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1.1 INTRODUCTION

Protein sequence analysis tools to predict homology, structure and function of par-
ticular peptide sequences exist in abundance. One of the most commonly used tools
is the profile hidden Markov model algorithm developed by Eddy [Eddy, 1998] and
coworkers [Durbin et al., 1998]. These tools allow scientists to construct mathemat-
ical models (Hidden Markov Models or HMM) of a set of aligned protein sequences
with known similar function and homology, which is then applicable to a large
database of proteins. The tools provide the ability to generate a log-odds score as to
whether or not the protein belongs to the same family as the proteins which generated
the HMM, or to a set of random unrelated sequences.

Due to the complexity of the calculation, and the possibility to apply many
HMM’s to a single sequence (pfam search), these calculations require significant
numbers of processing cycles. Efforts to accelerate these searches have resulted
in several platform and hardware specific variants including an Altivec port by
Lindahl [Lindahl, 2005], a GPU port of hmmsearch by Horn et al. of Stanford
[Horn et al., 2005] as well as several optimizations performed by the authors of this
chapter. These optimizations span a range between minimal source code changes
with some impact upon performance, to recasting the core algorithms in terms of
a different computing technology and thus fundamentally altering the calculation.
Each approach has specific benefits and costs. Detailed descriptions of the author’s
modifications can also be found in [Walters et al., 2006, Landman et al., 2006].

The remainder of this chapter is organized as follows: in section 1.2 we give a
brief overview of HMMER and the underlying plan-7 architecture. In section 1.3 we
discuss several different strategies that have been used to implement and accelerate
HMMER on a variety of platforms. In section 1.4 we detail our optimizations and
provide performance details. We conclude this chapter in section 1.5
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1.2 BACKROUND

HMMER operations rely upon accurate construction of an HMM representation
of a multiple sequence alignment (MSA) of homologous protein sequences. This
HMM may then be applied to a database of other protein sequences for homology
determination, or grouped together to form part of a protein family set of HMMs
that are used to test whether a particular protein sequence is related to the consensus
model, and annotate potential functions within the query protein from what is known
about the function of the aligned sequence from the HMM (homology transfer and
functional inference). These functions in HMMER are based upon the profile HMM
[Eddy, 1998] architecture. The profile HMM architecture is constructed using the
plan-7 model as depicted in figure 1.1.

Fig. 1.1 Plan 7 HMM model architecture

This architecture encodes insert, deletion, and match states all relative to a consen-
sus sequence model. The plan-7 architecture is a Viterbi algorithm [Viterbi, 1967]
and the code implementing the plan-7 architecture is constructed as such. Viterbi
algorithms involve state vector initialization, comparison operations to compute the
most probable path to the subsequent state, and thus at the end of the algorithm,
the most probable/maximum likelihood (Viterbi) path through the state model. The
application of the previously constructed HMM to the protein sequence data will
generate the aforementioned log-odds score and an optimal alignment represented by
the Viterbi path.
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Most homology searches perform alignments in either a local or global fashion.
The Smith/Waterman algorithm [Smith and Waterman, 1981], for instance, is in-
tended for local alignments while the Needleman/Wunsch algorithm
[Needleman and Wunsch, 1970] performs global alignments. The purpose of a global
alignment is to find the similarities between two entire strings without regard to the
specific similarities between substrings. A local alignment search, however, assumes
that the similarities between two substrings may be greater than the similarities
between the entire strings. In practice, local alignments are typically preferred.

Unlike typical homology searches, HMMER does not perform local or global
alignments. Instead, the HMM model itself defines whether local or global alignment
searches are performed. Typically, alignments are performed globally with respect
to an HMM and locally with respect to a sequence [Eddy, 2006].

HMMER is actually is not a single program, but rather a collection of several
programs that perform different tasks to facilitate protein sequence analysis. Among
the functionalities they provide are aligning sequences to an existing model, building
a model from multiple sequence alignments, indexing an HMM database, searching
an HMM database for matches to a query sequence, or searching a sequence database
for matches to an HMM. The last two functionalities (i.e., the searches) are among
the most frequently used and often require long execution times, depending on the
input sequence or HMM and the size of database being searched against. These
functionalities are provided by hmmpfam and hmmsearch, respectively.

