible.” Since
the timeout is set from the context of an event dispatch,
the browser will invoke the callback immediately after
the dispatch has finished, but before the dispatch of other
queued events (such as the load of an image that we
want to log). Mugshot also performs this image check at
the end of the initial page parse to catch the loading of
the page’s initial set of images.

3.1.7 Synthetic Events

Applications call DOMnode.fireEvent() on IE
and DOMnode.dispatchEvent() on Firefox to
generate synthetic events. Mugshot uses these func-
tions at replay time to simulate DOM activity from the
log. However, the application being logged can also call
these functions. These synthetic events are handled syn-
chronously by the browser; thus, from Mugshot’s per-
spective, they are deterministic program outputs which
do not need to be logged. However, in terms of the event
dispatching path, the browser treats the fake events just
like real ones, so they will be delivered to Mugshot’s log-
ging handlers.

To prevent these events from getting
logged on Firefox, Mugshot interposes on
document.createEvent(), which applica-
tions must call to create the fake event that will be
passed to dispatchEvent(). The interposed
document.createEvent() assigns a special
doNotLog property to the event before returning it to
the application. Mugshot’s logging code will ignore
events that define this property.

This technique does not work on IE, which pro-
hibits the addition of new properties to the Event ob-
ject. Thus, Mugshot uses prototype extension to inter-

pose on fireEvent(). Inside the interposed version,
Mugshot pushes an item onto a stack before calling the
native fireEvent(). After the call returns, Mugshot
pops an item from the stack. In this fashion, if Mugshot’s
logging code for DOM events notices a non-empty stack,
it knows that the current DOM event is a synthetic one
and should not be logged.

3.1.8 Annotation Events

At replay time, Mugshot dispatches synthetic DOM
events to simulate user GUI activity. These events are in-
distinguishable from the real ones with respect to the dis-
patch cycle—given a particular application state, a syn-
thetic event will cause the exact same handlers to execute
in exactly the same order as a semantically equivalent
real event. However, we noticed that synthetic events
did not always update the visible browser state in the ex-
pected way. In particular, we found the following prob-
lems on both Firefox and IE:
• According to the DOM specification, when a
keypress event has finished the dispatch cycle,
the target text input or content-editable DOM node
should be updated with the appropriate key stroke.
Our replay experiments showed that this did not
happen reliably. For example, synthetic key events
could be dispatched to a text entry box, but the value
of the box would not change, despite the fact that the
browser invoked all of the appropriate event han-
dlers.

• <select> tags implement drop-down selection
lists. Each selectable item is represented by an
<option> tag. Dispatching synthetic mouse
clicks to <option> nodes should cause changes in
the selected item property of the parent <select>
tag. Neither Firefox nor IE provided this behavior.

• Users can select text or images on a web
page by dragging the mouse cursor or holding
down the shift key while tapping a directional
key. The browser visibly represents the selec-
tion by highlighting the appropriate text and/or
images. The browser internally represents the
selected items as a range of underlying DOM
nodes. Applications access this range by calling
window.getSelection() on Firefox and in-
specting the document.selection object on
IE. We found that dispatching synthetic key and
mouse events did not reliably update the browser’s
internal selection range, and it did not reliably recre-
ate the appropriate visual highlighting.

To properly replay these DOM events, Mugshot de-
fines special annotation events. Annotation events are
“helpers” for events which, if replayed by themselves,
would not produce a faithful recreation of the logging-

8



time application state. Mugshot inserts an annotation
event into the log immediately after a DOM event which
has low fidelity replay. At replay time, Mugshot dis-
patches the low fidelity synthetic event, causing the ap-
propriate event handlers to run. Mugshot then executes
the associated annotation event, finishing the activity in-
duced by the prior DOM event. Annotation events are
not real events, so they do not trigger application-defined
event handlers. They merely describe work that Mugshot
must perform at replay time to provide faithful emulation
of logging-time behavior.

To fix low-fidelity keypress events on text inputs,
Mugshot’s keypress logger schedules a timeout inter-
rupt with an expiration time of 0. The browser executes
the callback immediately after the end of the dispatch
cycle for the keypress, allowing Mugshot to log the
value of the text input. At replay time, after dispatching
the synthetic keypress, Mugshot reads the value an-
notation from the log and programmatically assigns the
value to the target DOM node’s value property.

