
History-b=ed Access Control for Mobile Code

Guy Edjlali Anurag Acharya Vipin Chaudhary

Dept. of ECE Dept. of Computer Science Dept. of ECE

Wayne State University University of Ca~ornia Wayne State University

Detroit, ~ 48202 Santa Barbara, CA 93106 Detroit, ~ 48202

Abstrati

h this paper, we pr-ent a histo~-based ace-control mech-
anism that is suitable for mediating access= horn mobtie
code. The key idea behind histow-based accecontrol is to
maintain a selective history of the accm requests made by
individud programs and to use this history to improve the
~erentiation between safe and potentidy dangerous r~
qu=ts. What a program is &owed to do depends on its own
behavior and identity in addition to currently used discrimi-
nators we the location it was loaded horn or the identity
of its author/provider. &tory-bwed acc=control has the
potential to significantly ~and the set of programs that
can be aecuted without comprotilng security or ease of
use. We describe the design and implementation of Deeds,
a hwtory-based accws-control mechanism for Java. AccM-
control pohcies for DeA are written in Java, and can be
updated while the programs whose accww are being medi-
ated are sti~ mecuting.

1 Introduction

The integration of mobde code with web browsing crest=
an accws-control Wemrna. On one hand, it creatw a socird
~ectation that mobtie code shotid be as easy to dotioad
and aecute as fetching and viewing a web page. On the
other hand, the poptiarity and ubiquity of mobile code in-
creases the ~ie~ood that mrdicious pro~ams wi~ mingle
with benign on=.

To reassure users about the safety of their data and to
keep the user interface simple and non-intrusive, systems
supporting mobtie code have chosen to err on the side of con-
servatism and simphcity. Depending on its source, mobile
code is partitioned into tintedand untmted code. Code
is considered trusted if it is loaded from disk [9, 12] or if it
is signed by an author forganization deemed trustworthy by
the user [12, 30]. Untrusted code is cofied to a severely re
stricted mecution environment [9] (eg, it cannot open Iocd
fl~ or sockets, cannot create a subprocess, cannot initiate
print requwts etc); trusted code is either given acc=s to rdl
available resourcw 1301 or is given selective access b-~~a “-

Pemlissiontomake digital or hard copies of all or part of this \vork for
personal or clztsroom use is granted ~lithout fee provided that copies
arc not made or distributed fl)rprotit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
othen~ise, to republish, to post on sen,ers or to redistribute to lists,
requires prior speciiic permission anitora fee.
5th Conference on Computer& Communications Security
San Francisco CA USA
Copfight AChf 1998 1-58113-0074/9S/1 1...$5.00

user-specified accwscontrol hts [12].
For the programs considered untrusted, thwe mecha-

nisms cau be overly r~rictive. Many useful and safe pr~
grams, such as a well-behaved editor applet horn a lesser-
known software company, cannot be used since it cannot
open Iocrd flea. h addition, to implement new resource
sharing models such as global computing [6] rdl communica-
tion has to be routed through brokers. This significantly
Emits the set of problems that can be efficiently handed by
such modek. For programs considered trusted, these mod-
ek can be too 1=. Errors, not just mdlce aforethought, can
wipe out or leak important data. Combmed with a suitable
audit trail, signed programs [12] do provide the abifity to
take legrd recourse if need be.

k this paper, we prwent a histo~-based access-control
mechanism that is suitable for mediating acc=ses horn m~
bile code. The key idea behind history-based access-control
is to maintain a selective history of the access requests made
by individurd programs and to use this history to improve
the ~erentiation between safe and potentially dangerous
requwts. What a program is allowed to do depends on its
own identity and behavior in addition to currently used dis-
criminators We the location it was loaded horn or the iden-
tity of its author/provider. &tory-based accws-control has
the potential to significantly m~and the set of programs that
can be mecuted without compromising security or ease of
use. For =ample, consider an access-control policy that d-
allowsa program to open local fles for reading as long as it
has not opened a socket and rdlows it to open a socket as
long as it has not opened a local tie for reading. h=pective
of the source of the program, such a poticy can ensure that
no disk-raident data will be leaked. Strictly speaking, this
is true M it is possible to intercept all access requests being
made on behalf of the program - the requests made by itself
as well as the requmts made on its behrdf. The technique
we present in this paper is able to intercept dl requests.

We fist present some =amples of history-based access-
control poficiw. Neti, we discuss issuw that have to be r~
solved for implementing history-based accws-control mech-
anisms. k section 3, we describe Deeds,l an implementation
of history-based access-control for Java programs. Access-
control poticies for Deeds are written in Java, and can be
instded, removed or motied while the programs whose ac-
cessw are being mediated are still mecuting. Deeds requires
pohcies to adhere to several constraints. Thwe constraints
are checked either at compil~time by the Java compiler or
at runtime by the Deeds poficy manager. We illustrate the

lYosrr deeds determine your destiny :)

38

,—— —

operation of the Deeds user interface using snapshots. h
section 4.4, we examine the additiond overhead imposed
by Deeds using micr~benchmarks as well as red programs.
~story-bmed ace-control is not specific to Java or to m-
bile code. It can be used for any system that allows inter-
position of code between untrusted programs and protected
resources. b section 5, we discm how a system stillar to
Deeds can be used to mediate accwses to OS resources from
native binaries. We conclude with a dwcription of related
work and the directions in which we plan to extend th=
tiort.

2 Examples

Oneout-of-k Consider the situation when you want to
allow ody those programs that fdl into well-marked equiva-
lence classes based on their functionfllty and behavior. For
~~ample, you want to allow ody programs that provide just
the functionfllty of a browser or an editor or a she~. A
browser can connect to remote sit=, create temporary 1~
cd ti= in a user-specfied directory, read flw that it has
created and display them to the user. An editor can cr~
ate local flea in user-specified directoriw, read/modi~ fl=
that it has created, and interact with the user. It is not
allowed to open sockets. A she~ can interact with the user
and can create subprocwes. It cannot open local flw, or
connect to remote sites. ThB restriction can be enforced by
a history-b=ed acc=s-control poficy that:

●

●

●

allows a program to connect to a remote site if and ody
if it has neither tried to open a Iocd He that it has
not created, nor tried to modify a He it has created,
nor tried to create a subproc%

allows a program to open local flea in user-specified
directoriw for motivation if and only if it has created
them, and it has neither tried to connect to a remote
site nor tried to create a subprocws.

allows a pro~am to create sub-proc=a if and only
if it has neitker tried to connect-to a remote site nor
tried to open a Iocd tie.

k effect, each program is dynamically classfied into one of
three equi~dence classes (brows=-like, editor-me or shell-
Eke) bwed on the sequence of requests it makes. Once a
program is placed in a class, it is allowed to ace= only the
resourcw that are permitted to programs in that c1=s.