1.3 TECHNIQUES FOR ACCELERATING HMMER

As we mentioned in section 1.1, there have been a variety of techniques used to
both implement and accelerate HMMER searches. They range from typical high
performance computing (HPC) strategies such as clustering, to web services, and
even extending the core HMMER algorithm to novel processing architectures. In this
section we discuss in greater depth the various strategies used in both implementing
and accelerating HMMER.

1.3.1 Network and Graphics Processors

1.3.1.1 JackHMMer We begin with a discussion of JackHMMer [Wun et al., 2005]
where network processors are used in place of a general purpose processor in order
to accelerate the core Viterbi algorithm. Specifically, JackHMMer uses the Intel
IXP 2850 network processor. Like many network processors, the Intel IXP 2850 is
a heterogeneous multicore chip. This is, several different processing elements are
integrated into a single chip. In this case, 16 32-bit microengines (MEs) are paired
with a single XScale ARM-compatible processor. Each microengine run at 1.4 GHz
while the XScale CPU runs at a peak rate of 700 MHz. Other processing elements,
such as memory controllers and interconnect also run at 700 MHz.

JackHMMer essentially uses the IXP 2850 as a single-chip cluster with the XScale
CPU functioning as the head node. Like a typical cluster, the XScale CPU is
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responsible for distributing jobs to the individual microengines. In JackHMMer,
each job takes the form of a Viterbi packet. A database of HMMs is divided into a
series of Viterbi packets with each packet corresponding to an individual database
model [Wun et al., 2005]. The XScale processor distributes the Viterbi packets to
the microengines where each microengine then independently performs the Viterbi
algorithm on the packet. In the standard HMMER implementation, this computation
is performed by hmmpfam.

Despite the IXP’s apparently slow clock speed, the authors of [Wun et al., 2005]
claim a speedup of 1.82x compared to a P4 running at 2.6 GHz. However, it is
important to note that the algorithm implemented in JackHMMer is not the full
Viterbi algorithm as implemented in HMMER. A small amount of processing time
is saved by not computing the post-processing portion of the HMMER reference
implementation. In addition, Wun et al. note that up to 25% of the initial time was
spent in a pre-processing stage in which HMM models are converted into log-odds
form as required by the Viterbi algorithm. Instead, they precompute the log-odds
data ahead of time and store it on disk for future use. This technique could also be
used in a standard HMMER implementation.

1.3.1.2 ClawHMMER A second technique that has gained prominence in se-
quence analysis is the use of streaming processors/graphics processors. While actual
streaming processors are not yet widely available, graphics processors bear a close
resemblance with regard to functionality. Unlike traditional general purpose proces-
sors, graphics hardware has been optimized to perform the same operation over large
streams of input data. This is similar to the SIMD operations of general purpose
CPUs, but with greater width and speed.

Unlike the SIMD approach to optimizing HMMER, ClawHMMER
[Horn et al., 2005] operates over multiple sequences rather than vectorizing the com-
putation of individual sequences. The key to ClawHMMER’s speed is that sequences
many sequences are computed on simultaneously. The time to process a group of
sequences is essentially the time to process the longest sequence in the batch. There-
fore, is it advantageous to group sequences into similarly-sized chunks (based on the
sequence length). Unlike JackHMMer, ClawHMMER implements the hmmsearch
function of the standard HMMER implementation.

In [Horn et al., 2005] Horn et al. demonstrate the speed of ClawHMMER with an
implementation of their streaming Viterbi algorithm on a 16 node rendering cluster.
The cluster consisted of 16 nodes with a Radeon 9800 Pro GPU in each node. Since
each sequence is independent of the others, the Viterbi algorithm is highly parallel.
Thus, Horn et al. are able to demonstrate nearly linear speedup with their streaming
Viterbi algorithm.

1.3.2 DecypherHMM

For the fastest possible sequence analysis, a custom processor is a necessity. Typi-
cally, such customized hardware comes in the form of an FPGA (field programmable
gate array). Historically, FPGAs have been difficult and time-consuming to program.
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They require expertise in hardware/CPU design and are quite costly. However, they
are often able to achieve 10-100x the speed of a general purpose CPU or cluster.

Timelogic provides an FPGA HMM protein characterization solution named De-
CypherHMM [TimeLogic BioComputing solutions, 2006]. The DeCypher engine is
deployed as a standard PCI card into an existing machine. Multiple DeCypher en-
gines can be installed in a single machine, which according to TimeLogic, results in
near linear speedup.

