
Protection and Communication Abstractions
for Web Browsers in MashupOS

Helen J. Wang
Microsoft Research
Redmond, WA, USA

helenw@microsoft.com

Xiaofeng Fan
Microsoft Research
Redmond, WA, USA

xiaoffan@microsoft.com

Jon Howell
Microsoft Research
Redmond, WA, USA

howell@microsoft.com

Collin Jackson
Stanford University
Palo Alto, CA, USA

collinj@cs.stanford.edu

ABSTRACT
Web browsers have evolved from a single-principal platform on
which one site is browsed at a time into a multi-principal plat-
form on which data and code from mutually distrusting sites in-
teract programmatically in a single page at the browser. Today’s
“Web 2.0” applications (ormashups) offer rich services, rivaling
those of desktop PCs. However, the protection and communication
abstractions offered by today’s browsers remain suitable only for
a single-principal system—eitherno trustthrough complete isola-
tion between principals (sites) orfull trust by incorporating third
party code as libraries. In this paper, we address this deficiency
by identifying and designing the missing abstractions needed for
a browser-based multi-principal platform. We have designed our
abstractions to be backward compatible and easily adoptable. We
have built a prototype system that realizes almost all of our abstrac-
tions and their associated properties. Our evaluation shows that our
abstractions make it easy to build more secure and robust client-
side Web mashups and can be easily implemented with negligible
performance overhead.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Security, Standardization

Keywords
Browser, Web, same-origin policy, protection, communications, se-
curity, multi-principal OS, abstractions

1. INTRODUCTION
Web browsers are becoming the single stop for everyone’s com-

puting needs including information access, personal communica-
tions, office tasks, and e-commerce. Today’s Web applications syn-
thesize the world of data and code, offering rich services through
Web browsers and rivaling those of desktop PCs. Browsers have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07,October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

evolved to be a multi-principal operating environment where mu-
tually distrusting Web sites (as principals) interact programmati-
cally in a single page on the client side, sharing the underlying
browser resources. This resembles the PC operating environment
where mutually distrusting users share host resources.

However, unlike PCs that utilize multi-user operating systems for
resource sharing, protection, and management, today’s browsers do
not employ any operating system abstractions, but provide just a
limited all-or-nothing trust model and protection abstractions suit-
able only for a single-principal system: There is eitherno trust
across principals through complete isolation orfull trust through
incorporating third party code as libraries. Consequently, Web pro-
grammers are forced to make tradeoffs between security and func-
tionality, and oftentimes sacrifice security for functionality.

In the MashupOS project, we aim to design and build a browser-
based multi-principal operating system. Among the myriad of op-
erating system issues, we focus on the most imminent needs of
today’s browsers: abstractions for protection and communication.
The goal of protection is to prevent one principal from compro-
mising the confidentiality and integrity of other principals, while
communication allows them to interact in a controlled manner.

We follow the principles below in designing our abstractions for
Web programmers:

• Match all common trust levels: We must understand all the
common trust levels between Web content providers and in-
tegrators and aim to provide abstractions matching these lev-
els of trust. Otherwise, Web programmers would face mak-
ing tradeoffs among trust levels, either trusting more, and
sacrificing security, or trusting less, and losing functionality.

• Strike a balance between ease-of-use and security: One
might argue that a system is either secure or insecure and
there should be no middle ground. This may be true for
designing a security system like an authentication system,
but not true when designing abstractions for programmers.
A rigid set of abstractions that tie programmers’ hands and
limit flexibility for the purpose of better security often has
a short life span, since programmers can build up libraries
on the rigid interfaces to make their lives easy, resulting in
a de facto abstraction for all programmers. It would be bet-
ter for abstraction designers to design those abstractions with
security in mind. Our goal here is to provide a full set of ab-
stractions and enable programmers to build robust and secure
services that match their trust expectations (see above bullet),
rather than to make it impossible for programmers to shoot
themselves in the foot.

• Easy adoption and no unintended behaviors: Allowing easy
adoption is paramount in our abstraction design. We must



ensure that our abstractions allow programmers to provide
fallback mechanisms when Web pages using them are ren-
dered by legacy browsers. We also must ensure that there
are no undesirable interactions between new services and old
services in the new browser environment where our abstrac-
tions are supported.

By analyzing the trust relationship between content providers
and integrators, we identify four types of content that require sup-
port from the Web and browsers: (1)isolated contentthat is in-
tended to be completely isolated from other sites (domains), (2)
access-controlled contentthat is isolated but allows message pass-
ing across domains to give mediated access to the content, (3)open
contentthat allows any domain to access and integrate as the do-
main’s own content, and (4)unauthorized contentthat assumes no
privileges of any domain. Existing browser abstractions support
only isolated content with the<frame> abstraction and open con-
tent with the<script> abstraction, resulting in an all-or-nothing
trust model.

We propose abstractions for the missing content types and trust
relationships. We advocateunauthorized contentto be a funda-
mental addition to today’s Web content provisioning. We introduce
<Sandbox> and <OpenSandbox> abstractions and a provider-
browser protocol to enable content providers to publish and in-
tegrators to consume unauthorized content without liability and
overtrusting, providing both security and ease in creating client
mashups. Such support can also fundamentally combat Cross Site
Scripting attacks (a prominent threat in today’s Web and a con-
sequence of the all-or-nothing trust model) while allowing the
richest possible third party content. We have also proposed the
<ServiceInstance> abstraction for isolation, fault containment,
and as the unit of resource allocation andCommRequestfor cross-
domain communications unifying recent proposals.

We have designed these new abstractions to be backward com-
patible and free of undesirable interactions with legacy browsers
and legacy content. Our prototype implementation and evaluation
demonstrate that the abstractions can be practically integrated into
modern browser software with negligible overhead.

For the rest of the paper, we first give background in Section 2.
In Section 3, we describe browser resources and define MashupOS
principals that own these resources. We analyze trust relation-
ships between content providers and integrators and identify miss-
ing content types, trust relationships, and abstractions in Section 4.
In Section 5, we describe unauthorized content in detail and our
sandbox abstractions for it. We present our<ServiceInstance>
abstraction in Section 6 and theCommRequestabstraction in Sec-
tion 7. In Section 8, we show how our sandbox and ServiceInstance
abstractions can be utilized to combat Cross Site Scripting attacks.
We present our Internet Explorer-based prototype in Section 9. In
Section 10, we demonstrate the ease of creating a robust client
mashup through an example and evaluate the performance impli-
cations of realizing our abstractions. In Section 11, we compare
and contrast with related work. In Section 12, we give a discussion
on the future work and finally we conclude in Section 13.

2. BACKGROUND
The Web has evolved from a collection of static documents con-

nected by hyperlinks into a dynamic, rich, interactive experience
driven by client-side code and aggregation by Web services. The
security policy of modern browsers was designed to avoid vulner-
abilities in old sites, rather than to provide the best abstractions for
the newest sites. In this section, we summarize the existing access
control policies and the limitations they place on Web site design,

then describe a new access control policy that mashup authors are
demanding through existing proposals.

2.1 The Same-Origin Policy and the All-or-
Nothing Trust Model

Thesame-origin Policy(SOP) governs the access control on to-
day’s browsers. The SOP prevents documents or scripts loaded
from one origin from getting or setting properties of documents
from a different origin [38]. (The origin that a script is loaded is
the origin of the document that contains the script rather than the
origin that hosts the script.) Two pages have the same origin if
the protocol, port (if given), and host are the same for both pages.
Each browser window,<frame>, or<iframe> is a separate doc-
ument, and each document is associated with an origin. The SOP
policy concerns three browser resources: cookies, the HTML doc-
ument tree, and remote store access. In more detail, a site can only
sets its own cookie and a cookie is sent to only the site that sets
the cookie along with HTTP requests to that site. Two documents
from different origins cannot access each other’s HTML document
using the Document Object Model (DOM) which is a platform-
and language-neutral interface that will allow programs and scripts
to dynamically access and update the content, structure and style
of documents [13]. A script can access its document origin’s re-
mote data store using theXMLHttpRequestobject, which issues
an asynchronous HTTP request to the remote server [43]. (XML-
HttpRequest is the cornerstone of the AJAX programming.) The
SOP requires a script to issue XMLHttpRequest to only its docu-
ment origin.

For example, an<iframe> sourced withhttp://a.om can-
not access any HTML DOM elements from another<iframe>
sourced withhttp://b.om and vice versa.a.com’s scripts can
issue XMLHttpRequests to onlya.com, but not tob.com. HTTP
requests toa.comsend only cookies that are set bya.com.

A document may contain<script> elements from different
domains. Such third party scripts are treated as libraries that run as
the document’s origin rather than the scripts’ origins and can access
all of the document’s resources. For example,a.om/servie.html may contain the markup <script src=‘http://b.com/lib.js’>,
which allows lib.js to accessa.com’s HTML DOM objects,
cookies and data through XMLHttpRequest. However,lib.js
cannot accessb.com’s resources sincelib.js is associated with
the sitea.com, but notb.comin this context.

Following the SOP, today’s browser abstractions offer anall-or-
nothingtrust model for Web programmers. Sitea.comeither does
not trust Siteb.com’s content at all by segregatingb.com’s content
into a frame ora.comtrustsb.com’s scripts entirely by embedding
b.com’s scripts and giving them full access toa.com’s resources.

2.2 Web Mashups
Web mashups are defined as Web sites that compose content

from more than one site, yet this definition is in tension with the
same-origin policy, which prevents such interactions. Many con-
tent providers want to publish information for any integrator site
to use, but the same-origin policy prevents the integrator Web page
from issuing XMLHttpRequests for the data directly.

Initially, mashup developers worked around these restrictions
using a proxy approach: A proxy serves the aggregated content
from various domains and appears to the browser to be “same-
origin.” The pipes.yahoo.commashup creation wizard is a recent
example of this approach. When a Web user visits the mashup
on pipes.yahoo.com, it connects topipes.yahoo.comto get data.
The request is proxied to the real data provider, like NYTimes, and
the response data is then passed back frompipes.yahoo.comto the



mashup. The drawbacks of this approach are that the content makes
several unnecessary round trips, reducing performance; the proxy
can become a choke point, limiting scalability; and the proxy can
become a hop point that gives hackers more anonymity.