To ensure that clicks on <option> elements actually
update the chosen item for the parent <select> tag,
Mugshot’s mouseup logger checks whether the event
target is an <option> tag. If so, this indicates that the
user has selected a new choice. Mugshot generates an
annotation indicating which of the <select> tag’s chil-
dren was clicked upon. At replay time, Mugshot uses the
annotation to directly set the selectedIndex prop-
erty of the <select> tag.

Mugshot generates annotation events for selection
ranges after logging keyup and mouseup events. On
Firefox, the selection object conveniently defines a start-
ing DOM node, a starting position within that node, an
ending DOM node, and an ending position within that
node. Mugshot simply adds the relevant DOM node
identifiers and integer offsets to the annotation record.
Abstractly speaking, Mugshot includes the same infor-
mation for an annotation record on IE. However, IE
does not provide a straightforward way to determine
the exact extent of a selection range. So, Mugshot
must cobble together several IE range primitives to de-
duce the current range. Mugshot first determines the
highest enclosing parent tag for the currently selected
range. Then, Mugshot creates a range which covers all
of the parent tag’s children, and progressively shrinks
the number of HTML characters it contains, using IE’s
Range.inRange() to determine whether the actual
selection region resides within the shrinking range. At
some point, Mugshot will determine the exact amounts
by which it must shrink the left and right margins of the
parent range to precisely cover the actual selected region.
Mugshot logs the DOM identifier for the parent node and
the left and right pinch margins.

IE’s selection semantics are extremely complex, and
we have not produced a complete formal specification for
them. Since Mugshot cannot currently reproduce these
semantics in all applications, Figure 1 lists Mugshot’s
support for IE selection events as partial.

3.1.9 Performance Optimizations

Both Firefox and IE support the W3C mousemove
event, which is fired whenever the user moves the mouse.
Mugshot can log this event like any other mouse action,
but this can lead to unnecessary log growth in Firefox if
the application does not care about this event (remem-
ber that Mugshot on Firefox logs all DOM events, re-
gardless of application interest in them). Mugshot logs
mousemove by default, but since few applications use
mousemove handlers, the developer can disable its log-
ging to reduce log size. In Section 4.2, we evaluate
Mugshot’s log size for a drawing application that does
use mousemove events.

Games which have high rates of keyboard or mouse
activity may generate many content selection annotation
events. Generating these annotations is expensive on IE
since Mugshot has to experimentally determine the se-
lection range (see Section 3.1.8). Furthermore, games do
not typically care about the selection zones that their GUI
inputs may or may not have created. Thus, for games
with high event rates like Spacius [16], we disable anno-
tations for content selection.

3.2 Replay

Compared to the logging process, replay is straight-
forward. The most complexity arises from replaying
load events, since JavaScript code cannot modify the
network stack and stall data transmissions to recreate
logging-time load orderings. Thus, Mugshot coordinates
load events with a transparent caching proxy that the de-
veloper inserts between his web server and the outside
world.

In addition, Mugshot must also shield the replaying
execution from new events that arise on the developer
machine, e.g., because the developer accidentally clicks
on a GUI element in the replaying application. Without a
barrier for such new events, the replaying program may
diverge from the execution path seen at logging time.

3.2.1 Caching Web Content at Logging Time

When a user fetches a page logged by Mugshot, the
fetch is mediated by a transparent Mugshot proxy. The
proxy assigns a session ID to each page fetch; this ID
is stored in a cookie and later written to the Mugshot
log. As the proxy returns content to the user, it updates a

9



per-session cache which maps content URLs to the data
that was served for those URLs during that particular ses-
sion. Optionally, the proxy can rewrite static <html>
and <frame> declarations to include the Mugshot li-
brary’s <script> tag.

3.2.2 Replaying Load Events

At replay time, the developer switches the proxy into
replay mode, sets the session ID in his local Mugshot
cookie to the appropriate value, and directs his web
browser to the URL of the page to replay. The proxy
extracts the session ID from the cookie, determining the
cache it should use to serve data. The proxy then be-
gins to serve the application page, replacing any static
<script> references to the logging Mugshot library to
references to the Mugshot replay library.

During the HTML parsing process, browsers load and
execute <script> tags synchronously. The Mugshot
replay library is the first JavaScript code that the browser
runs, so Mugshot can coordinate load interleavings with
the proxy before any load requests have actually been
generated. During its initialization sequence, Mugshot
fetches the replay log from the developer’s log server and
then sends an AJAX request to the proxy indicating that
the proxy should only complete the loads for subsequent
non-<script> objects in response to explicit “release
load” messages from Mugshot.