1.3.3 Web Services

Web based sequence analysis tools are becoming popular for all areas of bioinformat-
ics research. In this section we detail two of the most popular web based toolkits for
facilitating HMMER searches, SledgeHMMER and the MPI Bioinformatics Toolkit.

1.3.3.1 SledgeHMMER SledgeHMMER [Chukkapalli et al., 2004] is a web ser-
vice designed to allow researches to perform Pfam database searches without having
to install HMMER locally. To use the service, a user submits a batch job to the
SledgeHMMER website. Upon completion of the job, the results are simply emailed
back to the user

In addition to being available via the web, SledgeHMMER also includes three
optimizations to expedite Pfam searches. The first optimization is their use of pre-
calculated search results. Those queries that match entries held within the SledgeHM-
MER database can be quickly returned. Matching entries are found using an MD5
hashing strategy.

For those results that are not already contained within the SledgeHMMER database,
SledgeHMMER uses a parallelized hmmpfam algorithm. Rather than using MPI or
PVM to perform the distributed search, SledgeHMMER relies on a Unix-based file-
locking strategy. This allows nodes to leave/join as they become available, but also
requires a shared filesystem from which all nodes access a lock-file. This lock-file
acts as an iterator and returns indexes which correspond to query sequences. By
using a lock-file, SledgeHMMER ensures that all sequences are distributed exactly
once.

The final optimization employed by SledgeHMMER is to read the entire Pfam
database into memory before performing the batch search. In a typical scenario the
entire Pfam database will be read for each query sequence in the batch search. This
can be extremely time-consuming. To alleviate this problem, the Pfam database is
read and stored into memory upon start up and can be referenced throughout the
computation without accessing the disk.

1.3.3.2 The MPI Bioinformatics Toolkit The MPI(Max-Planck-Institute) Bioin-
formatics Toolkit [Biegert et al., 2006] is a web-based collection of bioinformatics
tools that is freely accessible to researchers. The toolkit makes two major contribu-
tions to web-based bioinformatics services.

The first contribution is the toolkit’s vast collection of tools, all of which are
available from a single website. These tools not only include HMMER searches, but
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BLAST [Altschul et al., 1990, Altschul et al., 1997], ClustalW [Thompson et al., 1994],
and MUSCLE[Edgar, 2004] searches (among others) in addition to many tools de-
veloped in-house. Some of these tools, specifically HMMER, include optimizations
to accelerate the searching of sequences. In the case of HMMER, the MPI Bioinfor-
matics Toolkit reduces HMMER searches to ∼10% of their original. This is done by
reducing the database with a single iteration of PSI-BLAST.

The second major contribution made by the MPI Bioinformatics Toolkit is to allow
the user to pipeline searches from one tool to another automatically. This allows the
results of an initial search to be fed into a secondary search (for example, from a
sequence analysis tool to a formatting tool or classification tool). Furthermore, a user
can store customized databases on the MPI Bioinformatics Toolkit server for future
use.

1.4 CONVENTIONAL CPU OPTIMIZATIONS

In this section we detail three optimizations made by the authors of this chapter. In
the first case, we evaluate changes made through absolute minimal changes in source
code. In this case, the changes were designed to allow the compiler to perform its
optimizations in a more efficient manner. Such changes also benefit from portability
as well. Our second strategy was to manually add SSE2 code to the P7Viterbi function.
This required the addition of inline assembly code resulting in nonportable code, but
accelerated code. Our final strategy was to recast the computation in terms of MPI
such that multiple nodes could be used simultaneously. The MPI implementation is
portable across standards-compliant MPI implementations.

1.4.1 Hardware/Software Configuration

The experiments in this chapter were performed on a university cluster. Each node is
an SMP configuration consisting of two 2.66 GHz Pentium 4 Xeon processors with 2.5
GB of total system memory per node. 100 Mbit ethernet facilitates communication
between each node.

Each node runs the Rocks v3.3.0 Linux cluster distribution. In addition, each node
is loaded with both MPICH version 1.2.6 [Argonne National Lab, 2006]
[Gropp et al., 1996] and PVM version 3.4.3 [Sunderam, 1990]. All nodes are identi-
cal in every respect.

For testing purposes, most experiments were performed using the nr sequence
database compared against rrm.hmm (rrm.hmm is included in the HMMER distribu-
tion). The nr database is 900 MB in size. A smaller version of the nr database was
used to verify our results against smaller databases. To demonstrate the applicability
of our SSE2 optimizations in hmmpfam we also ran tests using the Pfam database.