Recently, theAJAX (Asynchronous JavaScript And XML) pro-
gramming model has emerged, allowing Web services to shift in-
teractive user interface code from the Web server to the browser.
Where conventional Web pages handle every click with a round-
trip to the server, AJAX uses client-side code (“JavaScript”) to han-
dle many user interactions, providing interactivity not bounded by
network and server performance. Furthermore, when communica-
tion with the server is required, that communication occurs asyn-
chronously (“Asynchronous XML”) through XMLHttpRequest,
while the client-side code continues to provide interactivity in the
meantime. Outlook Web Access and Google Maps are examples of
early AJAX deployments.

The advent of AJAX makesclient-sidemashups popular. An
early example ishousingmaps.com, which mashes up the craigslist
housing database with the AJAX Google Maps library. Client-side
mashups include client-side interactions of script libraries from var-
ious sources as well as retrieving and aggregating data from differ-
ent sites. The former requires fully trusting the incorporated, third-
party scripts; the latter requires circumventing the same-origin pol-
icy and communication to servers from different domains. For
the latter, by encoding public data in executable JavaScript for-
mat (JavaScript Object Notation, or JSON [30]), cross-domain
<script> tags can also be used to pass data in executable for-
mat from the provider to the integrator across domain boundaries,
eliminating the need for proxies. Using<script> tags for cross-
domain data exchange has the unfortunate side effect of granting
the integrator’s privileges to the data provider, even though the data
provider may not be trusted by the integrator. The all-or-nothing
trust model of the SOP forces the integrator to trade security for
the capability of cross-domain communications.

Web gadget aggregators, such as iGoogle [27] and Windows
Live [33], are an advanced form of mashup, combining user-
selected active content from third-party sources into a single por-
tal page. Agadgetis an HTML-plus-JavaScript component de-
signed to be included into a gadget aggregator page; it is often the
client side of some Web service. Gadget aggregators are security-
conscious; they host each untrusted gadget in a frame on a distinct
(sub)domain, relying on the SOP to isolate third-party gadgets from
one another and from the outer page. However, because the SOP
prevents interoperation among gadgets, aggregators also support
inline gadgets, which include third-party code as a library of the
aggregator page using the<script> tag. The all-or-nothing trust
model of today’s browsers unfortunately forces the gadget aggrega-
tor to decide between interoperation and isolation. Because inlin-
ing requires complete trust, Google’s aggregator punts the security
problem to the user: “Inline modules can...give its author access to
information including your Google cookies...Click OK if you trust
this module’s author.”

2.3 Verifiable-Origin Policy (VOP)
Frustrated by the limitations of the SOP, mashup developers have

been pushing browser vendors to move to a new security policy
for the Web, allowing fine-grained policy decision making between
communicating domains. Web service providers want to be able to
make their own access control decisions as to whether data they
send between domains is public, whether it should be executed, or
whether it should be ignored, rather than relying on the browser to
make this decision. Several new browser communication propos-
als [11, 22] have emerged, governed not by the SOP, but rather by

what we call theverifiable-origin policy: A site may request infor-
mation from any other site, and the responder can check the origin
of the request to decide how to respond. Communication that obeys
the VOP is an important building block of our MashupOS proposal,
and is discussed further in Section 7.

3. PRINCIPALS AND RESOURCES

3.1 Principals
We cast the world of Web applications in the context of the con-

ventional notion of the multi-user operating system, in which dif-
ferentprincipalshave access to different sets ofresources. In the
OS environment, the principal is a user or group. By associating a
process with a principal, the OS ensures that the process only has
as much power as the principal that controls the process’ behavior.
In general, one user does not trust another with respect to the con-
fidentiality and integrity of her resources. In the Web environment,
the principal is the owner of some Web content. With the same-
origin policy, a principal on browsers is tied to the ownership of a
DNS domain.

Other notions of principal have been explored. The cookie
specification [16, 32] defines a path-based principal for cookie
access. By default, a cookie is associated with the Web page
that created it and any other Web pages in the same direc-
tory or any subdirectories of that directory. For example,
if the Web pagehttp://www.example.om/atalog/index.html creates a cookie, that cookie is also visible tohttp://www.example.om/atalog/order.html andhttp://www.example.om/atalog/widgets/index.html, but it is not vis-
ible tohttp://www.example.om/about.html. However, since
today’s SOP browsers allow same-domain pages to directly access
one another’s pages including their associated cookies, supporting
such fine-grained, path-based principals is moot—scripts inhttp://www.example.om/about.html can (create then) navigate to
an iframe sourced withhttp://www.example.om/atalog/index.html and access the index.html’s cookie. It is possible for
MashupOS to support a fine-grained principal and to reject legacy
support for SOP principals. Then MashupOS must ensure that only
“new” browsers and “new” servers interoperate. This saddles site
operators with the problem of incremental deployment, providing
both “MashupOS-enabled” content and legacy content. Once a site
operator works around SOP principals for legacy compatibility, the
proposed fine-grained principals offer no additional benefit. There-
fore, we use the SOP principal as the MashupOS principal. Web
servers that wish to provide more fine-grained principals must do
so using DNS subdomains rather than subpaths. Hierarchical DNS
names can represent hierarchical trust relationships among content
owners. In many common Web deployments, unfortunately, con-
tent owners sometimes have no control of the server’s DNS names-
pace. The rest of the paper uses the terms “domain” and “principal”
interchangeably.

Because a browser is never used by more than one human user
at the same time, MashupOS does not need to provide mechanisms
for arbitrating browser resources among users. In contrast, content-
owning principals can share browser resources simultaneously, and
must be mediated by MashupOS.

3.2 Resources
Browsers provide to applications the following resources:

• Memory: The heap of script objects. This is analogous to
process heap memory.



• Persistent state: Browsers provide applications with the abil-
ity to store a few kilobytes of cookies or some other persis-
tent state [26], which persist across application invocations.
This resource is weakly analogous to the OS file system.

• Display: The HTML DOM that controls the user’s display,
analogous to X Windows resources. The DOM API is itself
a heap of JavaScript objects.

• Network communications: The ability to send and receive
messages outside the application, equivalent to an OS net-
work facility.

Later, we address how MashupOS assigns these resources to dif-
ferent domains, and to what extent domains are allowed to access
resources belonging to other domains.

4. TRUST MODEL AMONG PRINCIPALS
An important goal of our work is to design abstractions that

match common trust levels of Web programmers in their service
creation, whether as a service provider providing a Web service or
component or as a service integrator integrating or composing oth-
ers’ services into a mashup. The content-rendering capability and
abstractions offered by browsers determine (and sometimes limit)
how content is provisioned by service providers and how content
can be integrated by service integrators from different domains.
Today’s browsers offer abstractions for only an all-or-nothing trust
model, which is insufficient for today’s Web services (Section 2).
In this section, we analyze and derive the various content types in
demand today as well as the common trust levels between providers
and integrators, and we identify the new content types and the new
abstractions that are needed for the missing trust relationships.

4.1 Existing Trust Relationship between Con-
tent Providers and Integrators

When a provider sitep.compublishes an HTML file, sayhttp://p.om/p.html, an integrator sitei.com can integratep.html
only by using frames: For example,http://i.om/i.html con-
tains <iframe src=‘http://p.com/p.html’>. By the same-origin pol-
icy (Section 2),p.html andi.html belong to different principals
(domains), and hence cannot access each other’s content on the
browser. Here, the “access” is dictated by the DOM interface for
content manipulation, which could be reading or writing a DOM
or JavaScript object or function invocations. We call such HTML
contentisolated content. Providing isolated content means that the
provider does not trust any integrators to access the provider’s con-
tent. This isolation is mutual—the integrator cannot access the
provider’s content, and the content cannot access the integrator’s
resources including its HTML elements, cookies, and its remote
store accessed through XMLHttpRequest. This trust relationship is
indicated in Row 1 of Table 1.

Whenp.compublishes a script, sayhttp://p.om/p.js, i.com
can integratep.js only by using the<script> tag: For example,http://i.om/i.html contains <script src=‘http://p.com/p.js’>.i.om treatsp.js as library code, andp.js runs as the principal of
i.com(rather than its sourcep.com). Because the same-origin pol-
icy applies only to the document origin, but not the script origin,
a script from any domain can be included by a document of any
domain even when their domains doesn’t match, and the script’s
global variables, objects, or functions can be accessed by the doc-
ument fully. For this reason, we call such script contentopen con-
tent. The open content can also access its integrator’s resources
fully.

Therefore, integrating open content requires the integrator to
fully trust the provider’s content to access any of the integrator’s
resources. It is possible that a provider includes in its open content
private and sensitive data which the provider does not trust integra-
tors to access directly. In such a scenario, the private and sensitive
data is protected through server authentication or script data struc-
tures and scoping—the server only returns the script when the inte-
grator is authenticated by the server; and the integrator can only ac-
cess sensitive data inside the script through script global functions
or methods. This trust relationship is shown in Row 3 of Table 1.
However, this is a dangerous practice for providers. As exemplified
by a recent Gmail vulnerability [21], attackers can lure a logged-in
victim user to visit an attacker page which embeds the provider’s
script. Because the user is in an active session, the correspond-
ing cookie that represents the user’s credential is sent along to the
provider for authentication of the script retrieval. The script that
contains the sensitive data, the user’s contact list in Gmail’s case,
is then returned to the attacker page. Although script data structure
and scoping can perform some level of access control, it places high
requirements on programmers’ being careful and thorough.

Therefore, a provider should put only non-sensitive information
in its open content. In that case, the provider can trust any integrator
to access the content in an arbitrary way. This trust relationship is
indicated in Row 5 of Table 1.