Keeping out rogues: Consider the situation where you
want to ensure that a program that you once ki~ed due to
inappropriate behavior is not dewed to execute on your
machine. This restriction can be enforced, to some extent,
by a h=tory-based ace=-control poficy that keeps track of
previous termination events and the identity of the programs
that were terminated.

Frustrating peepers: Consider the situation where you
want to allow a program to accws ody one of two relations
in a database but not both. One might wish to do this if
accessing both the relations may dow a program to extr=t
information that it cannot get from a single relation. For
example, one might wish to rdlow programs to ace-s either
a relation that contains the date and the name of medicd
procedurw performed in a hospit d or a relation that con-
tains the names of patients and the date they last came
in. hdividudy, these relations do not allow a program to

39

deduce information about treatment hwtori- of individud
patients. If, however, a program could acc=s both relations,
it cotid combine the relations to acquire (partial) informa-
tion about treatment historia for individud patients. This
example can be seen as an instance of the Chinae Wdl Pol-
icy [4]. To block the possiblhty of a hostfle site being able
to deduce the same information from data provided by two
Merent programs it providm, programs that have opened
a socket are, thereafter, not allowed to access sensitive rela-
tions and programs that have acc=ed one of the sensitive
relations are, thereafter, not allowed to open sockets.

Slowing down hogs: Consider the situation where you
want to Ut the rate at which a program connects to its
home site. One might wish to do this, for example, to eti-
nate a form of denkd of service where a program repeatedy
connects to its home site without doing anything eke. This
can be enforced by a h~tory-bssed aces-control poficy that
keeps track of the tim=tamp of the last request. It Mows
ody those requests that occur after a threshold period.

3 Issues for tistory-based access-control

Identity of programs: Associating a content-baaed, hard-
tospoof identi~ with a program is a key aspect of history-
bmed ace-s-control. That is, given any program, it shotid
be hard to design a substitute program for whom the identity
computation generatea the same result. An importat point
to note is that the code for a mobile pro~am can come from
mtitiple sourcw (from Iocd disk, from ~erent servers on
the network, etc). The identity mechanism should associate
a single identity with all the code that is used by a program.
ThB is important to ensure that a mticioua program cannot
assume the identity of another pro~sm by copying parts or
dl of the program being spoofed.

Efficient maintenance of request-histories: Wdlach et
d [38] mention that a collection of commonly used Ja\a
worMoada require roug~y 30000 crossings between protec-
tion domains per CPU-second of execution. Given this request-
fiequency, it is imperative that access-control checks on indi-
vidud requests be fast. Simple logging-based techniqu= are
~iely to be too ~ensive. Fortunately, the request-history
for many useful poficiw can be summarized. For mample,
the requwt-history for a poticy that dews a program to
open local fles for reading if it has not opened a socket and
allows it to open a socket if it has not opened a Iocd fle
for reading can be summarized by a pair of booleana - one
that records if the program has ever opened a socket and
the other that records if it h= ever opened a local fle.

Persistence of pohcies and histories: Persistent request-
histories are required to block attacks that consist of run-
ning a sequence of programs each of which makw requests
that are allowed by the accws-control pohcy but when taken
as a whole, the complete sequence of requests violates the
constraints the poficy tries to enforce.

Grouping privileges: ~tory-baaed mechanisms can pro
tide ~remely &&grain acc=s-control. Not only is it pos-
sible to control access= to individud objects/raourcw, it
is possible to Werentiate between ~erent patterns of ac-
cesses. Wile this allows us to expand the set of programs
that can be executed safely, th~ level of flexibihty can be
hard to ded with. Requiring users to speci~ their pref-
erences at this level of detail is ~ely to be considered in-

—7—. 7. .-, ,. - . -~.. . .-.-.—.. --——

trusive and therefore ignored or avoided. This problem can
deviated to some extent by grouping acceptable patterns of
program behavior and assign intuitive namw to these pat-
terns. For example, a poficy that Mows a program to open
no sockets, open local ties for reading, to create local fla
in a user-specfied directory and to open a local fle for mod-
ification only if it has been been created by itself. This set
of r~trictions allow a simple editor to be executed and can,
jointly, be referred to x the editor pohcy.

Composition and fail-safe defatits: History-based accw-
control poficies encode acceptable patterns of program be
havior. Dfierent class= of programs might have ~erent
behaviors dl of which are acceptable to the user. It is, there
fore, important to provide automatic composition of mtiti-
ple policiw. An important point to note here is that, by de
fatit, the acces-control mechanism shotid be fd-safe [32]
- potentially dangerous accesses shotid be denied ti=s ex-
plicitly granted.

4 Deeds: a history-based security manager for Java

k this section we dmcribe the design and implementation
of D&s, a history-based ace=-control mechanism for Java.
l~e fist dwcribe the architecture of Deeds. Next, we d+
scribe its current implementation ad its user interface. h
section 4.4, we examine the performance of the mechanisms
provided by Deeds.

4.1 Architecture

k this subsection, we describe the architecture of Deeds.
IVe focus on the central concepts of the Deeds architecture
secure program identity and security events.

4.1.1 Program identity

The Deeds notion of the identity of a program is baaed on
all the dotioaded code reachable during its execution. To
achieve this, Deeds performs static rig on dotioaded
programs, fetching d non-local code that might be refer-
enced. Local Ebraries that are part of the language impl~
mentation (e.g j ava. lag for Java, libc for C) me ~iked
in as shared Ebrari=; a separate copy of non-system-fibrary
code is downloaded for every apphcation that uses it.

De@ concatenates dl non-system-fibrary code for a down-
loaded program and us= the SHA-1 algorithm [34] to com-
pute a name for it. SHA-1 belongs to the group of algorithms
known as secure hash tictions [31, 34] which take an arbi-
trary sequence of byt= = input and generate a (relatively)
short digest (16@blts for SHA-1). These functions are con-
sidered secure because it is computationdly hard to con-
struct two bytesequences which produce the same digest.
h addition, the requirement, in this case, that the byte
sequences being compared should represent did programs
increases the ~cdty of constructing a mticious program
with the same name as a benign one.

k addition to allowing a secure hash to be computed,
static ~iking of downloaded code h= other advantagw. First,
having dl the code available Mows Just-in-Time compilers
to perform bettw analysis and generate better code. Sec-
ond, it remov~ potential covert channek which occur due
to dynamic finking - the pattern of fink requests can be
used to p=s information from a downloaded program to the
server(s) that is (are) contacted for the code to be ~ied.