In section 1.4.2, tests were performed using BBSv3 [Landman, 2006] tests on a
64-bit AMD Opteron. The binaries were compiled with threading disabled.
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1.4.2 Minimal Source Changes

Profiling of the code down to the line level with long test cases indicated that the
conditionals and the loop in the P7Viterbi routine were consuming approximately 30%
and 60% respectively of the execution time of this routine. Carefully examining the
loop, several issues were immediately obvious: First, the variable sc was superfluous,
and forced a memoization of the value of an intermediate calculation. Without a
complete aliasing analysis on the part of the compiler, there would be little opportunity
for the optimizer to remove the variable, and leave the intermediate results in a register.

Second, the use of variable sc resulted in creating artificial dependencies between
different sections of the loop and between iterations of the loop. The former would
prevent the optimizer from moving statements around to reduce resources. The latter
would impede automatic unrolling.

Finally, the conditional within the loop is always executed except for the last
iteration. This implies that this loop can be refactored into two loops, one with k
incrementing from 1 to M − 1 over the main loop block (MLB) with no conditional
needed to execute the conditional block (CB), and one main loop block with k == M
without the conditional block. That is we alter the structure of the loop from listing
1.1 to that of listing 1.2.

Removing the conditional from the loop lets the compiler generate better code for
the loop as long as the artificial loop iteration dependency was broken by removing
the memoization of sc and using a register temporary. After making these changes,
the HMMer regression tests included with the code distribution were rerun, and the
benchmark output was inspected to insure correctness of the calculations.

This set of changes resulted in a binary approximately 1.8x faster than the binary
built from the original source tree. An inter-loop dependency still exists with the use
of the sc1 variable. However, the only time memory traffic will be observed will
be when the assignment conditional is true, which should allow the cached value
of sc1 to be used without requiring repeated memoization where it is not required.
Additional work was performed on the function to remove the sc variable from other
conditionals so as to avoid the artificial dependencies.

Combining these changes with the preceding changes yielded a binary approx-
imately 1.96x faster than the Opteron baseline binary provided by the HMMer
download site. Subsequent tests on end user cases have yielded a range from 1.6x
to 2.5x baseline performance, depending in part upon which database and how the
HMM was constructed for the tests.

1.4.2.1 Performance Results of the Minimal Changes The binary generated by
was compared to the standard downloadable Opteron binary, running the BBSv3
tests. No special efforts were undertaken to make the machine quiescent prior to the
run, other than to ascertain whether or not another user was running jobs. The test
binary used hmmcalibrate to test the efficacy of the Viterbi improvements.

From figure 1.2 we can see that modest improvements can be gained from seem-
ingly minor source code changes. Such changes, while small, can have a dramatic
affect on the compiler’s ability to optimize the source code. In cases where most of
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Listing 1.1 The most time consuming portion of the P7Viterbi algorithm

for (k = 1; k <= M; k++) {
mc[k] = mpp[k-1] + tpmm[k-1];
if ((sc = ip[k-1] + tpim[k-1]) > mc[k])

mc[k] = sc;
if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])

mc[k] = sc;
if ((sc = xmb + bp[k]) > mc[k])

mc[k] = sc;
mc[k] += ms[k];
if (mc[k] < -INFTY) mc[k] = -INFTY;

dc[k] = dc[k-1] + tpdd[k-1];
if ((sc = mc[k-1] + tpmd[k-1]) > dc[k])

dc[k] = sc;
if (dc[k] < -INFTY)

dc[k] = -INFTY;

if (k < M) {
ic[k] = mpp[k] + tpmi[k];
if ((sc = ip[k] + tpii[k]) > ic[k])

ic[k] = sc;
ic[k] += is[k];
if (ic[k] < -INFTY)

ic[k] = -INFTY;
}

}

the compute-time is spent in a single function, such compiler optimizations can be
particularly useful.