4.2 What is Missing

4.2.1 Cross-Domain Communications
What is lacking in the existing handling of isolated content is

that providers have no way of offering controlled access to the
isolated HTML content. This limitation has already motivated ad
hoc ways of cross-domain communications, e.g., through fragment
identifiers [6, 31] and common domain postfixes [28] as well as
new proposals like JSONRequest [11] and cross-document messag-
ing [22]. The latter proposals demand a VOP-based security policy
that allows controlled access to providers’ content based on the re-
quester’s source (Section 2). We call the isolated content to which
the content owner provides access control through cross-domain
communications,access-controlled content. The provider of the
access-controlled content still does not trust any integrators to ac-
cess the provider’s content by default, but can use cross-domain
communications to provide a subset of content based on the integra-
tor’s credentials. The integrators do not have to trust the provider
and the provider cannot access the integrators’ resources. The trust
relationship for access-controlled content is shown in Row 2 of Ta-
ble 1. We give our proposal of theCommRequestabstraction for
cross-domain communications and the<ServiceInstance> ab-
straction for access-controlled content in Section 6.

4.2.2 Unauthorized Content
It is safe to have isolated or access-controlled content to run as

its provider because no integrators are allowed unmediated access
to the content. It also makes sense that open content does not run as
the provider because integrators can directly access or tamper with
the content, and instead runs as the integrator since the integrator is
expected to trust the open content entirely. What is missing here is
a type of content that an integrator can directly access, but doesnot
trust to access the integrator’s resources. For example, an integrator
may want to use a script library (open content) from a different do-
main, but not trusting the script to touch the integrator’s resources.
It is necessary for such content to run as neither the provider nor
the integrator. Here, we introduceunauthorized contentto repre-
sent this kind of content. The trust relationship for unauthorized



P trusts T to ac-
cess P’s content

T trusts P to access T’s
resources

Content type Abstraction Run-as Principal

1 No No isolated <Frame> Provider
2 access-controlled <ServiceInstance> & CommRequest Provider

3 No Yes open <Script> (bad practice) Integrator

4 Yes No unauthorized <Sandbox> <OpenSandbox> None

5 Yes Yes open <Script> Integrator

Table 1: The Trust Model on the Web for a provider P and an integrator T

content is shown in Row 4 of Table 1. We present our abstractions
<Sandbox> and<OpenSandbox> for unauthorized content and a
provider-browser protocol for hosting and integrating unauthorized
content in Section 5.

4.2.3 Support for Third Party Content
Another significant deficiency is a lack of support for hosted,

third-party content which is a prevalent and fundamental part of
today’s Web. Examples of such content include user profiles of
social networking Web sites likeMySpace.com, user blogs at blog-
hosting sites, and ads at ad-hosting sites.

The host uses different domains to partition and isolate content.
Sometimes, a separate domain is used for each third party and for
the host. For example, gadget aggregators iGoogle and live.com
use separate domains for some of their third party gadgets. Again,
this setup imposes complete cross-domain content isolation. As
discussed above, a missing content type isaccess-controlled con-
tentthat provides strong isolation across the principals while allow-
ing the content owner to control others’ access to its content.

Sometimes the host allows some third parties to share the same
domain with the host. Domain-sharing allows content from dif-
ferent sources to be more tightly integrated, such as accessing one
another’s (DOM) objects by reference and directly invoking one
another’s functions. For example, iGoogle and live.com also sup-
port “inline gadgets”, allowing third party gadgets to be inlined
with the host page for interactions with the parent page as well as
other gadgets. MySpace.com also hosts user profiles at the same
domain. Unfortunately, modern browsers do not allow a host to
differentiate its content from the content of third parties. That is,
all content executes under the same credentials. This deficiency
has already yielded dangerous consequences, such as Cross Site
Scripting (XSS) attacks (Section 8). In one flavor of XSS attacks,
malicious third party content, such as a user profile, is uploaded
to the host and then abuses the host’s privileges to cause dam-
ages to other third party content or the host itself. The notorious
Samy worm [39] was such an attack that infected over a million
MySpace.com users within just 20 hours, making Samy one of the
fastest spreading worms of all time. What is missing is a proto-
col for the host to indicate the untrustworthiness of certain third
party content to browsers and the capability for browsers to deny
such content’s access to any domain’s resources by default unless
explicitly allowed. Such content falls underunauthorized content
whose objects and functions can be accessed directly by the host,
but the third party script cannot access the host’s resources unless
explicitly allowed by the host.

Interestingly enough, different treatment of third party content is
also demanded in the context of Web spam. Google announced
in early 2005 [20] that hyperlinks with arel="nofollow" at-
tribute [23] would not influence the link target’s PageRank [5].

In addition, the Yahoo and MSN search engines also respect this
tag [44]. With a browser-server protocol and browser abstractions
for unauthorized content in handling third party content, search en-
gines can more easily fight against Web spam by discounting the
links in unauthorized content.

4.3 Putting it Together: Completeness
Now we refer back to Table 1 to give a qualitative understanding

of the completeness of our above derived content types and their
associated browser abstractions demanded by the Web. Table 1
enumerates all possible trust levels between providers and integra-
tors at the granularity of provider’s content and integrator’s princi-
pal. We don’t strive to provide abstractions to satisfy all possible
Web programmers’ trust levels at the most fine-grained level, say
the trust levels for a particular DOM element of an HTML content.
Providing browser abstractions at such a fine-grained level would
result in a large and complex set of abstractions that are hard to use
correctly and difficult to reason about. We use different granulari-
ties for providers and integrators because when a provider provides
a piece of content, the provider never intends to give away the rest
of its principal’s resources like cookies or access to remote store
through XMLHttpRequest. However, when an integrator consumes
content, all of the integrator’s principal’s resources are at stake.

As shown in Table 1, all trust levels are met with
a content type along with either an existing abstraction
(<Frame> or <Script>) or a new abstraction (<Sandbox>,
<OpenSandbox>, <ServiceInstance>, CommRequest) which
we will present in the subsequent sections.

For the security of its site, a provider must ensure that no mat-
ter how open content and unauthorized content may be used (or
abused) by an integrator, it will not violate the access control of
the provider’s access-controlled or isolated content. For example,
a provider that offers both an access-controlled mail service and a
public map library service must ensure that its map library code or
any other third party unauthorized content have no access to any of
its users’ mailboxes or contact lists.

5. UNAUTHORIZED CONTENT AND THE
SANDBOX ABSTRACTIONS

In MashupOS, we enable service providers to publish and inte-
grators to consumeunauthorized content(Section 4), such as third-
party content, without liability and overtrusting through a provider-
browser protocol and the<Sandbox> and <OpenSandbox>
browser abstractions, which we detail in this section. Allowing dif-
ferentiation between third-party content and a host’s own content
has significant security benefits as we will discuss in Section 8.



5.1 Private and Open Unauthorized Content
A key property of unauthorized content is that such content is

not authorized torun asany principal, and, hence, cannot have ac-
cess to any principal’s resources including its HTML DOM objects,
cookies, and access to its remote store through XMLHttpRequest.
Note that this is a one-way restriction that restricts the reach of
unauthorized content, but integrators can possibly have full access
to the unauthorized content by references.

Unauthorized content may be directly published by a service
provider. This is the case for third party content hosting. An in-
tegrator can also turn an open content into an unauthorized content
with our sandbox browser abstraction (described in detail in the
next subsection) when the integrator does not trust the open con-
tent to access the integrator’s resources.

Although unauthorized content does not run as any principal, it
maybelong toa principal in the sense that the unauthorized content
is private to the principal and cannot be accessed by other princi-
pals. For example, an integrator may group some of its own, private
HTML DOM elements (including its own scripts) and a third-party
script (open content) into a piece of unauthorized content. In this
scenario, the integrator would want to maintain this unauthorized
content to be private to itself, and at the same time, disallow its
access to the integrator’s resources other than the private HTML
DOM elements inside the unauthorized content. Private unautho-
rized content is particularly useful for an integrator to integrate
open content that the integrator does not trust.

Open unauthorized contentallows any principal to access the
content directly. Open unauthorized content is particularly useful
for providers to provide a service to any integrators while not being
liable for it. For example, today’s map services typically publish
a script library and require integrators to supply a<div> element
for the map to be drawn. Alternatively, the map service could take
the form of open unauthorized HTML content that already contains
a<div> element together with the map script library. This would
save some steps for the integrators.

5.2 Sandboxing Unauthorized Content at the
Browser

We introduce two new HTML tags for integrators to in-
clude unauthorized content:<Sandbox> for private unautho-
rized content that is hosted at and belongs to the integrator and
<OpenSandbox> that may be hosted by any domain:<Sandbox sr='aFileName'>Fallbak if tag not supported</Sandbox><OpenSandbox sr='aDomain.om/aFileName'>Fallbak if tag not supported</OpenSandbox>

Because the content in<Sandbox> is private, when thesrc at-
tribute indicates a path from a different domain (principal), the en-
closing page cannot access the content in the sandbox; only when
the content comes from the same domain can the enclosing page
access the content fully. In contrast, for<OpenSandbox>, no mat-
ter which domain hosts the content, the enclosing page can access
the content fully including the HTML content. We use the term
“sandbox” to loosely refer to either element.

Although the sandboxed content cannot reach out of the sand-
box, the enclosing page of an open sandbox or the same-domain
enclosing page of a private sandbox can access everything inside
the sandbox by reference. The access includes reading or writing

script global objects, invoking script functions, and modifying or
creating DOM elements inside the sandbox through DOM method
calls. When the enclosing page invokes a sandbox’s function or
method, the invocation is done in the context of the sandbox—it is
analogous to callingsetuid(“unauthorized′′) before the invo-
cation andsetuid(“enclosingPagePrincipal′′) after the invo-
cation so that the enclosing page’s principal’s resources are inacces-
sible during the invocation. The enclosing page is unable to pass its
own object references (or any other references that do not belongto
the sandbox) into the sandbox. This is to prevent code from within
the sandbox from following those references out of the sandbox.
For example, the enclosing page is unable to pass its own display
elements like<div> into the sandbox. If an integrator wants to
integrate a third-party library together with some of its own content
such as display elements that may be needed by the library, the inte-
grator should create its own (private or open) unauthorized content.
The unauthorized content would include both the library and the
display elements, which would all be sandboxed. In our implemen-
tation, every object reference from within the sandbox is checked
to see whether the reference belongs to the sandbox; for references
that don’t belong to the sandbox, an exception is thrown.