The rest of the page loads, with any <scripts>
loading synchronously. The browser may also launch
asynchronous requests for images, frame source, etc.
These asynchronous requests queue at the proxy. Later,
as the developer rolls forward the replay, Mugshot
encounters load events for which the corresponding
browser requests are queued at the server. Before signal-
ing the proxy to transmit the relevant bytes, Mugshot in-
stalls a custom DOM 2 load handler for the target DOM
node so that it can determine when the load has finished
(and thus when it is safe to replay the next event).

3.2.3 The Replay Interface

At replay initialization time, Mugshot places a semi-
transparent <iframe> overlaying the application page.
This frame acts as a barrier for keyboard and mouse
events, preventing the developer from issuing events to
the replaying application that did not emerge from the
log. We embed a VCR-like control interface in the bar-
rier frame which allows the developer to start or stop
replay (see Figure 3). The developer can single-step
through events or have Mugshot dispatch them at fixed
intervals. Mugshot can also try to dispatch the events in
real time, although “real-time” playback of applications
with high event rates may have a slowdown factor of 2 to
4 times (see Section 4.2.2).

Figure 3: Replaying Tetris (VCR control on left)

Whenever Mugshot replays an event, it can optionally
place a small, semi-translucent square above the target
DOM node. These squares are color-coded by event type
and fade over time. They allow the developer to visu-
ally track the event dispatch process, and are particularly
useful for understanding mouse movements.

3.2.4 Replaying Non-load Events

Replaying events is much simpler than logging them.
To replay a non-load DOM event, Mugshot locates the
target DOM node and dispatches the appropriate syn-
thetic event. For low-fidelity events (§3.1.8), Mugshot
also performs the appropriate fix-ups using annotation
records. To replay text selection events, Mugshot recre-
ates the appropriate range object and then uses a browser-
specific call to activate the selection.

To replay timeout and interval callbacks, Mugshot’s
initialization code interposes on setTimeout() and
setInterval(). The interposed versions tag each
application-provided callback with an interrupt ID and
add the callback to a function cache. This cache is
built in the same order that IDs were assigned at log-
ging time, so replay-time interrupt IDs are guaranteed to
be faithful. Mugshot does not register the application-
provided callback with the native interrupt scheduler. In-
stead, when the log indicates that an interrupt should
fire, Mugshot simply retrieves the appropriate function
from its cache and executes it. Mugshot interposes
on the cancellation functions clearTimeout() and
clearInterval(), but the interposed version are no-
ops—once the application cancels an interrupt at logging
time, Mugshot will never encounter it again in the log.

Mugshot also interposes on the XMLHttpRequest
constructor. Much like interrupt replay, Mugshot stores
AJAX callbacks in a function cache and executes them
at the appropriate time. Mugshot updates each synthetic

10



AJAX object with the appropriate log data before invok-
ing the application AJAX handler.

By interposing on the Date() constructor, Mugshot
forces time queries to read values from the log. The log
also contains the initialization seed used by the random
number generator at capture time. Mugshot uses this
value to seed the replay-time generator. This is sufficient
to ensure that subsequent calls to Math.random() re-
play faithfully.

3.3 Limitations

Mugshot uses a caching proxy to reproduce the load
events in the log. If an application fetches external con-
tent that does not pass through the proxy, Mugshot can-
not guarantee faithful replay of its data or its load time.
Thus, these ill-defined loads can ruin the fidelity of the
entire replay.

As described in Section 3.1.8, Mugshot must use an-
notation records to properly replay GUI events involving
drop-down boxes. Although the replay is correct from
the perspective of a <select> tag’s internal JavaScript
state, both IE and Firefox refuse to visually drop-down
a drop-down list in response to synthetic events. How-
ever, after Mugshot applies the annotation event, the vi-
sual display of the tag adjusts to indicate the appropriate
selection.

Web applications typically fail because of unexpected
interactions between HTML, CSS, and event-driven
JavaScript code. Mugshot logs all of these application
inputs and the associated event streams. In many cases,
this is sufficient to recreate a bug; the log-time browser
need not be the exact same type and version as the replay-
time browser. However, some bugs arise from an in-
teraction between the application and a specific browser
type and version. In these cases, it is crucial for the log-
time and replay-time browsers to be the same. Mugshot’s
client-side component records the identity of its log-time
browser (e.g., Firefox 3.5) so that the developer can run
the same browser at debug time. However, even this may
be insufficient to recreate some bugs—users can install
browser plug-ins or change local configuration state, and
the existence of that particular local state may be the root
cause of a bug. Since this type of client state cannot be
introspected by JavaScript code, Mugshot cannot reliably
reproduce these kinds of bugs.