1.4.3 Inline Assembly/SSE2

The SSE2 [Intel Corporation, 2006b] instructions are among a series of Intel Single
Instruction Multiple Data (SIMD) extensions to the x86 Instruction Set Architecture
(ISA). The first was the MultiMedia eXtension (MMX) which appeared in the Pentium
MMX in 1997 [Intel Corporation, 2006a]. MMX provides a series of packed integer
instructions that work on 64-bit data using eight MMX 64-bit registers. MMX was
followed by the Streaming SIMD Extensions (SSE) which appeared with Pentium
III. SSE adds a series of packed and scalar single precision floating point operations,
and some conversions between single precision floating point and integers. SSE uses
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Listing 1.2 Removing the conditional from the innermost loop

for (k = 1; k < M; k++) {
...
...
...

ic[k] = mpp[k] + tpmi[k];
if (( ip[k] + tpii[k]) > ic[k])

ic[k] = ip[k] + tpii[k];
ic[k] += is[k];
if (ic[k] < -INFTY)

ic[k] = -INFTY;

}

k = M;
sc1 = mpp[k-1] + tpmm[k-1];
if (( ip[k-1] + tpim[k-1]) > sc1)

sc1 = ip[k-1] + tpim[k-1] ;
if (( dpp[k-1] + tpdm[k-1]) > sc1)

sc1 = dpp[k-1] + tpdm[k-1] ;
if (( xmb + bp[k]) > sc1)

sc1 = xmb + bp[k] ;
sc1 += ms[k];
if (sc1 < -INFTY) sc1 = -INFTY;
mc[k] = sc1;

dc[k] = dc[k-1] + tpdd[k-1];
if (( mc[k-1] + tpmd[k-1]) > dc[k])

dc[k] = mc[k-1] + tpmd[k-1] ;
if (dc[k] < -INFTY) dc[k] = -INFTY;

128-bit registers in a new XMM register file, which is distinct from the MMX register
file. The Second Streaming SIMD Extensions (SSE2) appeared with the Pentium IV.
SSE2 adds a series of packed and scalar double precision floating point operations.
In addition, SSE2 provides integer operations similar to those available with MMX
except that they work on 128-bit data and use the XMM register file. SSE2 also
adds a large number of data type conversion instructions. More recently, a third set
of extensions, SSE3 [Intel Corporation, 2003], was added to enable complex floating
point arithmetic in several data layouts. SSE3 also adds a small set of additional
permutes and some horizontal floating point adds and subtracts.
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Like other applications dealing with processing large arrays of data, HMMER
seemingly has a strong potential to benefit from SIMD instructions by performing
some of the time consuming operations in parallel on multiple data sets. Recall that a
similar strategy was discussed in section 1.3.1.2 with regard to graphics processors.
However, re-implementing a relatively large application such as HMMER to take
advantage of the newly added SIMD instructions is a costly and time consuming
task. Further, moving from C (or any high level language) to assembly makes the
code architecture-dependent rather than portable, and requires re-implementing the
code for all supported platforms.

The more reasonable alternative is to limit the re-implementation to the smallest
possible portion of code that results in the greatest speedup. In our profile of
HMMER we found that the innermost loop of the Viterbi function (see listing 1.1)
consumed more than 50% of the execution time when hmmpfam or hmmsearch are
used to perform a search. This short code segment is simply a loop that performs
some additions and maximum value selections over large arrays of 32-bit integers.
SSE2, as described earlier, computes on 128-bit data and enables the programmer to
perform several operations (e.g., addition) on four 32-bit integers in parallel. Ideally
this would lead to a 4x speedup in the vectorized code segment.

However, the task is not as simple as vectorizing the previously mentioned code
segment. Since the idea of SIMD is to perform an operation on 4 iterations (items) in
parallel at the same time, the first problem is inter-iteration dependencies. That is an
operation in iteration i requires a result from iteration i − 1 (or earlier iterations) to
be performed. To resolve inter-iteration dependencies in our loop we had to split the
loop into three loops. That may appear to add additional overhead, but each loop now
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iterates only 25% of the number of iterations in the original loop. We still achieve
reasonable speedup, but not quite the ideal case as described above.

Splitting the loop is not the only overhead that can affect the overall reduction
in execution time. We also encountered another problem: The lack of packed
max/min instructions that works on 32-bit integers, similar to PMAXUB/PMINUB
and PMAXSW/PMINSW that work on 8-bit and 16-bit data, respectively. Imple-
menting a replacement for that missing instruction costs five SSE2 instructions for
each occurrence. Assuming the data to be compared are initially in registers XMM3
and XMM4, where each register contains four integer items, and the maximum item
of each pair is required to be in register XMM3 by the end of the task. If we have
that "desired instruction" (let us call it PMAXD), the task can be performed simply
by one instruction "PMAXD XMM4, XMM3" the replacement code is simply:

• MOVDQA XMM3, XMM5
copying the content of XMM3 into XMM5

• PCMPGTD XMM4, XMM5
Comparing contents of XMM4 and XMM5 and for each pair, if the item in
XMM4 is greater than that in XMM5, the item in XMM5 is replaced with 0’s,
otherwise it is replaced by all 1’s. By the end of this step, each of the four
items in XMM5 will be either 0x00000000 or 0xFFFFFFFF. The original data
in XMM5 are lost and that is why we copied them in the previous step.