Note that Java allows programs to dynamically load classes.
For such programs, it is not possible, in generrd, to statically

40

determine the set of classes that might be referenced during
the execution of the program. Deeds rejects such pro~ama
and does not allow them to =ecute.

4.1.2 Security events and handlers

A Deeds security event occurs whenever a requst is made
to a protected resource. Exarnplw of security events include
request to open a socket, request to open a tie for reading,
request to create a fde, request to open a tie for modification
etc. The set of security events in Deeds is not fixed. In
particular, it is not ~ited to requests for operating-system
resourcw, Programmers can associate a security event with
any requwt they wish to keep track of or protect.

Handers can be associated with security events. Han-
~ers perform two tasks: they maintain an event-h=tory and
check whether it satisfies one or more user-specfied con-
straints. E any of the constraint fails, the bander raises a
security-related exception. For example, a bander for the
security event associated with opening a socket can record
whether the program currently being executed has ever opened
a sodet. Similarly, a bander for the security event associ-
ated with opening a fle for reading can record whether the
program has opened a fle for reading.

Mtitiple banders cm be associated with each event.
Handers maintain sep=ate event-histories. The &ecks they
perform are, in effect, composed using a “consensus voting
role” - that is, one negative vote can veto a decision and at
least one positive vote is needed to approve. In this context,
a requ=t is permitted to continue if and only if at least
one bander is present and none of the banders raisw an
exception.

Access-control poficiw consist of one or more banders
grouped together. The banders belonging to a single po~cy
maintain a common h=tory and deck common constraints.
For example, the editor poficy mentioned earfier would con-
sist of four banders

●

●

●

●

a bander for socket-creation that records if a socket
was ever created by this program. It rejects the request
if a fle has been opened by this program (for reading
or writing).

a bander for fl-creation that associatw a creator with
each fle created by a downloaded program. If the fle
is to be created in a directory that is included in a
~it of user-specified directories, it allows the request
to proceed. Else, it rejects the requ=t.

a bander for open-fl-for-read that records if a fle was
ever opened for reading by this program. It rejects the
request if a socket h= been created by this program.

a bander for o~en-fl~for-modification that records if
a fle was ever ~pened for writing by this program. It
rejects the request if a socket has been created by this
program or if the fle in question was not created by
this program.

Deeds allows multiple access-control poticies to be simul-
taneously active. Poficies can be installed, removed, or mod-
ified during execution. A poficy is added by attatilng its
constituent banders to the corresponding events. For ex-
ample, the editor poficy wotid be added by attachiig its
banders respectively to the socket-creation event, the ~~
creation event, the open-ti-for-read event and the open-
fl~for-modification event. Pohciw can be removed in an

. -.

trusive and therefore ignored or avoided. This problem can
deviated to some extent by grouping acceptable patterns of
program behavior and assi~ intuitive names to these pat-
terns. For example, a poficy that &lows a program to open
no sockets, open Iocrd fles for reading, to create local fdw
in a user-specfied directory ad to open a local He for mod-
ification only if it has been been created by itself. Thm set
of restrictions allow a simple editor to be executed and can,
jointly, be referred to as the editor pohcy.

Composition and fail-safe defatits: Histo~-based access-
control po~ci~ encode acceptable patterns of program be
havior. DHerent classes of programs might have ~erent
behaviors dl of which are acceptable to the user. It is, there
fore, important to provide automatic composition of mtiti-
ple poficies. An important point to note here is that, by d-
fadt, the access-control mechanism shotid be fail-safe [32]
- potentially dangerous acc=ea shodd be denied unless ex-
plicitly granted.

4 Deeds: a history-based security manager for Java

h thw section we dmcribe the design and implementation
of DeA, a history-b=ed access-control mechanism for Java.
l~e fist describe the artiltecture of Deeds. Next, we d+
scribe its current implementation and its user interface. b
section 4.4, we =amine the performance of the mechanisms
provided by Deeds.

4.1 Architecture

In th~ subsection, we dwcribe the architecture of Da.
lVe focus on the central concepts of the DA artitecture
secure program identity and security events.

4.1.1 Program identity

The Deeds notion of the identity of a program is based on
all the downloaded code reachable during its execution. To
achieve thw, Deeds performs static Yiking on dotioaded
programs, fettilng dl non-local code that might be refer-
enced. Local Ebrariw that are pti of the language imple
mentation (e.g j ava. lang for Java, libc for C) are Yied
in = shared fibraries; a separate copy of non-system- fibrw
code is dotioaded for every application that uses it.

Deeds concatenate dl non-system- fibrary code for a down-
loaded program and uses the SHA-1 algorithm [34] to com-
pute a name for it. SHA-1 belongs to the group of algorithms
known as secure hash functions [31, 34] which take an arbi-
trary sequence of bytes as input and generate a (relatively)
short digest (160-blts for SHA-1). These functions me con-
sidered secure because it is computationdly hard to con-
struct two byt-sequences which produce the same dig=t.
h addition, the requirement, in this case, that the byt-
sequencw being compared shotid represent tid programs
increases the difficulty of constructing a mfllcious program
with the same name as a benign one.

k addition to rdlowing a secure hash to be computed,
static rig of dotioaded code has other advantages. First,
having dl the code available allows Just-in-Time compfiers
to perform better analysis and generate better code. Sec-
ond, it removw potential covert channels which occur due
to dynamic linking - the pattern of fink requests can be
used to pass information horn a downloaded program to the
server(s) that is (are) contacted for the code to be Yiked.

Note that Java allows programs to dynamically load classes.
For such pro~ams, it is not possible, in general, to static~y

41

determine the set of classes that might be referenced during
the execution of the program. Deals rejects such programs
and does not allow them to execute.

4.1.2 Security events and handlers

A Deeds security event occurs whenever a request is made
to a protected resource. Examples of security events include
requwt to open a socket, request to open a fle for reading,
request to create a fle, request to open a fle for motivation
etc. The set of security events in De& is not tied. b
particular, it is not firnited to requests for operating-system
resourcw. Programmers can associate a security event with
any request they wish to keep track of or protect.

Handers can be ~ociated with security events. Han-
ders perfom two tash. they mtitain an event-h=tory and
heck whether it satisties one or more user-specfied con-
straints. If any of the constraint f~, the bander raises a
security-related exception. For sample, a bander for the
security event associated with opening a socket can record
whether the program currently being executed has ever opened
a socket. Similarly, a bander for the security event associ-
ated with opening a fde for reading can record whether the
program has opened a me for reading.