5.2.1 Access control rules for sandboxes
The same-origin policy provides each piece of content with some

freedom and some protection: It is free to access other content
from the same domain, and it is protected from access by con-
tent from other domains. Sandboxes, however, are exceptions to
these general rules. A private sandbox enjoys the usual protection,
but an open sandbox enjoys less protection: It is intended to be
used like a library to extend the enclosing piece of content (which
may have a different origin); therefore an open sandbox can be
accessed by exactly the same things that can access the enclosing
content. A sandbox (whether open or private) has less freedom than
other kinds of content: It is intended to hold untrusted code; there-
fore it can access only itself and by implication the nested open
sandboxes that extend it, but not any other content even from the
same domain, even if it’s nested. If a sandbox were allowed to
access nested same-domain content, malicious third-party code in
the sandbox could gain access to private content by dynamically
generating nested frames or private sandboxes. Since frames inside
sandboxes are protected from tampering by the sandbox, they are
not restricted by the sandbox and have all the freedom granted by
the same-origin policy. Notice that the origin of a private sandbox
is relevant for its protection but not for its freedom, and the origin
of an open sandbox is completely irrelevant just like open content.

5.2.2 Sandboxes for robust client mashups
Most of today’s client mashups use third-party scripts (open con-

tent) for service components. Sandboxes enable integrators to cre-
ate robust and secure client mashups of open content without sac-
rificing the programming convenience of library function invoca-
tions. For each third-party library that an integrator uses, the inte-
grator can generate a piece of (open or private) unauthorized con-
tent containing the library along with its needed display DOM ele-
ments such as<div> and put the unauthorized content into a sand-
box. The integrator can then access and mash up content across its
sandboxes as it wishes without worrying about any of the libraries
maliciously or recklessly tampering with the integrator’s content or
other resources. In Section 10.1, we demonstrate how easy it is to
implement a more secure client-side mashup with<Sandbox>.

5.2.3 Risks
Although the code from within a sandbox can never follow ref-



erences to outside the sandbox, the data references from within a
sandbox may be used by the outside of the sandbox. Since these
data references are also managed by the untrusted library service,
Web programmers should take caution and check the validity of
these data before use.

5.3 Provider-Browser Protocol for Indicating
and Rendering Unauthorized Content

When a provider publishes unauthorized content, a provider-
browser protocol is needed for the provider to indicate to browsers
that such content is not trustworthy and for browsers to forbid
rendering (or running) the content in the name of any principal.
Enforcement is needed not only for the new<Sandbox> and
<OpenSandbox> tags that are designed to limit the reach of unau-
thorized content, but also for the existing browser abstractions like
<frame>s — frames must not be allowed to render unauthorized
content; otherwise, the unauthorized content would run in the name
of the frame’s principal and could access all of the principal’s re-
sources and violate the key semantic of unauthorized content.

We employ the MIME protocol [18] as our provider-
browser protocol. We require providers of unautho-
rized content to prefix their MIME content subtype with
x-privateUnauthorized+ for private unauthorized content
and with x-openUnauthorized+ for open unauthorized
content. For example, a private unauthorized HTML content must
be labeledtext/x-privateUnauthorized+html. We
verified that both Firefox and Internet Explorer fail to render these
MIME types.

To ensure that unauthorized content providers do not inadver-
tently publish unauthorized content as access-controlled/isolated
content, we constrain the<Sandbox> tag to render only content
that is of a private unauthorized MIME type and<OpenSandbox>
to render only content that is of an open unauthorized MIME types
or open content.

The integrator should take caution to sandbox open content
consistently—if a third-party library is sandboxed in one applica-
tion, but not sandboxed in another application of the same domain,
then the library can escape the sandbox when both applications are
used.

6. THE ABSTRACTION FOR ACCESS-
CONTROLLED CONTENT

Existing mainstream browsers have no mechanism for controlled
cross-domain communication. The only cross-domain communica-
tion primitive available is the<script> tag, which gives the ser-
vice provider uncontrolled access to the integrator’s domain. There
do exist some cross-domain communication proposals (browser-
to-server [1,11,22] and browser-side [41]), but they are not widely
adopted, and they each exist in isolation, so none provides a general
solution to the problem of mismatched trust patterns.

As a result of the lack of controlled cross-domain communica-
tion, there is also no way for a parent window and a child window,
containing mutually untrusted content, to flexibly negotiate the lay-
out of the boundary between them. Browser<frame>s offer iso-
lation at the cost of rigid, parent-controlled layout;<div>s offer
flexible, content-sensitive layout at the cost of requiring full trust
between parent and child content.

Finally, the only protection abstraction in contemporary
browsers is the SOP boundary. Unlike an OS process, a single
principal cannot instantiate this abstraction multiple times to pro-
vide fault containment among multiple applications.

In this section, we present the<ServiceInstance> ab-

straction, which is a unit of isolation, fault containment,
and resource allocation. Controlled communication between
<ServiceInstance>s is allowed through ourCommRequest
communication abstraction which we detail in the next section. The
<ServiceInstance> abstraction is used for rendering access-
controlled content (Section 4).

6.1 Isolation and Fault Containment:
ServiceInstance

An application instantiates a<ServiceInstance> with the
tag:<ServieInstanesr="http://bob.om/app.html" id="bobApp">
The tag creates an isolated environment, analogous to an OS pro-
cess, fetches into it the content from the specifiedsr, and asso-
ciates it with the domainbob.comthat served that content. The
HTML file specified by thesr tag should contain only asript
tag; any layout elements are ignored.

To understand the value of the<ServiceInstance> ab-
straction, we must specify how resources areisolated. A
<ServiceInstance> is a unit of resource allocation; it accounts
for commodity resources such as CPU and memory pages, as well
as a protection boundary, to prevent other domains from compro-
mising the privacy or integrity of the data stored in those resources.
This paper defers the issue of commodity resource allocation to fu-
ture work, and this section focuses on the concerns of protecting
resources.

6.1.1 Memory
Each <ServiceInstance> has its own isolated region of

memory: No<ServiceInstance> can follow a JavaScript ob-
ject reference to an object inside another<ServiceInstance>.
This is true even for<ServiceInstance>s associated with the
same domain, just as multiple OS processes can belong to the same
user: one domain can use<ServiceInstance>s to provide fault
containment among multiple application instances. For example,
suppose a browser runs both a calendar and an address book gadget
from a single site. If the calendar application dies of an exception
or runaway resource usage, its<ServiceInstance> can be killed
without affecting the addressbook gadget. This fault containment
is a bonus; it does not affect the adversarial cross-domain relation-
ships that MashupOS focuses on.

6.1.2 Persistent state
Cookies are handled no differently than in existing browsers:

two<ServiceInstance>s can access the same cookie data if and
only if they belong to the same domain, just as two processes can
access the same files if they are running as the same user.

6.1.3 Display
A raw <ServiceInstance> comes with no display re-

source. Instead, the parent document that created the
<ServiceInstance> must allocate a subregion of its own dis-
play, called a<Friv> (more in the next section), and assign the
<Friv> to the child<ServiceInstance>. A child can control
multiple display regions if its parent assigns it multiple<Friv>s,
just as a single process can control multiple windows in a desktop
GUI framework, such as a document window, a palette, and a menu
pop-up window. The code in the<ServiceInstance> controls
each display region by manipulating its corresponding DOM tree.
As Web applications grow in sophistication, and as sophisticated
Web “window managers” appear to manage these applications [45],
it will be important for MashupOS to support this pattern.



6.1.4 Network resources
A ServiceInstance can access its principal’s remote data store

throughXMLHttpRequest, following the same-origin policy. Ser-
viceInstances can also communicate with one another withComm-
Request(Section 7.

6.2 Flexible Cross-Domain Display: Friv
In today’s browsers, there are two primary mechanisms by which

control of display regions can be parceled out to separate applica-
tions. The simplest is the<iframe>, which provides an entire log-
ical browser window inside a rectangular frame in the parent page.
If the enclosed page is bigger than its containing frame, scrollbars
appear. Because the contained content is a separate page in a sep-
arate SOP domain, the child has no influence over the layout of its
frame in the parent page. The alternative is the<div>, which is
the basic unit of layout. A<div> can conform to the size of its
contents. As a<div> resizes, it affects the layout of its parent
DOM element. Unlike the<iframe>, the<div> is only a dis-
play layout interface, not a boundary between documents, so it pro-
vides no isolation. In practice, web developers often use<div>s,
sacrificing isolation to achieve flexible layout.

MashupOS introduces the<Friv>, a flexible cross-domain dis-
play abstraction. A<Friv>, like an <iframe>, provides a
boundary between a container document and an inner document,
isolating the content from separate domains, but enabling the inner
document to appear within the container’s display. Like a<div>,
the<Friv> allows the child’s layout requirements to flow to the
frame in the container, enabling the container to adjust its layout to
suit the child document. It achieves this by providing default han-
dlers that negotiate layout size across the isolation boundary using
the MashupOS local communication primitives (Section 7), provid-
ing flexible<div>-like layout behavior. The<Friv> is so named
because it crosses the<iframe> and the<div>.

The following tag syntax creates a new<Friv> in the parent’s
layout and assigns it to an existing<ServiceInstance>. ThebobApp ServiceInstance receives an event referring to the initially-
empty DOM tree for the<Friv>, and populates it using JavaScript
code.<Friv instane="bobApp">
This alternate syntax creates a new<ServiceInstance> and a
new<Friv> simultaneously, and assigns the latter to the former.<Friv sr="http://bob.om/page.html">
6.2.1 ServiceInstance and Friv Life Cycle

By default, the life cycle of a<ServiceInstance> is limited
by the<ServiceInstance>’s responsibility for some part of the
browser’s display. A<ServiceInstance> can track the display
regions that it owns by registering a pair of handlers with the meth-
ods:ServieInstane.attahEvent('onFrivAttah', fn);ServieInstane.attahEvent('onFrivDetah', fn);
The first callback is invoked whenever the parent assigns a new
<Friv> display to the<ServiceInstance>. When the parent
reclaims the display associated with a<Friv> (by removing the
<Friv> element from its DOM tree), the<Friv>’s DOM disap-
pears from the child<ServiceInstance>’s object space, and the
child’s onFrivDetached handler is called.