• PAND XMM5, XMM3
Bitwise AND the content of the two registers and put the results in XMM3.
Since XMM3 has the same contents as those of XMM5 before the previous step,
this step will keep only the maximum values in XMM3 and replace those which
are not the maximum in their pairs by 0’s.

• PANDN XMM4, XMM5
Invert XMM5 (1’s complement) and AND it with XMM4. That will have a
similar result as in the previous step but the maximum numbers in XMM4 will
be stored in XMM5 this time.

• POR XMM5, XMM3
This will gather all the maximums in XMM5 and XMM3 and store them in
XMM3. The task is done.

Fortunately, even with these five instructions replacing the desired instruction, we
can still achieve reasonable speedup over the non-SSE2 case. With no SIMD the
maximum selection consists of three instructions: Compare, Jump on a condition,
then a move instruction which will be executed only if the condition fails. Assuming
equal probabilities for the fail and the success of the condition, that means an average
of 2.5 instructions for each pair of items. That is 10 instructions for four pairs
compared to the five when the SSE2 instructions are used.

We should note that the Altivec architecture provides the needed instruction in
the form of VMAXSW and VMAXUW (vector max signed/unsigned max). This is
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used in the Erik Lindahl [Lindahl, 2005] port to achieve excellent speedup on the
PowerPC architecture.

Finally, an additional overhead is shared, typically by several SSE2 instructions:
that is, data alignment and the moving of data into the 128-bit XMM registers.
However, once the data is in these registers, many SSE2 operations can be performed
on them, assuming efficiently written code and that the entire alignment and loading
cost can be shared. Even if this is not the case some speedup can still be observed
over the non SIMD case,

1.4.3.1 SSE2 Evaluation and Performance Results We begin our evaluation by
noting that approximately 50% of the runtime of our code can be vectorized using
the SSE2 instructions. We can therefore use Amdahl’s law to compute the theoretical
maximum speedup possible given 50% parallelizable code. We start from Amdahl’s
law:

Speedup =
1

(1− P ) + P
N

(1.1)

From equation 1.1 we have P = the percentage of the code that can be parallelized.
1− P is therefore the percentage of code that must be executed serially. Finally, N
from equation 1.1 represents the number of processors. In this case, N actually rep-
resents the number of elements that can be executed within a single SSE2 instruction,
4.

Theoretically, the expected speedup of the loop is 4, This should therefore result
in an expected speedup of

Speedup =
1.0

50% + 50%
4

= 1.6 (1.2)

In other words the overall reduction in execution time is expected to be:

1− 1
1.6

= 37.5% (1.3)

Our analysis shows a reduction in the execution time even considering the over-
head described in section 1.4.3. The loop was then re-implemented using the
SSE2 instructions and hmmpfam and hmmsearch were used to compare the re-
sults. Many samples were used in searches against the Pfam and nr databases
[Pfam, 2006][NCBI, 2006]. The Pfam database is a large collection of multiple
sequence alignments and hidden Markov models covering many common protein
families. The nr database, is a non-redundant database available from [NCBI, 2006].
Each search was repeated several times and the average was found for each search
both when the original code is used, and when the modified code using SSE2 is used.
The reduction in execution time varies from around 18% up to 24% depending on
the sample and the percentage of time spent in the re-implemented code. Table 1.1
shows the results for three samples. Samples 1 and 2 were taken from hmmpfam
searches while sample 3 was taken from hmmsearch searches. The corresponding
speedups are from around 1.2 up to 1.3.
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Implementing more code using the SSE2 may have resulted in more speedup, but
would have been a much more costly task. The advantage to this speedup is that it
is cost-free, no new hardware is required, and no real development time is needed,
just a small portion of the code needs to be re-implemented and maintained over the
original implementation. This disadvantage is the lack of portability.