Multiple banders can be msociated with each event.
Handers maintain separate event-histories. The checks they
perform are, in effect, composed Whg a “co~e~~ vot~g
rtie” – that is, one negative vote can veto a dec~lon md at
lemt one positive vote is needed to approve. k this context,
a requ=t is permitted to continue if and ody if at least
one bander is pr=ent and none of the banders raises an
exception.

Access-control poficies consist of one or more banders
grouped together. The han~ers belonging to a single poticy
maintti a common history and check common constraints.
For example, the editorpohcy mentioned emfier wodd con-
sist of four banders:

●

●

●

●

a bander for socket-creation that records if a socket
w ever created by th~ program. It rejects the requ=t
if a tie has been opened by th~ program (for reading
or writing).

a bander for fiecreation that associates a creator with
each tie created by a dowrdoaded program. E the fle
is to be created in a directory that is included in a
Yit of user-specified directoriw, it Wows the request
to proceed. Eke, it rejects the request.

a bander for open-fl~for-read that records if a tie was
ever opened for reading by th= program. It rejects the
requwt if a socket has been created by this program.

a bander for open-flefor-modification that records if
a fde was ever opened for writing by th~ program. It
rejects the request if a socket has been created by this
Dromarn or if the tie in question was not created by
th~ program.

Deeds allows multiple access-control pohcies to be sbnd-
taneously active. Poficiw can be installed, removed, or mod-
ified during execution. A poticy is added by attaching its
constituent banders to the corresponding events. For ex-
ample, the editor pohcy would be added by attachiig its
banders respectively to the socket-creation event, the fl~
creation event, the open-flefor-read event and the open-
N-for-modification event. Poticies can be removed in an

...-, .~

analogous manner by detachiig the constituents banders
from the associated events.

Deeds allows poficim to be parametrized. For example,
a pohcy that controk fle creation can be parametrized by
the directory within which He creation is allowed. Poticiw
that are tieady installed can be motied by chan~ng their
parameters. This allows users to make on-th-fly changes to
the environment within which mobde code executes.

Deeds provid= a fail-safe defatit [32] for every security
event. Unless overridden, the defatit bander for an event
disdows d requ=ts associated with that event from down-
loaded programs. The defadt bander can ody be overrid-
den by expficit user request - either by a didog box or by a
profle fle containing a kt of user preferences.

4.2 Implementation

k thfi subsection, we describe the implementation of Deeds.
We focus on implementation of program identity, events,
event-histories, poficiw (including conventions for writing
them), and pohcy management.

4.2.1 Program identi~

We have implemented a new cl=-loader for dodoading
Java programs. A new instance of this clas%loader is cre
ated for every dotioaded program and is used to maintain
information regarding its identity. This class-loader stati-
cdy W a dowrdoaded program by scanning its bytecode
and extracting the set of cl~es that may be referred to
during its execution. E the entire program is provided as a
single jar tie, this is straightfo-d. Eke, the class-loader
fetch= and analyzes the non-local classes referred to and
repeats this tin transitive closure is achieved. H the scan
of the bytecode indicates that the program explicitly loads
classes, the ~iig operation is terminated and the program
is not Aowed to run.

After the kking operation is completed, the clw~loader
concatenate= the code for dl the non-system-hbrary CIW=
that are referenced by the program and us= the implementa-
tion of the SHA-1 algorithm provided in the java. security
package to compute a secure hmh. The rwult is used m the
name of the program and is stored in the clas~loader in-
stance created for this program. This name can be used
to maintain prograrn-specfic event-h=tories. It can dso
be stored in persistent storage and loaded as a part of the
startup procedure.

4.2.2 Events and tistories

Events: Two concerns guided our implementation of events:
(1) the number of events is not fixed, and (2) the num-
ber of banders =sociated with individud events could be
large. We considered three dtemativw. First, we could
use a general-purpose mechanism (similar to Java Beans [8]
and X [33]) to register events and banders. The advantage
of this approach is that it uses common code to manage
dl events and their associated banders; the disadvantage is
that dl banders must have the same typesignature which
usually imphes that the parameters need to be packed by
the event manager and unpacked by each bander.

Second, we cotid dynamically moditi the bytecode of
the downloaded program to insert/delete cdk to banders
at the points where the events are generated (as dynamic
instrumentation programs [5, 15] do). To allow a user to
mob an executing poficy would require us to update the

42

bytecode of running programs. We befieve that the complex-
ity of suh an implementation is not commensurate with its
advantaga.

Fmdly, we could require that the banders for each event
be managed by a Merent event manager. This approach d-
10WSus to avoid the packing and unpackiig of parameters as
each event manager is aware of the parameters corrwpond-
ing to its event. The disadvantage of this scheme is that
a separate event manager has to be written for each event.
However, event managers are highly styfized and can be au-
tomatically generated given a description of the event (see
Figure 1 for an example).

We selected the thud approach for implementing secu-
rity events in Deeds. Combined with automatic generation of
event managers, this allowed us to brdance the needs of effi-
ciency, implementation simplicity and ease of programming.
Examples of Deeds security events include chec~eado and
checkConnect ().2

History Given the concern about the size of the log, we
have chosen to avoid logging= a general technique for main-
ttig event-historiw. kstead, we have left the decision
about how to store histories to individud poficia. All pofi-
cies that we considered were able to summaize event-histories
using simple data structures such as counters, booleans or
~its. Note that th~ decKlon h= the potential disadvantage
that if poficies do desire/need to log events, the lack of a
common logging mechtism can r-ult in the maintenance
of duphcate logs. This can be Wed by using a selective log-
ging mechanism that logs an event ody if requested to do
so by one or more han~ers msociated with the event.

4.2.3 Access-control policies

A Deeds access-control poticy consists of the data-structures
to maintain event-historiw, banders for each of the events
that are mediated by the pohcy, and auxifiw variables
and operations to facilitate management of multiple poh-
ties. Concretely, an ace=-control poficy is implemented as
a Java class that extends the AccessPolicy class shown in
Figure 2. Handers are implemented x methods of this class
and the event-history is implemented as variablw of this
class. For example, a bander for the open-ti~for-reading
event could check if a socket has yet been seated by the
program. E so, it could raise a GenerdSecurityExceptio~
eke, it could set a boolean to indicate that a fle has been
opened for reading and return.

When a security event occurs (e.g., when checkRead is
ctied), control is transferred to the Deeds Security Man-
ager which determines the cl-loader for the program that
caused the event using the currentClassLoader () method
provided by the Java Security Manager. This method re
turns the class-loader corresponding to the most recent oc-
currence on the stack of a method from a class loaded using
a class-loader. Since a new inst ante of the cl=s-loader is
created for every downloaded program and since this in-
stance loads dl non-system-fibrmy classes for the program,
crrrrentClassLo ader () always returns the same class-loader
every time it is called during the ~~ecution of a program.
This tectilque safely determines the identity of the program
that caused the security event.