If a web page contains multiple frames, proper log-
ging requires each frame to contain the Mugshot logging
<script> tag. Similarly, at replay time, each frame
must contain Mugshot’s replay script. The replay proxy
can automatically instrument statically declared frames.
However, if a page dynamically creates frames, e.g., us-
ing JavaScript, the developer is responsible for inserting
the appropriate Mugshot tags.

4 Evaluation
For Mugshot to be useful, it must be unobtrusive at

logging time and faithful to the original program exe-
cution at replay time. If event logging makes programs
sluggish, users will reject Mugshot-enabled applications;
if Mugshot cannot reproduce real bugs, it provides no
utility to application developers. In this section, we
run Mugshot on a variety of microbenchmarks and real
JavaScript programs, demonstrating that user-perceived
logging overhead is no worse than 6.8% for applications
with high event rates. We provide two examples of bugs
that Mugshot can log and then reproduce at replay time.
We also demonstrate that replay speed is not unaccept-
ably slow, and that events logs grow no faster than 100
KB per minute in applications with high event rates.

All experiments ran on an HP xw46000 workstation
with a dual-core 3GHz CPU and 4 GB of RAM. We
tested Mugshot performance inside two browsers, Fire-
fox v3.5.3 and IE8 v8.0.6001. When stripped of extrane-
ous white space and comments, Mugshot’s logging code
was 46 KB and its replay code was 35 KB. Note that only
the logging code must be shipped to end users, and only
the replay code must be shipped to debugger machines.

4.1 Microbenchmarks
To explore the basic computational overheads of log-

ging and replay, we inserted Mugshot into several mi-
crobenchmark applications. For each microbenchmark,
we compared its run time without Mugshot support to its
run time during logging and replay. We used the follow-
ing test suite:
• DeltaBlue is a constraint solver from Google’s V8

JavaScript benchmark suite [15]. The benchmark
is computationally intensive, but it has no user in-
terface, and it does not internally generate loggable
events. Thus, DeltaBlue’s Mugshot-enabled run-
ning time reflects any penalty that Mugshot imposes
on straightline computational workloads.

• The Date benchmark simply called new Date()
5000 times.

• In baseline and logging mode, the click bench-
mark dispatched 5000 synthetic mouse events as
quickly as possible. As explained in Section 3.1.7,
Mugshot normally does not log synthetic GUI
events since they are deterministic. However, for
the logging part of the benchmark, we forced
Mugshot to log the synthetic mouse clicks. At re-
play time, Mugshot simply tried to dispatch these
logged events as quickly as possible.

• The setTimeout benchmark issued 25 calls
to setTimeout(function(){}, 0). If the
computational overheads of logging and replaying
a null function are high, fewer interrupts can be is-
sued per unit time.

11



0.2

0.4

0.6

0.8

1
D

e
lt

a
B

lu
e

 b
e

n
ch

m
a

rk
 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

0

0.2

0.4

0.6

0.8

1

Firefox IE

D
e

lt
a

B
lu

e
 b

e
n

ch
m

a
rk

 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

(a) DeltaBlue benchmark.

0.5

1

1.5

se
tT

im
e

o
u

t 
b

e
n

ch
m

a
rk

 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

0

0.5

1

1.5

Firefox IE

se
tT

im
e

o
u

t 
b

e
n

ch
m

a
rk

 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

(b) setTimeout benchmark.

1

2

3

4

5

o
n

cl
ic

k
 b

e
n

ch
m

a
rk

 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

0

1

2

3

4

5

Firefox IE

o
n

cl
ic

k
 b

e
n

ch
m

a
rk

 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

(c) click benchmark.

5

10

15

20

25

30

D
a

te
 b

e
n

ch
m

a
rk

 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

0

5

10

15

20

25

30

Firefox IE

D
a

te
 b

e
n

ch
m

a
rk

 

sl
o

w
d

o
w

n

Baseline

Logging

Replay

(d) Date benchmark.

Figure 4: Microbenchmark slowdown due to logging and replay.