Table 1.1 Effect of SSE2 on HMMER Execution Time

Average Execution Time (seconds) Reduction in
Original Code with SSE2 Execution Time

Sample 1 1183 909 23.2%
Sample 2 272 221 18.8%
Sample 3 1919 1562 18.6%

1.4.4 Cluster/MPI Parallelism

In this section we describe our HMMER MPI implementation. Unlike the SIMD/SSE2
and minimal source-change implementations, the MPI implementation takes advan-
tage of the parallelism between multiple sequences, rather than the instruction level
parallelism used by the SSE2 technique. The advantage in this case is that greater
parallelism can be achieved by offloading the entire P7Viterbi() function to compute
nodes, rather than simply vectorizing the most time consuming loop.

1.4.4.1 Parallelizing the Database Rather than the instruction-level parallelism
described in section 1.4.3, we now distribute individual sequences to cluster nodes.
Each cluster node then performs the majority of the computation associated with
its own sequence and returns the results to the master node. This is the method
by which the original PVM implementation of HMMER performs the distribution.
It is also the basis from which we began our MPI implementation. To understand
the distribution of computation between the master node and the worker nodes, we
provide pseudocode in listings 1.3, 1.4, and 1.5. The important point to note is that the
P7Viterbi() function accounts for greater than 90% (see table 1.2) of the runtime, thus
is is imperative that it be executed on the worker nodes if any effective parallelism is
to be achieved.

1.4.4.2 Enhancing the Cluster Distribution While the strategy demonstrated
above does indeed yield reasonable speedup, we found that the workers were spend-
ing too much time blocking for additional work. The solution to this problem is
twofold. The workers should be using a non-blocking, double buffering strategy
rather than their simple blocking techniques. Second, the workers can reduce the
communication time by processing database chunks rather than individual sequences.

Our double buffering strategy is to receive the next sequence from the master node
while the current sequence is being processed. The idea behind double buffering is to
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Listing 1.3 Pseudocode of each sequence iteration

while (ReadSeq (...)){
dsq = DigitizeSequence (...);
if (do_xnu && Alphabet_type

== hmmAMINO)
XNU (...);

sc = P7Viterbi (...);
if (do_forward) {

sc = P7Forward (...);
if (do_null2)

sc -= TraceScoreCorrection (...);
}
pvalue = PValue(hmm , sc);
evalue = thresh ->Z ?

(double) thresh ->Z * pvalue :
(double) nseq * pvalue;

if (sc >= thresh ->globT &&
evalue <= thresh ->globE){

sc = PostprocessSignificantHit (...);
}
AddToHistogram(histogram , sc);

}

overlap as much of the communication as possible with the computation, hopefully
hiding the communication altogether.

In keeping with the strategy used in the PVM implementation, the master does not
also act as a client itself. Instead, its job is to supply sequences as quickly as possible
to the workers as newly processed sequences arrive. Therefore, a cluster of N nodes
will actually have only N − 1 worker nodes available with one node reserved as the
master.

While double buffering alone improved the speedup immensely, we also sought to
reduce the communication time in addition to masking it through double buffering.
To this end we simply bundled several sequences (12, in our experiments) to each
worker in each message. We settled on 12 sequences by simply observing the
performance of hmmsearch for various chunk sizes. Sending 12 sequences in each
message maintained a rreasonablemessage size and also provided enough work to
keep the workers busy while the next batch of sequences was in transit.

1.4.4.3 MPI Performance Results Beginning from equation 1.1, we can derive a
formula for the expected speedup of hmmsearch for a given number of CPUs. For
example, let us assume that the number of CPUs is 2. From equation 1.1 we can
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Listing 1.4 Pseudocode of the master node

while (ReadSeq (...)){
/* receive output */

pvm_recv(slave_tid , HMMPVM_RESULTS );
/* send new work */

dsq = DigitizeSequence (...);
if (do_xnu) XNU (...);
pvm_send(slave_tid , HMMPVM_WORK );

/* process output */
if (sent_trace ){

sc = PostprocessSignificantHit (...);
}
AddToHistogram (...);

}

express the potential speedup as:

1
(1− P ) + P

2

(1.4)

Again, P is the percentage of code executed in parallel and (1 − P ) is the serial
code. In order to find the fraction of code capable of being parallelized we profiled
hmmsearch using the nr database. Table 1.2 lists our results of the profile.