Once the class-loader corresponding to the currently ES-
ecuting pro~am hw been determined, the Deeds Security
Manager invokes the event manager corresponding to event

2Readersfamifiarwith Javs will recognizethat all the check*()
methodsaresecurityevents.

—=— ..

public class checkReaWanager implements EventHanager {
private static HandlerCheckRead hdlr = new HandlerCheckReado;

public static void checkRead(FileDescriptor fd,DClassLoader cl)
throus GenerdSecurityException {

for (int i=O;i<hflr.size;i++)
h~r.policy(i). checkRead(fd,cl);

}

public static void checkRead(String file,DClassLoader cl)
throws GenerdSecurityException {

for (int i=O;i<h~r.size;i++)
hflr.policy(i). checkRead(file, cl);

1

public static void checkRead(String file,Object context,DClassLoader cl)
throws GenerdSecurityException {

for (int i=O;i<hflr.size;i++)
h~r.policy(i) .checkRead(file ,context,cl);

}
}

Figurel: Exapleof anevent manager class. Mmagmfor other events wotidsh=e thes-estructwe butwotidreplxe
checkRead bynamethe of the partictiar event. Some administrative detaik have been left out oftheexampl% thwedetaik
arecommonto dleventmanagers.

being procwsed (e.g., checkReadManager in Figure l). The
event manager maintains the set of banders -ociated with
the event and invokw the banders in the order they were
attded to the event. H any of the banders throws an
exception, it is propagated to the crdler; the remainiig ban-
ders are not invoked.

Dds poficia are expected to adhere to several con-
straints. Three constraints are checked either at compti~
timebytheJava compfier oratruntirne bythe Dedspoficy
manager. Theseconstraintsare

● Handermethodsmustinclude athrows GenerdSecu-
rityException clause and must have thesarne name
as thesecuri~ event that they are intended for. The
typesignaturefor ahandermethod mustbethesame
as the type signature of the security event it hand=
except foroneadditiond argument -the class-loader.
See Figure 1 for an dlustration.

. Ahander method must have thesame number ofvari-
ants as the security event that it is intended for. For
example, a &eMead event has three variants - check-
Read(FileDescriptor fd), checkRead(String file),
andcheckRead(String file, Object context). Han-
dersfor th~event must havethreevariauts. See Fig-
ure 1 for an Uustration.

. Parameters of a poficy must be explicitly identfied.
Each parameter must have a default tiue and a doc-
ument ation string.

● The vector targetEvents specti~ whih events the
handers inthupohcy aretobeattachedto. Thespec-
ification is in the form of a regular exprasion which
is matched against fully-qutied names. For wam-
ple, the target events for a che~ead bander could be

43

●

specfied as ‘rFileIO. checkRead” or’’* .checkRead”.
The former expression specfies ody the chetiead
event dehedin the FileIO package whereas thelat-
ter specifiw dl che~ead events irrespective of the
package they have been defined in. ThB spectica-
tion is needed as Java’s hierarchical namespace d-
10WSmultiple methods with the same name to exist
in different regions of the namwpace. Since a secu-
rity event is implemented by a method in a subclass
of EventManager and since every package can have its
own security events, the possiblfity of name clashes
is red. For example, a hbrary to perform fle 1/0,
and a Ebrary to interact with a database could both
wish to create a checkRead event. Since packages me
independently developed, extensible systems, such as
De&, cannot assume uniquen- of event nama.

Each pohcy must be accompanied by its source code
and the name of the fle containing the source code
should be atiable = a member of the class impl~
menting the poficy. We beheve that availablfi~ of
source code of a pohcy is important to instfll cofi-
dence in its operation and its documentation.

4.2.4 Poficy manager

The Dds poficy manager makes @ensive use of the Java
reflection mechanism [17]. This mehanism dews Java code
to inspect and browse the structure of other classes. The
pohcy m~ager uses reflection to (1) identify methods that
are to be used as banders (they are declared public void
and throw the GenerdSecurityException); (2) identti pa-
rameters and their types; (3) initifllze and update param-
eters; and (4) extract specification of the events that the
banders are to be attached to. b addition, it performs sev-

~ —-y ~ - -— -.. . 7- - -., —-. -.. .

abstract synchronized public class AccessPolicy {
public String nme ; // nme of policy instmce
public Vector parmeters ; II policy parmeters
public Vector tsrgetEvents ; //
public String srcFileNae ; // source file location
II these functions have to be providedby every policy
public abstract String docmentationo;
public abstract void saveHistoryToDisk ();
public abstract void restoreHistoryFro@isk ();

public Policy(String nae) {
. . .

}3

FiWe 2: Skeleton of the AccmPoficy CIW. The synchronized keyword ensurw that at most one bander is updating the
ev;nt-history at any given time.

erd administrative checks suh % ensuring that d poficy
instances have Uniquenam=.

The poficy manager is~orwponsible for ensuringthat
pohciw are persistent. It achievw this by storing the pa-
rameters for ed poficy instance on stable storage and using
them tor~instfl thepohcy when theenvironment isreini-
titized (on startup). It rdso periodicfly sav= the event-
history on stable storage.3

4.3 User interface

The Dedsuserinterfxe comwupodyon userrequestand
is used for ifiequent operations such as browsing/loading/-
insttiigpohcies. bthissection, wedwtibe thetiction-
dtyofthe user interface and prment snapshots.

Browsing/viewing/loadingpoEcies: TheDeedsuserin-
terface allows users to browse the set of available pohci=,
to view documentation and source code for three poficies
and to create instances of individud pohcies. Note that
every POECYis required to have documentation (via the
docuentationo method) andacc~ toitsownsource code
(via the srcFileNme member). h addition, every pararn~
terhasassociated documentation which can reviewed. To
load apararneterized poficy, users need to speci~ dues
for W the parameters of the poficy. Note that every pa-
rameter has a defatit due whl~ is displayed. The Deeds
poficy manager us= the Java reflection mechanism to figure
out the type of the parameters for display and parsing pur-
posw. Thwe functions of the user interface are i~ustrated in
figures 3 and 4. k Figure 3, a pohcy is selected by cfi~lng
on its name and operations are selected using the buttons.
Browsing and loading of individud pohci~ is illustrated in
Figure 4.

ktdEng/tinstting po~cies: The Deals user inter-
face allows users to inst~ loaded pohcia as well as to re
move currently instded poficia. For an illustration, see
Figure 3. A loaded poficy can be instded using the Install
Policy button, and an installed pohcy can be removed using

3Notethat individualpoficiesare freeto savethe event-tilsto~as
frequently= they wish.

the Uninstall Policy button.