The defaultonFrivAttached andonFrivDetached handlers
track the set of<Friv>s. When the last<Friv> disappears, the
<ServiceInstance> no longer has a presence on the display, so
the default handler invokes

ServieInstane.exit()
to destroy the<ServiceInstance>.

A <ServiceInstance> can act as a daemon by overriding the
default handlers so that it continues to run even when it has no
<Friv>s. Such a<ServiceInstance> may continue to com-
municate with remote servers and local client-side components, and
has access to its persistent state. The browser may need to provide
a process list, sorted by resource consumption, to facilitate killing
errant daemons.

When a<Friv> is assigned to a new location (for example,
usingdocument.location = url, or equivalently, when the user
clicks on a simple link in the<Friv>’s DOM), the<Friv>’s fate
depends on the domain of the new location. The next two para-
graphs describe the two possibilities.

If the domain is different from that of the<ServiceInstance>
that presently owns the<Friv>, the behavior is just as if
the parent had deleted the<Friv> (detaching it from the ex-
isting <ServiceInstance>) and created a new<Friv> and
<ServiceInstance> with the <Friv src=...> tag. The only re-
source carried from the old domain to the new is the allocation
of display real-estate assigned to the<Friv>. This behavior is
analogous to creating a new process with a new identity, giving it
the handle of the existing X Window region, and disconnecting the
prior process from the same X Window.

If the domain matches that of the<ServiceInstance> that
owns the<Friv>, then the HTML content at the new location
simply replaces the<Friv>’s layout DOM tree, which remains
attached to the existing<ServiceInstance>. Any scripts as-
sociated with the new content are executed in the context of the
existing<ServiceInstance>.

Browsers allow a Web application to create a new “popup” win-
dow. The creation of a popup creates a new parentless<Friv>
associated with the<ServiceInstance> that created the popup.

Given this definition of the life cycle of a<ServiceInstance>
and <Friv>, the legacy <Frame> tag is implemented as
follows: For each domain, there is a special “legacy”
<ServiceInstance>. The <Frame src=x> tag is an alias for
<Friv src=x instance=legacy>. Thus, all frame content and scripts
for a single domain appear in a common object space, just
as they do in legacy SOP-only browsers. Within the legacy
<ServiceInstance>, each script still has a localdocument ref-
erence that identifies the<Friv> whose DOM the script was
loaded with, so that references likedocument.location are mean-
ingful.

Note that the automatic communication of layout information
between a child document and its container introduces a path for
information leakage. A malicious parent might load in a<Friv>
the url//mail/searh?q=enron, and infer from the layout size
of the resulting child document how much email the user has re-
garding the search keyword. One defense would require documents
to explicitly declare their willingness to participate in the<Friv>
layout protocol, although MashupOS does not yet specify such a
declaration.

7. COMMUNICATION: COMMREQUEST
As shown in Figure 1, a Web application is the pairing of

browser-side components and server-side components, all owned
by a common domain. This model guides the MashupOS design of
communication among domains: to the extent that a browser-side
application is an extension of a server-side application, it should be
allowed to communicate with other domains in the same ways that
the server can.



stocks.com

static

pages

webmail.com

cgi

client browser

webmail

display

stocks

display

1 2

3

0

Figure 1: The Same-Origin Policy isolates HTML pages and
frames based on their source. MashupOS supports both SOP
(1) and VOP (1, 2, 3) communication patterns, mirroring those
available to the server.

Legacy browsers follow the SOP in that they enable only com-
munication from the browser-side component to its corresponding
server (arrow 1). By communication we mean transfer of arbitrary
data, such as an XML file. Servers, however, frequently commu-
nicate with other domains by establishing a new TCP connection
(arrow 0). The recipient listens for the connection on a port, and
with each connection learns the identity of the sender (its IP ad-
dress, roughly equivalent to its SOP domain).

MashupOS follows the VOP, extending this facility to browser-
side components by providing two additional communications
paths: cross-domain browser-to-server communication and cross-
domain browser-side communication.

7.1 Browser-to-server communication
Section 2 describes how the SOP protects legacy servers (such

as those behind corporate firewalls) by confining browser-to-server
communication to stay within the same SOP domain. We are not
the first to observe [1, 11, 22] that cross-domain browser-to-server
communication (arrow 2) can be safely allowed, so long as the pro-
tocol labels the request with the domain that initiated it, and any
participating server verifies the domain initiating the request. A
VOP-governed protocol must fail with legacy servers; we adopt
the technique proposed by JSONRequest [11], requiring servers to
indicate their compliance by tagging their replies with a special
MIME content type (application/jsonrequest). Like JSON-
Request, CommRequest transmissions omit cookies to avoid sev-
eral subtle vulnerabilities.

7.2 Browser-side communication
MashupOS also provides browser-side communication across

domains (arrow 3). For example, a<ServiceInstance> from
bob.commay declare aport “inc”, and register a handler function
to receive browser-side messages on that port:funtion inrementFun(req) {var sr = req.domain;return parseInt(req.body) + 1;}var svr = new CommServer();svr.listenTo("in", inrementFun);

Another domainalice.comcan address a browser-side message
to Bob’s port using the new URL schemeloal that specifies
Bob’s SOP domain (〈scheme, DNS host, TCP port〉 tuple) and port
name:

req = new CommRequest();req.open("INVOKE", "loal:http://bob.om//in");req.send(7);y = parseInt(req.responseBody);
Local requests do not use HTTP, hence the special method IN-
VOKE. This scheme of named ports forms a symbolic name ser-
vice with nonconflicting names, since service names are required
to include the SOP domain of the site sponsoring the service (the
principal identifier).

Note that by requiring principal identifiers in the names, the
CommRequestport naming scheme is not a general discovery ser-
vice: an application cannot look up “local:IM” to discover any in-
stant messenger service that happens to be running in the browser.
We defer the task of a general discovery service (and the policy for
resolving conflicts) to a service built overCommRequest.

That said, there may still be non-adversarial name conflicts from
multiple<ServiceInstance>s running in the same browser. For
example, if one service is instantiated twice, the second instance
cannot listen to the same port as the first. In such an scenario, a
developer may wish to address each instance by its DOM relation-
ship to the message sender. To enable this relative routing, each
<ServiceInstance> has a unique identifier (analogous to a pro-
cess identifier), and a<ServiceInstance> can learn the identi-
ties of its parents and children.

For example, suppose both Alice’s page and Bob’s page include
an instant-messaging gadget fromim.com. Each parent page com-
municates with its ownim.com<ServiceInstance> to set de-
fault parameters, or to negotiate<Friv> boundaries (Section 6.2).

The im.com<ServiceInstance> looks up its own identifier,
and registers that identifier as a port name.id = servieInstane.getId()svr.listenTo(id, imListenFun);
Since the port’s address includes theim.comprincipal, no other
principal can maliciously introduce a port name conflict.

Alice’s <ServiceInstance>, wishing to address its
child im.com instance, does so using methods on the
<ServiceInstance> element representing the child in the
Alice’s DOM:si = doument.getElementById("IMhild");url = "loal:"+si.hildDomain()+si.getId();

Finally, a<ServiceInstance> can address its parent:url = "loal:"+servieInstane.parentDomain()+servieInstane.parentId();
The Web Applications working draft [41] proposes an alterna-

tive cross-domain browser-side communications mechanism. It
provides only parent-to-child addressing, not global addressing be-
tween arbitrary browser-side components like theloal: scheme
in MashupOS. It does not yet specify data-only communications
(although we surmise that is the intent). It reveals the full URI (not
just the domain) of the sending document, which may reveal secret
information such as session identification. It offers a unidirectional
model; CommRequest’s asynchronous procedure call matches the
XMLHttpRequestof today’s deployed AJAX applications.

Our <Sandbox> and <OpenSandbox> are also allowed to
communicate usingCommRequestfor both cross-domain browser-
to-server messaging and browser-side messaging just in the same
way as<ServiceInstance>. The origin of unauthorized content
is labeled “unauthorized”, and the protocol requires participating
Web servers to authorize the requester before providing service.



Because the requester is anonymous, no participating server will
provide any service that it would not otherwise provide publicly.

MashupOS restricts CommRequest messages to be data-only. As
in JSONRequest [11], adata-only objectis a raw data value, like an
integer or string, or a dictionary or array of other data-only objects.
Preventing the communication of arbitrary script objects discour-
ages strong coupling between<ServiceInstance>s and from a
sandbox to its enclosing page. Today it may be safe to pass a given
object to another domain, but tomorrow another developer, mod-
ifying a different part of the application, may add a reference to
the object, and suddenly the message recipient can reach arbitrarily
deeply into the sender’s object heap. Obviously, programmers have
the power (eval()) to blow wide holes in their application’s at-
tack surface; this is no less true in the browser than when handling
data-only server-to-server messages (Figure 1 case 0). The data-
only restriction simply encourages designers to reason about their
adversarial communication interfaces separately from their trusted
internal object interfaces.

8. COMBATTING CROSS SITE SCRIPT-
ING ATTACKS

As of 2006, more than 21% of vulnerabilities reported to CVE
are Cross Site Scripting (XSS) vulnerabilities, ranking number one
and surpassing buffer overflows, for two years in a row [7]. XSS
is one of the consequences of insufficient protection and commu-
nication abstractions in today’s browsers, particularly the lack of
support for unauthorized content. In this section, we show how we
use our abstractions ServiceInstance and sandboxes to combat XSS
attacks in a fundamental way while retaining or even enhancing the
richness of page presentation.

8.1 Background on XSS Vulnerabilities
In XSS, an attacker often exploits the case where a Web appli-

cation injects user input into a dynamically generated page, with-
out first filtering the input [29]. The injected content may be ei-
ther persistentor non-persistent. As an example of a persistent
injection attack, an attacker uploads a maliciously-crafted profile
to a social networking Web site. The site injects the content into
pages shown to others who view the profile. An injected script runs
with the social networking site as its domain, enabling the script to
make requests back to the site on behalf of the user. The notorious
Samy [39] worm that plaguedmyspace.comexploited persistent
injection; it infected over one million myspace.com user profiles
within the first twenty hours of its release.