Figure 4 shows the Mugshot-induced slowdowns for the
test suite. Each graph depicts a benchmark’s execu-
tion time in baseline, logging, and replay scenarios; per-
formance is normalized with respect to baseline perfor-
mance. Each result represents the average of 10 trials,
and in all cases, standard deviations were less than 5%.

As expected, Figure 4(a) shows that Mugshot intro-
duced no overhead for a purely computational workload.
Figure 4(b) demonstrates that logging activity did not de-
lay interrupt scheduling in Firefox and IE. However, re-
play did introduce a 50% slowdown on IE; we are still
investigating the reasons for this behavior.

As shown in Figure 4(c), logging penalties slowed the
click benchmark by a factor of 3 on Firefox and 4.6 on
IE. The overhead primarily arose from the complex logic
needed to properly log mouse events on <select> ele-
ments (Section 3.1.8). During replay, the click bench-
mark slowed by a factor of 1.6 on Firefox and 2.1 on IE.
Most of the slowdown was caused by regular expression
computations during the parsing of the each click log
entry. An optimized version of Mugshot would parse the
entire log at replay initialization time. However, as we
show in Section 4.2, our unoptimized Mugshot can al-
ready replay real applications at a tolerable rate.

Figure 4(d) shows the Mugshot penalties for the Date
microbenchmark. The slowdown factors are large, rang-
ing from 8.4 to 23.9. The reason is that fetching the
current date in the baseline case is extremely fast— it
merely requires a read of a native browser variable. User-
level JavaScript code is much slower than native code,
so Mugshot’s Date() logging introduces high relative

overheads. Fortunately, Section 4.2 shows that real ap-
plications do not issue time queries at a high enough rate
to expose Mugshot’s logging overhead.

4.2 Application Examples
To evaluate Mugshot’s performance in more realistic

conditions, we examined its logging and replay over-
heads for seven applications. Three of the applications
were games with varying rates of event generation.
• DOMTRIS [26] is a JavaScript implementation of

the classic Tetris game.
• Pacman [6] is unsurprisingly a Pacman clone.
• Spacius [16] is a 2D side-scrolling space shooter.

These games implement many of their animations using
interrupt callbacks, so frame rates (and the user experi-
ence) will suffer if Mugshot introduces too much latency
to the critical path of interrupt dispatch.

We also evaluated Mugshot’s performance on four
non-games:
• The Applesoft BASIC interpreter [2] parses and

runs BASIC programs, providing an emulated joy-
stick and graphical display.

• NicEdit [19] is a WYSIWYG text and HTML edi-
tor.

• Painter [24] is a simple drawing program.
• The JavaScript shell [25] provides a command-

line interface for manipulating the DOM and
application-defined JavaScript state.

These programs stress Mugshot’s handling of form, key,
and selection events. Painter also makes use of the

12



25

50

75

100
IE

 L
o

g
 G

ro
w

th
 (

K
b

p
s)

Verbose

Compact

0

25

50

75

100

Tetris Pacman Spacius BASIC

IE
 L

o
g

 G
ro

w
th

 (
K

b
p

s)
Verbose

Compact

(a) IE applications.

25

50

75

100

F
ir

e
fo

x
 L

o
g

 G
ro

w
th

 (
K

b
p

s) Verbose

Compact

0

25

50

75

100

Tetris Pacman Spacius BASIC Painter NicEdit Shell

F
ir

e
fo

x
 L

o
g

 G
ro

w
th

 (
K

b
p

s) Verbose

Compact

(b) Firefox applications.

Figure 5: Growth rate of logs (kilobits per second).

mousemove event, so we configured Mugshot to log
those events for this application.

We evaluated Mugshot’s performance in the Firefox
browser for each of the seven applications. However,
we only evaluated Mugshot’s IE performance for the
first four applications. The latter three applications do
not replay correctly in IE; they trigger quirks in IE’s
form/selection event model that Mugshot does not cur-
rently handle.

4.2.1 Log Sizes

Figure 5 depicts the growth rate of Mugshot’s log for
each application, showing the size of the verbose log
and the compact log. The verbose log has a human-
friendly format; among other things, it contains a dump
of the page’s HTML at load time, and it explicitly tags
each event with an easy-to-understand string represent-
ing the event type and its parameters. In our experiences,
just reading the verbose log can provide a human de-
bugger with invaluable insights about program operation.
The compact log discards the beautifications of the ver-
bose log and represents events and their parameters using
short status codes. The compact log is also compressed
using the LZW algorithm with a window size of 200.