Checkpointing event-histories: De& ~ows user to &eck-
point the current state of the event-hlstoriw for W pofici=
using the Save Settings button (see Figure 3).

Browsing/setting defatit handlers: Deeds provides a
fail-safe defadt for every security event. Urdm overridden,
the defatit bander for an event disdows d requests as-
sociated with that event from downloaded programs. The
defadt bander can ody be overridden by expficit user r~
quest - either by a didog box or by a protie fle containing a
~it of user preferences. The Deals user interface allows users
to browse and set default banders for dl security events.

4.4 Performance evaluation

There are two ways in which Deeds can impact the per-
forrnmce of downloaded code whose wcesses it mediates.
Fust, it can add an overhead to ea~ request for protected
rwourcm. Second, it can inaease the startup latency as it
requires fetchiig, loading, finking and hashing of dl non-
system-fibrary code before the program can start execut-
ing. k this section, we ewduate the performmce impwt
of Deeds. All experiments were performed on a Sun E3000
with 266MHz WtraSparc processors and 512MB memory.

To determine the overhead of executing Deals security-
event banders, we used a microbendmark whl~ repeatedly
opened and closed ties. A security event was triggered on
the requwt to open a tie. We varied the number of banders
from zero to ten. Each bander was identicd (but distinct)
and implemented the editor poficy dwmibed earfier in this
paper. It maintains two booleans, one that tracks if the
program has ever tried to create a sodet and the other that
tracks if the program has ever tried to open a tie. Ea& time
it is invoked, it updatw the fleopened boolean and checks
the socket-opened boolean.

Table 1 presents the results. It shows that even with ten
banders, the overhead of Deeds security event banders is
less than 5%. Another point to note is that without any
banders, that is, when the infi~tructme added to support
security event banders is not used, the overhead is Iws than
1%.

To eduate the impact on st~up latency, we compmed

44

. _ . . .

Loaded Policies

~ Load Poliq Browser

~ Unload PoliQ
‘ Shell Saipt

FBI Backdoor
View/Modi@ Loaded Poliq Leakage Control

Install Poliq

Installed Polfcies

ViewlModi@ installed Poliq’

Figure 3: Graphical interface to the Deeds Security Manager

Leakage Con&o{ Policy

w~ Sour= Code I Dwumentation I
Name IFOO Leakage Control

Allowed ReadMrite 2tmp/* Parameter Information

Allowed Conne@lon ~, foo,edu *,bar,edu Parameter information

Figure 4 Graphid interface for loading a pohcy

the time it t~= to load, analyze and M complete Java ap
pfications using the De&s cl~s-loader to the-time it t~-w
to load just the fist He using -ting class-loaders. k both
cases, dl the tiw were Iocd and were in the operating-
system fl-cde. For this ~eriment, we selected seven
complete Java applications atiable on the web. The appE-
cations we used were (1) news-server, the Spaniel News
Server [36] which manages and serv= newsgroups Iocd to
an organization; (2) j lex, the JLa [23] lticd analyzer;
(3) dbase, the Jeevan [22] platform-independent, object-
oriented databmq (4) j awavedit, the JaWavedit audio tie
editor [21] with multi-~igud voice synthwis, signal pr~
ceasing, and a graphical user interfacq (5) obfuscator, the
Hashjava [14] obfuscator for Java class flee; (6) javacc, the
JavaCC [20] parser generatoq and (7) editor, the WlngDis
editor [40].

Table 2 presents restits for the latency ~eriments. &
aTected, the additiond startup latency increases with the
number of flw as well as the total size of the program. Note
th~ does not represent an increase in end-t~end execution
time. Etisting class-loaders tieady parse the bytecods of
class flti as a part of the Java verification process; signed
applets require computation of a similar hash function. k-
stead, the increase in sttiup latency is caused by moving

45

the proc-ing for dl the class flee before the aecution b-
gins. We qect that, once dotioaded, programs of th~
size and these typ= (laer/p=ser generators, editors, news
server, database etc) will be reused several times. k that
case, the program can be cached as a whole finatead of in-
dividud filw) and the additiond startup latency has to be
incurred ody once.

5 Discussion

History-baaed access-control for native binaries: History-
baaed accws-control is not specific to Java or to mobile
code. It can be used for any system that allows interp~
sition of code between untrusted programs and protected
resources. Several operating systems (Solaris, Digital Uti,
~, Mach and Linw) dow users to interpose user-level
code between an axecuting program and OS rwourcea by
intercepting system calls. This facifity is usually used to
implement debuggers and system cdl tracers. It has dso
been used to implement a general-purpose code interposi-
tion mechanism [24], a secure environment for helper ap-
pficationa used by browsers to display flw with ~erent
formats [11] and a user-level fle system [1]. It is *O weU-

—c- —.-— - . . ———.

. .

Number ofhadersl1011121 314151617181gl 10
Percent overhead I 0.7 I 1.8 I 2.6 I 2.4 I 2.9 I 3.5 I 4.2 I 3.9 I 4.3 I 4.1 I 4.3

Table 1: Overhead of Deeds security event banders. The ovmhead was measured using a microbenchmak which repeatedy
opened and closed flea. Each bander was identicd (but distinct) and implemented the editor poficy.

Application newsserver jlex dbase jawavedit obfuscator ja~c e~l~
Number of classes 24 40 104 125 144

Total code size (KB) 120 289 514 508 483 578 979
First class size (KB) 5 1 11 2.5 4 7 1.5

Loading class= 0.2s 0.3s 0.5s 0.9s 1.0s 0.8s 1.3s

Parsing bytecodw 0.1s 0.1s 0.2s 0.5s 0.5s 0.4s 1.2s

Hashing bytecod= 0.1s 0.5s 0.7s 1.1s 1.4s 2.6s 2.9s

Additiond latency 0.4s 0.9s 1.4s 2.5s 2.9s 3.8s 5.6s

Table 2: Breakdown of additiond startup latency incurred by Deeds.

suited for implementing a D&~ie history-based acca+
control mechanism to mediate access to OS resources from
native bmariw.