A malicious input may also be non-persistent, simply reflected
through a Web server. For example, suppose a search site replies
to a queryx with a page that says “No results found forx.” An
attacker can trick a user into visiting a URL which contains a mali-
cious script within the queryx to the search site. The script in the
reflected page from the search site will run with the search site’s
privilege.

8.2 Existing Defense
The root causes of the XSS attacks are unsanitized user input and

unexpected script execution. Many existing mechanisms tackle the
first cause by sanitizing user input. For applications that take text-
only user input, the sanitization is as simple as enforcing the user
input to be text, escaping special HTML tag symbols like< into
their text form like “&lt;”. However, many Web applications, such
as social networking Web sites like myspace.com, demand rich
user input in the form of HTML. Because no existing browser ab-
stractions constrain the reach of an included script, these Web sites

typically have the policy of denying scripts in the user uploaded
HTML pages. Consequently, user input sanitization involves script
detection and removal. However, this turns out to be non-trivial:
Because browsers speak such a rich, evolving language and many
browser implementations exist, there are many ways of injecting
a script [37]. In many occasions already, creative attackers have
found new ways of injecting a script. The Samy worm [39] was
notorious for discovering several holes in myspace.com’s filtering
mechanism.

The difficulty of exhaustive input filtering led researchers to
tackle the second root cause, preventing unexpected script exe-
cution. Jim et al. [29] proposed BEEP to white-list known good
scripts and adding a “noexecute” attribute to<div> elements to
disallow any script execution within that element. Eich also pro-
posed a<jail> [14] that is similar to the “noexecute”<div>.
These proposals take a step towards the servers’ goal of denying
scripts. One drawback of these proposals is their insecure fallback
mechanism when BEEP-capable or<jail>-containing pages run
in legacy browsers: The “noexecute” attribute and the<jail>
tag would be ignored by legacy browsers, allowing scripts in the
<div> and<jail> element to execute.

8.3 Using MashupOS for Defense
The reason behind Web servers’ policy to disallow scripts is that

existing browsers provide no way to restrict a script’s behavior once
it is included. The best known approach is to use a cross-domain
<iframe> to isolate the user-supplied scripts. This approach is
undesirable for three reasons:

• It requires the server to serve the scripts from a second do-
main (to associate the scripts with a distinct domain),

• The<iframe> provides an inflexible display layout, and

• The user-supplied content cannot interact, even in a con-
strained way, with its containing page.

MashupOS’s <Sandbox>, <OpenSandbox>, and
<ServiceInstance> solve all of the problems with<iframe>
and can serve as a fundamental defense against XSS while
allowing third-party script-containing rich content.

For persistent, user-supplied HTML content, a Web server can
serve it as private or open unauthorized content (Section 5.3) de-
pending on whether the content contains private data. For non-
persistent user input in a reflected server page, the reflected page
can use a sandbox or ServiceInstance to contain the user input
with the “src” attribute being either a dynamic page proxied by the
server:<Sandboxsr='userInput.asp?... esaped input ...'></Sandbox>
or a “data” URI [34] with encoded content:<Sandboxsr='data:text/x-privateUnauthorized+html,... esaped user input ...'></Sandbox>

A <ServiceInstance> enables flexible layout by connect-
ing the unauthorized content’s display to the parent container
with a Friv. In the case of sandbox, the unauthorized con-
tent’s display DOM is directly accessible by the parent. A
<ServiceInstance> can communicate with its parent’s client or
server components using theCommRequest primitive. A sand-
box can do the same, plus the parent can directly access the child
objects.



IExplore.exe
Internet Explorer Application

ShDocVw.dll
Navigation & History

BrowserUI.dll
User Interface

MSHTML.dll
Trident

HTML/CSS Parser and Renderer

URLMon.dll
MIME Handling and File Download

WinInet.dll
HTTP/FTP and Cache

Script
Engine

MashupOS
Script Engine

Proxy

MashupOS
MIME
Filter

Script execution
DOM object access

DOM object update

Original 
HTML

MashupOS
transformed HTML

Internet Explorer Architecture

Figure 2: Our MashupOS prototype contains two extensions to
Internet Explorer [25]: (1) MashupOS MIME filter that trans-
forms HTML pages (2) MashupOS Script Engine Proxy that
interposes DOM object access and update.

9. IMPLEMENTATION
We have built a MashupOS prototype system in which we have

realized almost all proposed abstractions and their properties. We
did not implement<OpenSandbox> and the enforcement of unau-
thorized MIME content types for sandbox abstractions. Also, our
implementation supports only one Friv per ServiceInstance. Our
prototype is based on Internet Explorer 7 (IE) and runs on both
Windows XP SP2 and Windows Server 2003 SP1, but our method-
ology and techniques can also be applied to other browsers.

Instead of modifying IE’s source code directly, we leverage
browser extensions and public interfaces exported by IE. Figure 2
shows the MashupOS extensions. We don’t anticipate that the ac-
tual adoption of our abstractions will be implemented with browser
extensions, but inside browsers directly. The goal of our prototype
implementation is to investigate how easily our abstractions can be
realized.

Our system consists of two extensions to the IE architecture [25].
The first extension is a script engine proxy that we built from
scratch using public interfaces exported by IE. As in all browsers,
IE consists of an HTML/CSS rendering and layout engine and var-
ious script engines including a JavaScript engine and a VBScript
engine. When a script element is encountered during HTML ren-
dering, the script element is handed to a corresponding script en-
gine for parsing and execution. Script execution may manipulate
HTML DOM objects. For this purpose, the script engine asks the
rendering page for references to needed DOM objects. We intro-
duce the mechanism ofscript engine proxy(SEP), which interposes
between the rendering engine and the script engines, and mediates
and customizes DOM object interactions. To the rendering engine
of a browser, a SEP serves as a script engine and exports the inter-
face of a script engine; to the original script engine of the browser,
the SEP serves as a rendering engine and exports the DOM inter-
face of the rendering engine. We useobject wrappersfor the pur-
pose of interposition. When a script engine asks for a DOM object
from the rendering engine, a SEP intercepts the request, retrieves
the corresponding DOM object, associates the DOM object with its
wrapper object inside the SEP, and then passes the wrapper object
back to the original script engine. From that point on, any invoca-
tion of the wrapper object methods from the original script engine

goes through the SEP. In IE, a SEP takes the form of a COM [8]
object and is registered in the Windows Registry associated with a
scripting language (such as JScript) to serve as IE’s script engine
for that language. We have focused on the JavaScript language that
is dominant in today’s web applications. Our techniques can be
readily applied to other languages.

Our MashupOS Script Engine Proxy (MSEP) takes the crucial
role of implementing our various protection abstractions. Our
general strategy here is to use the existing isolation mechanism,
namely frames, as our building block.<ServiceInstance> and
<Sandbox> are implemented using frames with at least one script
inside (so that we can trigger MSEP’s interposition on the frame).
Isolation across protection domain boundaries is implemented with
cross-domain frames while full access across protection domain
boundaries is implemented with same-domain frames. For both
kinds of sandboxes, we further mediate each object access from
within a sandbox to ensure that the object belongs to the sand-
box and not a reference from the outside of the sandbox. Our
customized access control of cross-domain frames is realized via
object wrappers as described above.

The second extension, MashupOS MIME filter, is an asyn-
chronous pluggable protocol handler [35] at the software layer
of URLMon.dll where various content (MIME) types are han-
dled. Our MIME filter takes an input HTML stream and outputs a
MashupOS-transformed HTML stream to the next software layer in
IE. We use our MIME filter to translate new tags into existing tags,
such as<iframe> and<script>; and we use special JavaScript
comments inside an empty script element to indicate the original
tags and attributes to MSEP. For example,<sandbox sr='unauthorized.uhtml'name='s1'></sandbox>
is translated by our MIME filter to<sript> <!-- /**<sandbox sr='unauthorized.uhtml'name='s1'>**/ --> </sript><iframe sr='unauthorized.uhtml'name='s1'> </iframe>
The comments inside the script element informs MSEP that the
<iframe> with name “s1” should be treated as a sandbox. Similar
translation happens to<ServiceInstance>.

Our CommRequest-based communication primitives are imple-
mented by providing two runtime objectsCommServerandComm-
Request, with the communication methods described in Section 7.
For access control on XMLHttpRequest and cookies, particularly
for sandboxes, we again use the object wrapper mechanism above
for interception.

<Friv> is implemented using<iframe> as well. We used
CommRequest to carry out the automatic negotiation on the frame
width and height between a<Friv> and its parent.

We find that script engine proxies can serve as a great platform
for experimenting with new browser features. The fact that we are
able to implement all our abstractions on this platform along with
the MIME filter indicates that they should also be easy to add to the
existing browsers.

10. EVALUATION
In this section, we first demonstrate the ease of programming

robust Web services with MashupOS protection abstractions by



showcasing an example application in Section 10.1. We report the
performance measurement of our prototype system in Section 10.2.

10.1 Showcase Application
We have implemented a photo location Web service, called Pho-

toLoc, as a showcase application. PhotoLoc mashes up Google’s
map service [19] and Flickr’s geo-tagged photo gallery service [17]
so that a user can map out the locations of photographs taken.
Flickr provides API libraries in languages like Java or C# to inter-
act with the Flickr Web server across the network, for example to
retrieve geo-tagged photographs. To facilitate easy, browser-side
cross-domain communication, we created an access-controlled,
Flickr-based service that is isolated and protected with<Friv>
(Section 6.2) and communications with the service are through
CommRequest(Section 7). Google’s map service is an open con-
tent script library (Section 4). PhotoLoc chooses an asymmetric
trust relationship with Google’s map library, which means that it
trusts itself to use the library, but does not trust the library to ac-
cess PhotoLoc’s resources. PhotoLoc puts Google’s map library
along with the<Div> display element that the library needs into
“g.uhtml” and serves “g.uhtml” as private unauthorized content.
PhotoLoc’s main service page (index.htm) uses<Sandbox> to
contain “g.uhtml”. PhotoLoc can access everything inside the sand-
box, but Google’s map library cannot reach out of the sandbox.
Figure 3 shows our implementation.