Figure 5 shows that the rates of uncompressed log
growth varied widely, from roughly 10 Kbps (Tetris) to
106 Kbps for Painter on Firefox and 95 Kbps for the BA-
SIC interpreter on IE. Figure 5 also shows that Mugshot’s
log compression is effective, with a worst case com-

0.5

1

1.5

T
e

tr
is

: 
In

te
rr

u
p

ts
 p

e
r 

se
co

n
d

Baseline

Logging

Replay

0

0.5

1

1.5

Firefox IE

T
e

tr
is

: 
In

te
rr

u
p

ts
 p

e
r 

se
co

n
d

Baseline

Logging

Replay

(a) Tetris.

10

20

30

40

50

P
a

cm
a

n
: 

In
te

rr
u

p
ts

 p
e

r 

se
co

n
d

Baseline

Logging

Replay

0

10

20

30

40

50

Firefox IE

P
a

cm
a

n
: 

In
te

rr
u

p
ts

 p
e

r 

se
co

n
d

Baseline

Logging

Replay

(b) Pac-man.

20

40

60

80

100

S
p

a
ci

u
s:

 I
n

te
rr

u
p

ts
 p

e
r 

se
co

n
d

Baseline

Logging

Replay

0

20

40

60

80

100

Firefox IE

S
p

a
ci

u
s:

 I
n

te
rr

u
p

ts
 p

e
r 

se
co

n
d

Baseline

Logging

Replay

(c) Spacius.

Figure 6: Interrupt rates.

pressed growth rate of 15.7 Kbps for the Painter ap-
plication. Painter’s logs were comparatively large be-
cause Mugshot had to log frequent mousemove events.
Spacius generated the second highest growth rates (10.9
Kbps KB on Firefox and 10.4 Kbps on IE). As we dis-
cuss in the next section, this was due to Spacius’ high
rate of interrupt events.

4.2.2 Logging and Replay Overheads

For Mugshot to be practical, its logging overhead must
have a minimal impact on the user experience. It is less
important for Mugshot to be able to replay application
traces in real time. However, replaying should not be so
slow that debugging is painful for a developer.

Games update the screen in response to GUI events
like mouse clicks. However, for graphically intense
games, most of the screen updates are driven by timer
interrupt callbacks. The dispatch rate of these call-
backs provides a natural metric for Mugshot-induced
slowdowns—the more overhead that Mugshot creates,
the slower these callbacks execute, and the more slug-
gish the application appears.

13



Figure 6 shows the interrupt dispatch rate for the three
games on IE and Firefox. As with the microbenchmark
results, we show dispatch rates for baseline, logging,
and replay scenarios. To measure these rates, we manu-
ally identified all of the interrupt handlers in each game,
adding a single line of code to each handler which incre-
mented a global counter. At the end of 30 seconds, we
divided this counter by the elapsed wall time to get the
number of interrupts dispatched per second.

Figures 6(a) and 6(b) show that for applications with
low to moderate interrupt rates, the interrupt dispatch
rate was unchanged, i.e., Mugshot logging introduced
no overhead. Compared to Tetris and Pacman, Spacius
had a very high interrupt rate, executing about 100 call-
backs per second. Figure 6(c) shows that for this ap-
plication, Mugshot’s logging overhead reduced dispatch
rates by 0.8% on Firefox and 6.8% on IE. However,
Spacius gameplay did not seem qualitatively degraded
during logging on either browser.

Figure 6 shows that dispatch rates at replay time can
decrease by as much as 75% in the case of a Spacius re-
play on Firefox. This time dilation is certainly tolerable,
but as mentioned in Section 4.1, we could improve the
replay rate by optimizing our log parsing.

4.2.3 Capturing Real Bugs

Mugshot’s goal is to capture application runs and re-
play them on developer machines. An important applica-
tion of replay mode is the recreation of buggy application
states. Armed with the event interleavings that generate
a program fault, a developer can use powerful localhost
debuggers to step through the log and inspect the appli-
cation’s state after each event.

Since we lacked detailed changelogs for the seven ap-
plications described in Section 4.2, we could not inten-
tionally undo a bug fix and then see whether Mugshot
could successfully log and replay a problematic event se-
quence. However, while performing the experiments in
Section 4.2, we did encounter bugs in two of the applica-
tions, both of which Mugshot could log and replay.