Pr~classified program behaviors: The one-out-of-k pol-
icy described in section 2 CISSSM=program behaviors in an
on-~ie manner. A program gets classified as a browser, an
editor, or a shd depending on whether it has connected
to a remote site, has opened Iocd flw for mofication, or
has created a subprocess. To be able to do this for a wide
variety of program behaviors, the pohcy that does the clas-
sification and subsequent management of privileg= has to
cent tin code to hande dl these behaviors. An dtemative
scheme would be to ~ow program-providers to label their
programs with pr~classfied behavior patterns and to Wow
the users to specify which behaviors they would ~ie to per-
mit. The poficiw governing individud behaviors codd be
added fdeleted as need be. Wile this scheme wodd require
agreement on the labehg scheme, it is no more complex
than the MIMWtyp=-bssed scheme that is tieady in use for
displaying/proc=sing ~erent data formats. ThM scheme is
similar to program-A CLS and related defenses proposed for
trojan-horse attacks [25, 39].

Joint-authorization: Commercird applications, such as
contracts and purchase orders, may require multiple auth~
rizations since the organization may wish to reduce the risk
of mtiesance by dispersing trust over several individu~.
History-based access-control poficies can be used to impl~
ment joint-authorization [37] or k-out-of-n-authorizations [3].
For example, a poficy may require that three out of five
known individu~ must make the same request within the
last T units of time for the requwt to be granted else the
request is denied. In this case, the history consists of the
requests that have been made in the last T units of time.

6 Related work

The primary problem for accms-control mechanisms for m~
bile code is to be able to ~erentiate between ~erent pr~
grams executing on behalf of the same user and to provide
them with Merent privileg- b~ed on their expected be
havior and/or potentird to cause damage. A similar problem
occurs in the context of trojan-horse programs and viruses.

46

To ded with such programs, several researchers have devel-
oped mechanisms to ~iit the privileges of individud pr~
grams based on their expected behavior [10, 25, 26, 27, 28,
39]. Karger [25] us= information about fle extensions ad
behavior of individud programs to determine the set of tiw
that a program is allowed to access (eg. a comptier invoked
on x. c is ody allowed to create x. {o ,u, out}). Lai [28] r~
places the inference mechanism by an expficit fist of ties ac-
c~ible by a program. Wlchers et d [39] associate program-
ACLS with each tie thereby Emiting the set of programs
that can accws each fle. Kmg [26] uses a regular-expression-
based language to speci~ the set of objects each operation
can access. Ko et d[27] use a language based on predicate
logic and regular expressions to specify the security-relevant
behavior of privileged programs and propose to use this
specification for intrusion detection. All these approaches
assume that the set of programs to be run are fixed and their
behaviors are known. The mobile code environment is dif-
ferent as the set of programs that wi~ execute is inherently
unknown. History-based acc~s-control is able to clwsify
pro~ams in an on-~ie manner and to thereafter execute
them tithm an environment with appropriate privileges.
For example, the one-out-oi-k POECYdynamically classifies
downloaded programs into ‘one of three class=: browsers,
editors and shells.

The use of secure hash functions to derive a content-
based name for software has been proposed by Holfingsworth
et d [16]. They propose to use these names for configuration
and version management of large apphcations and applica-
tion suitw (such Microsoft Office).

An important feature of Deeds is its capability to in-
stall and compose multiple user-specified policies. Several
researchers have proposed languages to Wow users to spec-
ify access-control pohciw and frameworks to compose these
pohcies [3, 13, 18, 19]. Three of them [13, 18, 19], propose
logic-based declarative Ianguagw and use inference mecha-
nisms of various sorts to compose policiw. Blaze et d [3]
propose a language that contains both assertions and pr~
cedurd flters and use a mechanism similar of that used in
Deeds to implement composition. Accws-control pohcies for
Deeds me entirely procedurd. Furthermore, they can be
updated while the programs whose accesses are being con-
trolled are still executing.

Two research groups have recently proposed constraint I

—___ _ .,--. .

languagw for spec~lng security poficies temporal aspects.
Simon&Zurko [35] propose a language for specifying temp~
rd constraints such as HasDone, NeverDid, NeverUsed and
SomeoneFrotiach for separation of duty in rol~based en-
vironments. These predicates correspond to summaries of
event-h~tories in Deeds terminology.

Meht ASolhns [29] have independently proposed a con-
straint language for specifying simple history-based accws-
control policiw for Java applets. ThB work was done in
pardel with ours [7]. The approach presented in their pa-
per has two major imitations. First, they use the domain
name of the server that provides the applet M its identi-
fier. Th= assigns the same identifier to dl applets horn the
same host. b addition, it is vuherable to DNS spoofig at-
tacks. They suggwt that this problem can be fied by using
the identity of the author/supptier of an applet as its name.
ThM wsigns the same identfier to dl applets from a single
author/supplier and results in a single merged h~tory. It
is not clear how such a merged h~tory would be used as
the predicatw and variables in their language are applet-
specific. Even if each suppher provides ody one applet, th~
is a viable solution only if d the classes referenced by the
applet are provided in a single jar He or are required to be
signed by the same principal. Otherwise, it is posible for
a mfllcious server that is able to spoof 1P addresses to in-
tercept intermediate requests for dynamic~y ~ied classes
and provide malicious substitutes. The second Mtation of
their approach is that it provides a small and tied number
of events. This Yiits the variety and power of the poficiw
that can be developed.

The event model used in Deeds is similar to that used
in the SP~ tiensible operating system [2]. An interesting
feature of SP~ is the use of dynamic compilation to improve
the performance of event dispatching [5]. H the performance
of event dispatching becomw a problem for Deeds (eg. if
individud events have a large number of banders) we can
use a similar tetilque.

7 Current status and future diretiions

Detis is currently operational and can be used for stand-
done Java programs. We are in the proc- of identi~g
a variety of useful patterns of behaviors and eduating the
performance and nsabifity of Deeds in the cent@ of th=e
behaviors.

In the near term, we plan to develop a history-b~ed
mechanism for mediating access to OS rwourcw from na-
tive binariw. We dso plan to eWlore the possibfity of using
program labek to indicate pr~classified behaviors and au-
tomatic loading/unloading of access-control po~ci= to sup-
port th~.

b the longer term, we plan to qlore just-in-time binary
rewriting to insert event generation and dispatching code
into dowrdoaded programs. Thw would aNow users to create
new kinds of events as and when they dsire. Currently, new
kinds of events are created ordy by system Ebraries.

Acknowledgments

We wodd ~ie to thank anonymous referees for their tilght-
ful comments which helped improve the presentation of this
paper.

47

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Al=androv, M. ~el, K. Schauser, and C. Scheiman.
Efiending the operating system at the user Ievek the
Ufo global fle system. In Proceedings of the 1997
USENIX Annual Technical Conference, 1997.

B. Bershad, S. Savage, P. Pardyak, E. Sirer, D. Becker,
M. Fluczynski, C. Chambers, and S. Eggers. Etien-
siblhty, safety and performance in the spin operating
system. h Proc of the 15th ACM Symposium on Oper-
ating System Principles, pages 267-84, 1995.