10.2 Performance
Now we present the performance measurement of our

MashupOS prototype. We first present our micro-benchmark re-
sults that measure the overhead of our MashupOS-enabled Script
Engine Proxy (MSEP). Then, we present our macro-benchmark re-
sults on the impact of MSEP on page loading time. These mea-
surements shed light on the performance implication of realizing
MashupOS abstractions in the existing browsers. We conducted
our measurements on a 1.7 GHz Pentium-4 PC with 1.5 GB of
RAM, which runs Windows XP SP2 and Internet Explorer (IE) 7.

10.2.1 Microbenchmark on MSEP Overhead
We found a JavaScript and DHTML script performance bench-

mark called BenchJS [2]. The benchmark contains the following 7
JavaScript and DHTML tests.

1. Counting: count to 10000 and display a progress bar.

2. Open pops: open 8 pop ups and close them.

3. Replace images: replace 300 tiny images as fast as possible.
It repeats this procedure 10 times.

4. Text manipulation: manipulate long text with different ways.

5. Set tables: create 2000 table-cells and calculates a random
background color for each table-cell.

6. Put layers into place: create a phrase out of 50 different lay-
ers that are pulled together.

7. Calculate x-mas: calculate the days of the week for the next
10000 x-mas (not counting display time).

We run the 7 tests on both a MSEP-equipped IE 7 and IE 7 alone.
We run each test four times and report the average latency in the
top half of the Table 2. As we can see, for both the computational
tests (Test 1, 4, and 7) that involve pure JavaScript objects and the
tests with moderate interactions with DOM objects (Test 2 and 5),
we observe negligible overhead. This is because these benchmark

Target No-SEP MSEP Overhead

BenchJS benchmark

1. Counting 1.56s 1.56s 0%

2. Open pops 8.09 8.09 0%

3. Replace images 1.18 2.15 82%

4. Text manipulation 1.47 1.50 2%

5. Set tables 2.89 2.95 2%

6. Put layers into place 5.22 6.93 33%

7. Calculate x-mas 4.94 4.98 1%

Our benchmark

Pure JavaScript object 3.47µs 3.49µs 1%

DOM object 11.81 18.82 59%

Complex DOM operation 144.6 189.5 31%

Communication 17.15 14.05 -18%

Table 2: Microbenchmark results.

tests spend little time in MSEP’s interposition logic. Test 3 and 6
involve heavy interactions with DOM objects and incur 82% and
33% overhead due to MSEP’s DOM object interposition and ma-
nipulation.

To further understand MSEP’s overhead targeting its interposi-
tion functions, we designed our own set of micro-benchmarks as
follows:

1. Pure JavaScript object: All 14 properties and methods of
"Number" object.

2. DOM object: 92 properties and methods of "window", "doc-
ument" and "clientInformation" object.

3. Complex DOM operation: 4 JavaScript statements including
DOM traversal, element creation, style sheet update, inline
script library loading, and event firing.

4. Communication: Cross-frame (same domain) function invo-
cation when without MSEP; Cross-frame communication via
CommRequest when with MSEP.

We measured the duration for 10,000 runs of each individual
script statement with and without MSEP. We report the average
time in the bottom half of Table 2. The results are consistent with
that of BenchJS. MSEP incurs noticeable overhead for DOM ma-
nipulations, but negligible overhead for pure JavaScript object ma-
nipulations. Also, MashupOS’s CommRequest is even more effi-
cent than cross frame function calls.

10.2.2 Macrobenchmark Results
Our Macrobenchmark measurement evaluates the impact of

MSEP on the overall page loading time. We picked the top 500
pages from the top click-through search results of MSN search
from 2005. In our measurement, we disabled the browser cache,
measured the page loading with and without MSEP. We imple-
mented a Browser Helper Object [4] to capture the time before a
document navigation and after the document loading. From our



 

<html> <body onload=”createDivForGmap”> 
<script src=”http://maps.google.com/?file=api& ...”> 
</script> 
 
<script> 

var map; 
function createDivForGmap() { 
    map = new GMap2(divMap); 

    } 

</script> 
 
<div id=”divMap” style=”width:500px; height=360px”> 
</div> 
… 
</body> </html> 

g.uhtml 

<html> <body onload=”sendLoc”> 
<script> 
function sendLoc() { 
  if ( hasCoordinate ) { 
    var req = new CommRequest(); 
    req.open("INVOKE", "local:parent//recvLocationPort"); 

var requestBody 
 = createCoordinate (latitude, longitude); 

    req.send(requestBody); 
  } 
} 
</script> 
… 
</body> </html> 

http://ourFlickr.com/newGeoTaggedPhoto/ 

http://PhotoLoc.com/index.htm 

<html> 
<script> 

function setPhotoLoc(request) { 
  var coordinate = request.body; 
  var latitude = getLatitude (coordinate); 
  var longitude = getLongitude (coordinate); 
  G.map.setCenter(new GLatLng(latitude, longitude), 6); 
} 
var svr = new CommServer(); 

svr.listenTo(“recvLocationPort”, setPhotoLoc); 
</script> 
 
<friv src=”http://ourFlicker.com/newGeoTaggedPhoto/” id=F></friv> 
 
<Sandbox src=”g.uhtml” id=G>  </Sandbox> 
… 
</html> 

Send the location 
of the picture  to 
parent once 
loaded using 
CommRequest 
primitive 

Center the map at 
the photo’s location 
using direct 
invocation in the 
Sandbox 

Figure 3: Our showcase PhotoLoc Service usingFriv, CommRequest, and <Sandbox>

numbers, we do not observe an MSEP impact on the page load-
ing time. This is because script execution time is short, on the or-
der of microseconds, compared to the time for page retrieval over
the network and the page rendering, which is on the order of sec-
onds. Among the 500 pages that we measured, 30 of them cannot
be loaded or rendered correctly in IE 7, and MSEP caused just one
more faulty page than that. This gives us confidence on the com-
pleteness and robustness of our prototype.

11. RELATED WORK

11.1 Web Desktops
Recently, a new wave of “Web operating systems” [15] or web

desktops [42], such as YouOS [45], have emerged. These sites
present a traditional desktop user interface, complete with a win-
dow manager. However, all the applications are JavaScript code
hosted from the same domain. There is actually no operating sys-
tem that performs resource protection and management.

11.2 Existing Proposals for Isolation and
Communications in Browsers

Crockford proposed a new HTML<module> tag to partition a
page into a collection of modules [12]. A module groups DOM el-
ements and scripts into an isolated environment; VOP-based socket
communications can be used to transmit data in JSON format be-
tween the inner module and the outer module. To isolate the mod-
ule from the origin server, modules may not make network requests.
Thus, modules can be realized by our private sandbox enclosed in
a ServiceInstance.

We have given detailed explanation and comparison with ex-
isting cross-domain communication proposals such as JSONRe-

quest [11] and XDM [22] in Section 7.
The Flash browser plugin offers a less fine-grained form of com-

munication using cross-domain policy files [1]. A service provider
can place a crossdomain.xml file on the server, and Flash uses the
contents of this file to determine which service integrator domains
can access files on the provider’s server. Free libraries are available
to allow JavaScript to access these Flash communication primi-
tives [9]. Although this approach provides more flexibility and con-
trol than standard SOP communication model, the provider’s server
cannot distinguish between network requests originating from its
own code and requests generated by integrators that are permitted
by the crossdomain.xml file.

Subspace [28] provides a cross-domain communication mecha-
nism in the context of gadget aggregators and is designed to run
on current browsers without any additional plug-ins or client-side
changes. Subspace splits a site into subdomains using each sub-
domain for a gadget (a principal). A subdomain can in turn be
used to draw in scripts from other domains. Cross-subdomain com-
munication channel is set up by settingdocument.domain of two
subdomains to a common domain postfix. Subspace requires sig-
nificant work on the part of the Web developer to use correctly,
particularly for complex mashups with untrusted code from many
different sources.

Fragment identifiers, the string after the # in a URI, have also
been used for cross-domain, cross-frame communications [6, 31]
becausewindow.location can be modified (though not read) by
a cross-domain frame and modifying fragment identifier does not
cause document reload. This scheme requires careful synchroniza-
tion between the communicating pages, and can be easily disrupted
if the user presses the browser’s back button. These schemes are
temporary rather than long term solutions to cross-domain commu-



nications. Browsers should provide built-in cross-domain commu-
nication primitives.

11.2.1 Sandboxing
“Sandbox” is an overloaded term. Oftentimes, it broadly means

an isolated environment.
Our sandbox abstraction is named this way because it shares

many properties with the original sandbox proposal by Wahbe et
al. [40]. Wahbe et al.’s sandbox addresses the scenario where desk-
top applications contain (untrusted) third-party libraries or mod-
ules. They use software-based fault isolation (SFI), namely, bi-
nary rewriting to contain the reach of untrusted modules into a
fault domain (a segregated and contiguous region of memory) in
the same address space as the application’s process. The mech-
anism also manifests an asymmetric access pattern: The applica-
tion’s process can access the fault domains inside its address space,
but the fault domains cannot reach out. However, the primary mo-
tivation for this sandboxing work was to avoid the high overhead
of context switches if the untrusted code were placed in a separate
process, rather than to have an abstraction for realizing an asym-
metric access pattern that is needed for integrating unauthorized
content or untrusted open content. In fact, people have not paid
much attention to or leveraged the property of asymmetric access
in the original sandboxing. In MashupOS, we adapt sandboxing to
the browser environment to particularly leverage this asymmetry to
match a common trust scenario between providers and integrators
and provide both security and ease in creating client mashups.