The first bug involved a display glitch in the Tetris pro-
gram which we were able to characterize in detail using
Mugshot. A Tetris game terminates if a falling block nes-
tles amongst the static blocks in a way that causes the
overall block structure to exceed a maximum allowable
height. When this happens, the game should render the
bottom part of the most recent piece but leave the top
part clipped, since this part extends above the playable
area. However, depending on the shape of the most re-
cent piece and the preexisting block structure, the Tetris
implementation we tested would incorrectly render the
final block structure, scattering the constituent blocks of
the final piece in arbitrary positions, sometimes overwrit-

ing preexisting blocks. Figure 3 shows an example of this
bug. The final piece is 1 block by 4 blocks, but when its
stacking causes the game to end, two of its blocks myste-
riously materialize in the square formation at the bottom
of the screen.

The second bug involved the Painter application. To
draw a rectangle in this program, the user clicks on the
“Rectangle Tool”, then drags the pointer across the can-
vas with the mouse button down. If the user selects the
“Rectangle Tool” and just single-clicks on the drawing
area, no rectangle should be drawn. However, after sin-
gle clicking, an expanding rectangle will appear as the
user moves the mouse. This makes the user think that
he is, in fact, drawing a rectangle. However, when the
mouse is clicked again, the rectangle suddenly disap-
pears.

We captured, replayed, and diagnosed both bugs us-
ing Mugshot. For both applications, the compressed log
which captured the bug was under 11 KB in size. Trans-
mitting such an error report to developers would be ex-
tremely fast, even on a slow connection.

5 Privacy

Mugshot provides developers with an extremely de-
tailed log of user behavior. Some might worry that this
leads to an unacceptable violation of user privacy. Such
privacy concerns are valid. However, web sites can (and
should) provide an “opt-in” policy for Mugshot logging,
similar to how Windows users must willingly decide to
send performance data to Microsoft [14].

We also emphasize that Mugshot is not a fundamen-
tally new threat to online privacy. Web developers al-
ready have the ability to snoop on users to the extent al-
lowed by JavaScript, and to send the resulting data back
to their own web servers. Indeed, many web sites already
perform a crude version of event logging using web anal-
ysis services like CrazyEgg [9] that build heat maps of
click activity on a particular page. In all cases, the scope
of JavaScript-based snooping is limited by the browser’s
cross-site scripting policies. From the browser’s perspec-
tive, Mugshot is not an exception: it is subject to exactly
the same restrictions designed to thwart malware. These
restrictions prevent all programs—including Mugshot—
from snooping on a frame owned by one domain and
sending that data to a different domain.

6 Conclusions

As web applications have grown in popularity,
browsers have shipped with increasingly powerful
JavaScript debuggers. These tools are extremely useful
for introspecting applications that are running on a local

14



development machine. However, they cannot be used to
examine program contexts which reside on remote ma-
chines. When regular end users encounter application
bugs, they will not inspect the application using their
browser’s advanced debugger. At best, they will send
a bug report which describes their problem using natural
language. At worst, they will do nothing and simply be
frustrated. Ideally, users would have a convenient way to
give developers the precise event sequence that led to a
buggy application state. The developer could then recre-
ate the execution run and use his knowledge of the code
to diagnose the problem.

To address these issues, we created Mugshot, a
lightweight framework for capturing JavaScript applica-
tion runs and replaying them on different machines. Ex-
periments show that Mugshot introduces little overhead
at logging time. For applications like games which gen-
erate many events, Mugshot slows execution speeds by
6.8% in the worst case. Mugshot event logs grow at a
reasonable rate, requiring 20–80 KB per minute of ap-
plication activity. Using Mugshot’s replay mode, we
have successfully recreated bugs in two real applications.
Mugshot’s logs also support usability investigations and
traditional click analytics.

References
[1] APPLE COMPUTER. Crash Reporting for iPhone OS Applica-

tions, 2009. Technical Note TN2151.

[2] BELL, J. Applesoft BASIC Interpreter in Javascript. http:
//www.calormen.com/applesoft/.

[3] BOUTEILLER, A., BOSILCA, G., AND DONGARRA, J. Retro-
spect: Deterministic Replay of MPI Applications for Interactive
Distributed Debugging. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface (2007), vol. 4757 of Lec-
ture Notes in Computer Science, Springer, pp. 297–306.