Table 1.2 Profile results of hmmsearch

% of total
Function execution

P7Viterbi 97.72
P7ViterbiTrace 0.95
P7ReverseTrace 0.25
addseq 0.23
other 0.85

We notice that the P7Viterbi function accounts for nearly all of the runtime of
hmmsearch. Furthermore, of the functions listed in table 1.2 the first 3 are all run on
the worker node. Therefore, our P from equation 1.4 can be reasonably approximated
as 98.92%. For two worker processors, this leaves us with an expected speedup of

1
(1− .9892) + .9892

2

= 1.98 (1.5)
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Listing 1.5 Pseudocode of the worker node

for (;;){
/* receive work*/

pvm_recv(master_tid , HMMPVM_WORK );

/* compute alignment */
sc = P7Viterbi (...);
if (do_forward) {

sc = P7Forward (...);
if (do_null2)

sc -= TraceScoreCorrection (...);
}

pvalue = PValue (...);
evalue = Z ? (double) Z * pvalue :

(double) nseq * pvalue;
send_trace = (tr != NULL &&

sc >= globT
&& evalue <= globE)
? 1 : 0;

/* return output
*/

if (send_trace) PVMPackTrace (...);
pvm_send(master_tid , HMMPVM_RESULTS );

}

with an expected increase in exection time of 49%.

Table 1.3 Actual Speedup compared to Optimal Speedup (non-SSE2)

N CPU Actual Speedup Optimal Speedup

1 1 1
2 1.62 1.98
4 3.09 3.87
8 6.44 7.44
16 11.10 13.77

From table 1.3 we can see that the actual speedup of 2 CPUs is 1.62 or approx-
imately a 38% decrease in run time. Considering that the implementation requires
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message passing over a network and that the messages and computation cannot nec-
essarily be overlapped entirely, we feel that the actual speedup is rather respectable.
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Fig. 1.3 Comparative timings of PVM, MPI, MPI+SSE2 implementations

In figure 1.3 we provide our raw timings for hmmsearch, comparing our MPI and
MPI+SSE2 code against the PVM code provided by the HMMER source distribution.
In table 1.4 we translate the numbers from figure 1.3 into their corresponding speedups
and compare them against one another.

Fig. 1.4 Figure 1.3 translated into the corresponding speedups
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To verify that our techniques work in the case of smaller databases, we also tested
hmmsearch with a smaller (100 MB) version of the nr database. The smaller database
was created by simply taking the first 100 MB of nr. Our results are summarized in
table 1.4. From table 1.4 we can see that both the MPI and the SSE2 techniques yield
reasonable speedup from even fairly small databases. By examining figure 1.4 and
table 1.4 we can also see that our speedup increases with larger databases.

Table 1.4 Speedups of hmmsearch for 100 MB database

# CPU PVM MPI MPI+SSE2

2 1.39 1.69 2.21
4 2.28 3.38 3.84
8 4.05 5.81 6.65
16 4.56 5.90 7.71

As can be seen in Figure 1.3, our MPI implementation clearly outperforms the
PVM implementation by a fairly wide margin. As the number of of nodes increases,
the MPI implementation improves the runtime by nearly a factor of two. And adding
SSE2 improves upon the MPI implementation. Figure 1.4 clearly shows that our
MPI implementation scales much better than the current PVM implementation. In
addition, some of the speedup may be due, at least in part, to the underlying differences
between PVM and MPI.

1.5 CONCLUSIONS

We have discussed the many ways in which HMMER has been accelerated and
improved through a variety of mechanisms. These include novel hardware solutions,
web services and conventional CPU acceleration techniques. Owing to its popularity,
HMMER has inspired a wealth of freely available web services that enable the
linking of multiple sequence analysis tools into a single service. We have also
shown how HMMER can be effectively accelerated on typical hardware in order to
more effectively utilize the resources that are already available. Our acceleration
strategies ranged from minimal source code changes to inline assembly and MPI. We
have further demonstrated large improvements in the clustered implementation of
HMMER by porting the client and server to use MPI rather than PVM. Furthermore,
our MPI implementation utilized an effective double buffering and database chunking
strategy to provide performance increases beyond that which would be achieved by
directly porting the PVM code to MPI code. Our results show excellent speedup
over and above that of the PVM implementation and beyond that of any conventional
hardware. The techniques that we have implemented could prove useful beyond
the cluster implementation. Indeed even the web services will soon find the need
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to cluster enable-their computational backends. Our accelerations could therefore
easily be used within a web-based sequencing package for high scalability.
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