Cox et al. [10] also recognized that browsers have become a
de facto operating system for executing client-side components of
Web applications but offer insufficient isolation across Web appli-
cations and can cause the desktop machine to be infected by drive-
by-downloads or by attacks that exploit browser vulnerabilities.
To this end, Cox et al. proposed the Tahoma browser operating
system as a system layer beneath the running browser instances.
Tahoma puts each “Web application” into a separate virtual ma-
chine. The “Web application” consists of a browser instance and a
set of Web sites that the browser instance is permitted to visit. The
use of the virtual machine is for isolation among the “Web applica-
tions” as well as between a browser and its host system. However,
Tahoma does not address more fine-grained protection and com-
munication among the sites within a “Web application” or a site.
In comparison, MashupOS aims to enhance the browser itself to be
a multi-principal OS that mediates resource access from different
sites, and does not defend against attacks exploiting browser vul-
nerabilities or infections through drive-by download. MashupOS-
enabled browser plus the Tahoma system layer would provide both
fine-grained isolation and host system protection.

12. FUTURE WORK AND DISCUSSIONS
Today’s browser extensions, including ActiveX controls and

browser plugins can provide abstractions to Web pages that enable
arbitrary flows of information within the browser and across the
network. Unfortunately, these extensions may weaken the protec-
tion provided by MashupOS. Tools can be developed to identify
the extensions through which browser security policies can be cir-
cumvented and users should be warned before such extensions are
installed.

All major browsers have had cross-domain vulnerabilities that
can be exploited to circumvent the SOP. It is an open challenge
to have a robust browser implementation that guarantees the isola-
tion boundaries of the browser security policy to be obeyed. Reis
et al. realizes the SOP isolation using OS processes [36], putting
each domain into a separate OS process for isolation. A number of

operating systems [3, 24] have been built using safe languages to
enable efficient and robust implementation of protection domains.
These may be promising directions for robust implementation of
browsers.

We have only explored the protection and communication issues
in this paper. Many other issues, such as resource management and
useful OS facilities that browsers can offer to Web services, deserve
further study.

As discussed in Section 4, Web servers must segregate their
open, isolated/access-controlled, and unauthorized content strictly
so that no one can abuse the open or unauthorized content to access
the isolated/access-controlled content. Tools are needed for Web
servers to check and ensure the segregation of these content types.
Information flow-based techniques may be applicable here.

13. CONCLUDING REMARKS
The advent of AJAX and client mashups have turned Web

browsers into a multi-principal operating environment. However,
browser support for Web programmers has lagged behind and re-
mained in a single-principal world. The MashupOS project is
building a multi-principal operating system for Web browsers. This
paper focuses on the most imminent needs of today’s browsers: ab-
stractions for protection and communication.

From our analysis over the trust relationship between content
providers and integrators, we derived four content types that re-
quire support from the Web and browsers: isolated content, access-
controlled content, open content, and unauthorized content. Ex-
isting browser abstractions support only the isolated content with
cross-domain frames and open content with scripts, resulting in
an all-or-nothing trust model—an integrator site either trusts a
provider site entirely by including the provider’s scripts or does
not trust a provider at all by putting the provider content inside a
frame. Inflexibility and insecurity result from the incomplete sup-
port of today’s browsers.

In MashupOS, we have proposed abstractions for the missing
content types and trust relationships. We introduceunauthorized
contentas a fundamental addition to today’s Web content provi-
sioning. Our sandbox abstractions and provider-browser proto-
col enable content providers to publish and integrators to consume
unauthorized content without liability and overtrusting, providing
both security and ease in creating client mashups. Such support
can fundamentally combat Cross Site Scripting attacks (a promi-
nent threat in today’s Web) while allowing the richest possible third
party content. We have also proposedServiceInstancefor isola-
tion, fault containment, and as the unit of resource allocation and
CommRequestas a VOP-based communication abstraction unify-
ing existing cross-domain communication proposals.

Our abstractions are backward compatible, allowing Web pro-
grammers to supply alternative content for browsers that don’t sup-
port our abstractions. We have carefully designed the MashupOS
abstractions to avoid unintended interactions between new content
that use our abstractions and legacy ones. These enable Web pro-
grammers to adopt our abstractions with ease and comfort.

Our MashupOS prototype realizes almost all our proposed ab-
stractions and their properties. Our evaluation showcases an easy-
to-build and robust client mashup. Measurement of our proto-
type shows negligible overhead. The implementation and evalu-
ation demonstrate the ease of adding these abstractions to existing
browsers.

14. ACKNOWLEDGEMENTS
We’d like to thank Andy Begel, Shuo Chen, Adam Costello,



Douglas Crockford, Richard Draves, John Dunagan, Sunava Dutta,
Hank Levy, Charlie Kaufman, Jay Lorch, Charlie Reis, Yinglian
Xie, Zhenbin Xu, and anonymous reviewers for their valuable dis-
cussions and feedback to our work and this paper.

15. REFERENCES
[1] Adobe. External data not accessible outside a Macromedia

Flash movie’s domain, 2007.http://www.adobe.om/fusion/knowledgebase/index.fm?id=tn_14213.
[2] JavaScript Speed Test: BenchJS.http://www.24fun.om/downloadenter/benhjs/benhjs.html.
[3] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,

M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility,
Safety and Performance in the SPIN Operating System. In
Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP-15), December 1995.

[4] Browser Helper Object.http://msdn2.mirosoft.om/en-us/bb250436.aspx.
[5] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. In7th International World
World Web Conference, 1998.

[6] J. Burke. Cross Domain Frame Communication with
Fragment Identifiers.http://tagneto.blogspot.om/2006/06/ross-domain-frame-ommuniation-with.html.

[7] S. M. Christey. Vulnerability Type Distribution in CVE,
September 2006.http://www.attrition.org/pipermail/vim/2006-September/001032.html.

[8] Component Object Model (COM).http://msdn.mirosoft.om/library/default.asp?url=/library/en-us/dnanhor/html/omponentobjetmodelanhor.asp.
[9] J. Couvreur. FlashXMLHttpRequest: cross-domain requests.http://blog.monstuff.om/FlashXMLHttpRequest.

[10] R. Cox, J. Hansen, S. Gribble, and H. Levy. A
Safety-Oriented Platform for Web Applications. InProc.
IEEE Symposium on Security and Privacy, 2006.

[11] D. Crockford. JSONRequest.http://www.json.org/jsonrequest.html.
[12] D. Crockford. The Module Tag: A Proposed Solution to the

Mashup Security Problem.http://www.json.org/module.html.
[13] Document Object Model.http://www.w3.org/DOM/.
[14] B. Eich. JavaScript: Mobility and Ubiquity.http://kathrin.dagstuhl.de/files/Materials/07/07091/07091.EihBrendan.Slides.pdf.
[15] Big WebOS roundup - 10 online operating systems reviewed.http://frantiindustries.om/blog/2006/12/21/.
[16] D. Flanagan.JavaScript: The Definitive Guide. O’Reilly,

August 2006.
[17] Flickr Services API.http://www.flikr.om/servies/api/.
[18] N. Freed.Media Type Specifications and Registration

Procedures, December 2005.http://rf.net/rf4288.html.
[19] Google Maps API, 2007.http://www.google.om/apis/maps/.
[20] Preventing comment spam, January 2005.http://googleblog.blogspot.om/2005/01/preventing-omment-spam.html.
[21] J. Grossman. Advanced Web Attack Techniques using

GMail.http://jeremiahgrossman.blogspot.om/2006/01/advaned-web-attak-tehniques-using.html.
[22] W. H. A. T. W. Group. Web Applications 1.0, February 2007.http://www.whatwg.org/spes/web-apps/urrent-work/.
[23] HTML 4.01 Specification, December 1999.http://www.w3.org/TR/html401/.
[24] G. Hunt and J. Larus. Singularity: Rethinking the Software

Stack. InOperating Systems Review, April 2007.
[25] Internet Explorer Architecture.http://msdn.mirosoft.om/workshop/browser/overview/ie_arh.asp.
[26] Persistence of Internet Explorer.http://msdn.mirosoft.om/workshop/author/persistene/overview.asp?frame=true.
[27] G. Inc. Google Gadgets API Developer Guide.http://www.google.om/apis/gadgets/fundamentals.html.
[28] C. Jackson and H. Wang. Subspace: Secure Cross-Domain

Communication for Web Mashups. InProc. WWW, 2007.
[29] T. Jim, N. Swamy, and M. Hicks. BEEP: Browser-Enforced

Embedded Policies. In16th International World World Web
Conference, May 2007.

[30] JavaScript Object Notation (JSON).http://www.json.org/.
[31] F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and

s. Yoshihama. SMash: Secure Cross-Domain Mashups on
Unmodified Browsers. Technical report, IBM Research,
Tokyo Research Laboratory, June 2007.

[32] D. Kristol and L. Montulli. HTTP State Management
Mechanism. IETF RFC 2965, October 2000.

[33] Windows Live Gadget Developer’s Guide.http://mirosoftgadgets.om/livesdk/dos/default.htm.
[34] L. Masinter. RFC 2397: The "data" URL Scheme, August

1998.http://tools.ietf.org/html/rf2397.
[35] About Asynchronous Pluggable Protocols.http://msdn2.mirosoft.om/en-us/library/aa767916.aspx.
[36] C. Reis, B. Bershad, S. Gribble, and H. Levy. Using

processes to improve the reliability of browser-based
applications. InUnder submission.

[37] RSnake. XSS Cheat Sheet.http://ha.kers.org/xss.html.
[38] J. Ruderman. The Same Origin Policy.http://www.mozilla.org/projets/seurity/omponents/same-origin.html.
[39] Technical explanation of The MySpace Worm.http://namb.la/popular/teh.html.
[40] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.

Efficient Software-Based Fault Isolation. InProceedings of
the 14th ACM Symposium on Operating Systems Principles,
December 1993.

[41] Web applications working draft.http://www.whatwg.org/spes/web-apps/urrent-work/#rossDoumentMessages.
[42] Web desktop.http://en.wikipedia.org/wiki/Webtop.
[43] The XMLHttpRequest Object.http://www.w3.org/TR/XMLHttpRequest/.
[44] Google, Yahoo, MSN Unite On Support For Nofollow

Attribute For Links, January 2005.http://blog.searhenginewath.om/blog/050118-204728.
[45] YouOS.http://www.youos.om/.