[4] BREAKPAD. http://kb.mozillazine.org/Breakpad.
MozillaZine Knowledge Base.

[5] CHOI, J.-D., AND SRINIVASAN, H. Deterministic replay of Java
multithreaded applications. In Proceedings of the SIGMETRICS
Symposium on Parallel and Distributed Tools (1998), pp. 48–59.

[6] CIESLAK, K. PacMan! http://www.digitalinsane.
com/api/yahoo/pacman/.

[7] CLICKTALE LTD. ClickTale: Record, Watch, Understand.
http://www.clicktale.com, 2009.

[8] CORNELIS, F., GEORGES, A., CHRISTIAENS, M., RONSSE,
M., GHESQUIERE, T., AND BOSSCHERE, K. D. A taxonomy of
execution replay systems. In Proceedings of International Con-
ference on Advances in Infrastructure for Electronic Business,
Education, Science, Medicine, and Mobile Technologies on the
Internet (2003).

[9] CRAZY EGG, INC. CrazyEgg: Visualize Your Visitors. http:
//crazyegg.com/, 2010.

[10] DIONNE, C., FEELEY, M., AND DESBIENS, J. A Taxonomy of
Distributed Debuggers Based on Execution Replay. In Proceed-
ings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (1996), pp. 203–214.

[11] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND
CHEN, P. M. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of OSDI (2002),
pp. 211–224.

[12] FORESEE RESULTS, INC. CS SessionReplay. http://www.
4cresults.com/CSSessionReplay.html, 2009.

[13] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, I. Re-
play debugging for distributed applications. In Proceedings of
USENIX Technical (2006), pp. 289–300.

[14] GLERUM, K., KINSHUMANN, K., GREENBERG, S., AUL, G.,
ORGOVAN, V., NICHOLS, G., GRANT, D., LOIHLE, G., AND
HUNT, G. Debugging in the (Very) Large: Ten Years of Im-
plementation and Experience. In Proceedings of SOSP (2009),
pp. 103–116.

[15] GOOGLE. V8 JavaScript benchmarks. http://code.
google.com/apis/v8/benchmarks.html.

[16] HACKETT, M., AND MORSE, J. Spacius. http://
scriptnode.com/lab/spacius/.

[17] JON HEWITT. Ajax Debugging with Firebug. http://http:
//www.ddj.com/architect/196802787, January 10,
2007.

[18] KICIMAN, E., AND LIVSHITS, B. AjaxScope: A Platform for
Remotely Monitoring the Client-side Behavior of Web 2.0 Appli-
cations. In Proceedings of SOSP (2007), ACM, pp. 17–30.

[19] KIRCHOFF, B. NicEdit. http://nicedit.com/.

[20] K.VIKRAM, PRATEEK, A., AND LIVSHITS, B. RIPLEY: Au-
tomatically Securing Web 2.0 Applications Through Replicated
Execution. In Proceedings of CCS (2009), pp. 173–186.

[21] LAWRENCE, E. Fiddler: Web Debugging Proxy. http:
//www.fiddler2.com/fiddler2, 2009. Microsoft Cor-
poration.

[22] NARAYANASAMY, S., POKAM, G., AND CALDER, B. Bugnet:
Recording application-level execution for deterministic replay
debugging. IEEE Micro 26, 1 (2006), 100–109.

[23] PARK, S., AND MILLER, K. Random Number Generators: Good
Ones are Hard to Find. Communications of the ACM 31 (1988),
1192–1201.

[24] ROBAYNA, R. Canvas Painter. http://caimansys.com/
painter/.

[25] RUDERMAN, J., MIELCZAREK, T., LEE, E., AND RONN-
JENSEN, J. JavaScript Shell. http://www.squarefree.
com/shell/.

[26] SEIDELIN, J. DOMTRIS. http://www.nihilogic.dk/
labs/tetris/.

[27] SELENIUM WEB APPLICATION TESTING SYSTEM. http://
seleniumhq.org/, 2009.

[28] WOOD, L., NICOL, G., BYRNE, S., CHAMPION, M.,
HORS, A. L., HÉGARET, P. L., AND ROBIE, J. Doc-
ument object model (DOM) level 2 core specifica-
tion, Nov. 2000. http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113.

[29] XU, M., BODÍK, R., AND HILL, M. D. A “Flight Data
Recorder” for Enabling Full-System Multiprocessor Determinis-
tic Replay. In Proceedings of ISCA (2003), pp. 122–133.

15