M. Blaze, J. Feigenbaum, and J. Lacy. DecentrWed
trust management. h Proc of the 17th Symposium on
Security and Ptiuacy, pag- 164-73, 1996.

D. Brewer and M. Nash. The Chinwe Wdl Security
Poficy. h Proceedings of the 1989 IEEE Symposium on
Security and Ptivacy, 1989.

C. Chambers, S. Eggers, J. AuSlander, M. Ptipose,
M. Mock, and P. Pardyak. Automatic dynamic compi-
lation support for event dispatching in tiensible sy~
terns. In Wor&hop on Compiler Support for Systems
Software, 1996.

B. Christianson, P. Cappello, M. Ionwcu, M. Neary,
K. Schauser, and D. Wu. Jave~i: kternet-based par-
allel computing using Java. h Proceedings of the 1997
ACM WorLhop on Java for Science and Engineering
Computation, 1997.

G. Edjldl, A. Acharya, and V. Chaudhary. History-
based access control for mobile code. Technical report,
University of Ctifomia, Santa Barbara, 1997.

R. Englander. Developing Java Beans. O’ReiUy & &
sociate, 1997.

J. Wltzinger and M. Mueller. Java security. Technical
report, Sun Microsystems, kc, 1996.

T. Gamble. hplementing wecution controk in Uti.
h Proceedings of the 7th System Admintitration Con-
ference, paga 23742, 1993.

I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A
secure environment for untrusted helper appficatiow
cofig the wily hacker. b Proceedings of the 1996
USENIX Secutity Symposium, 1996.

L. Gong. New security architectural directions for Java.
h Proceedings of IEEE COMPCON?97, 1997.

C. Gunter and T. Jim. Design of an application-level se
curity itiastructure. h DIMA CS Wor&hop on Design
and Fomal Verification of Secutity Protowls, 1997.

The HashJava code obfuscator. Atiable from 4thPass
Softwxe,810 32nd Avenue South, Seattle, WA 981444.

J. Hol~igsworth, B. MlHer, and J. Cargille. Dy-
namic progr- instrumentation for scalable perfor-
mance took. In SHPCC, 1994.

J. Hol~igsworth and E. MiUer. Using content-derived
names for caching and software distribution. h Proceed-
ings of the 1997 ACm Symposium on Sofiware Reusabil-
ity, 1997.

4http://www. sbktech. org/hashjava. html

7-7-7-—. -. .- ..-. .—-. ~ .,. ,-. —.. ~.-. ,* . > .-, \.. . ..- _—— —

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

C. Horstmann and G. Corne~. Core Java 1.1, volume I
- Fundarnentfi. Sun Microsystems Press, third edition,
1997.

T. Jaeger, A. Prakash, and A. Rubm. Building systems
that flkbly control downloaded executable context. h
Proc of the 6th Usenti Secutity Symposium, 1996.

S. Jajodia, P. Samarati, V. Subrahmanian, and
E. Bertino. A tied framework for enforcing mtitiple
access control poficia. h Proc. ACM SIGMOD Int ‘1.
Conf. on Management of Data, pagw 474-85, 1997.

The JavaCC parser generator. Atiable from Sun Mi-
crosystems kc. 901 Sa Antonio Road, Pdo Nto, CA
94303 USA5.

The JaWavedit Audio File Editor. Atiable from Fle
rian Bomers’ web site6.

The Jeevan object-oriented database. Available from
W3apps kc., Ft. Lauderdde, Florida7.

The JLm lexid anrdyzer generator. Available
born the Department of Computer Science, Princeton
Universitys.

M. Jones. kterposition agents: fiausparently interpo~
ing user code at the system interface. h Proceedings of
the l~th ACM Symposium on Operating System Prin-
ciples, 1993.

P. Karger. Limiting the damage potential of the discre
tionary trojan horse. h Proceedings of the 1987 IEEE
Syposium on Research in Smutity and Privacy, 1987.

M. King. Ident@g ad controtig undesirable pr~
gram behaviors. h Proceedings of the 14th National
Computer Smurity Conference, 1992.

C. Ko, G. Fti, and K. Levitt. Automated detection
of *erabtities in pritieged programs by execution
monitoring. b Proceedings. 10th Annual Computer Se-
curity Applications Conference, pages 1344, 1994.

N. Lai and T. Gray. Strengthening discretionary access
controk to inhibit trojan horses and computer virus=.
h Proceedings of the 1988 USENIX Summer Sympo-
sium, 1988.

N. Mehta and K. Sok. Efiending and expanding the
security features of Java. h Prodings of the 1998
USENIX Security Symposium, 1998.

Microsoft Corporation. Proposal
for Authenticating Code Via the Internet, Apr 1996.
http://www.microso ft. mm/intdev/security/authwde.

R. fivwt. The MD5 m=agedigest rdgorithm. RFC
1321, Network Working Group, 1992.

[32] J. Sdtzer and M. Schroeder. The protection of infor-
mation in computer systems. Proceedings of the IEEE,
63(9):1278-1308, Sep 1975.

[33] R. ScheMer and J. Gettys. X Window System : The
Complete Reference to Xlib, X Protowl, Icccm, XVd.
Butterworth-Heinemann, 1992.

‘http://mw.suntest. com/JauaCC
6http://=mmelplotz. uni-mannheim.de/ boemers/JoWouedit
7http://www. w3apps.com
8http://mw.cs.ptinceton. edu/ oppel/modem/java/JLex

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Secure hash standard. Federd ~orrnation Processing
Standmds Publication, FIPS, PUB 18&l, Apfl 1995.

R. Simon and M. Zurko. Separation of duty in role
based environments. h Proceedings of the IEEE Com-
puter Secutity Foundations Workshop ‘9X 1997.

The Spaniel News Server. Available horn Spaniel
Softwareg.

V. Varadharajan and P. Allen. Joint actions based
authorization schem=. Operating Systems Review,
30(3):3245, 1996.

D. Wdlach, D. Btianz, D. Dean, and E. Felten. Ex-
tensible security architecture for Java. In SOSP 16,
1997.

D. Withers, D. Cook, R. Okson, J. Crossley,
P. Kerchen, K. Levitt, and R. Lo. PACL’S: an access
control Yit approach to anti-viral security. In USENIX
Worhhop Proceedings. UNIX SECURITYII, pags 71-
82, 1990.

The WmgDis Editor. Available from Wm Soft CorpG
!0ration, P.O.Box 7554, Fremont, CA 94537 .

‘http://www.seorchspaniel.com/newssemer.html
lohttp://www.wingsO fi. com/javaeditOr. shtml

48

