Practical Issues in OpenMP

M. D. Jones, Ph.D.

Center for Computational Research
University at Buffalo
State University of New York

High Performance Computing |, 2009

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 1/48

Scheduling Load Balance

Loop Scheduling

@ The way in which iterations of a parallel loop get assigned to
threads is determined by the loop’s schedule

@ Default scheduling typically assumes an equal load balance,
frequently the case that different iterations can have entirely
different computational loads

@ Load imbalance can cause significant synchronization delays

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 3/48

Scheduling Load Balance

Static vs. Dynamic Scheduling

Basic distinction of loop scheduling:

Static: iteration assignment to threads determined as function of
iteration/thread number

Dynamic: assignment can vary at run-time, and iterations are
handed out to threads as they complete previously
assigned iterations

@ lterations in both schemes can be assigned in chunks

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 4/48

Scheduling Load Balance

SCHEDULE Clause

The general form of the SCHEDULE clause:

SCHEDULE clause

schedule(type[,chunk])

where type can be one of:

static without chunk, threads given equally sized subdivision of
iterations (exact placement implementation-dependent).
With chunk, iterations divided into chunk-sized pieces,
remainder allocation is implementation dependent

dynamic iterations divided into chunks (default is one if chunk not
present), assigned dynamically at run-time

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 5/48

Scheduling Load Balance

guided first chunk size determined by implementation, then
subsequently decreased exponentially (value is
implementation-dependent) to minimum size specified by
chunk (default 1)

runtime chunk must not appear, schedule determined by value of
environmental variable OMP__SCHEDULE

auto (OpenMP 3.0) gives implementation freedom to choose
best mapping of iterations to threads

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 6/48

Scheduling Load Balance

Scheduling Considerations

Things to consider when choosing between scheduling options

@ Dynamic schedules can better balance the load between threads,
but typically have higher overhead costs (synchronization costs
per chunk)

@ Guided schedules have the advantage of typically requiring fewer
chunks (translates to fewer synchronizations) - typically the initial
chunk size is roughly the number of iterations divided by the
number of threads

@ Simple static has the lowest overhead, but is most susceptible to
load imbalances

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 7148

OpenMP Issues & Gotchas Nesting

Easy to Use?

@ OpenMP does not force the programmer to explicitly manage
communication or how the program data is mapped onto
individual processors - sounds great ...

@ OpenMP program can easily run into common SMP programming
errors, usually from resource contention issues.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 9/48

OpenMP Issues & Gotchas Nesting

Directive Nesting

@ DO/for, SECTIONS, SINGLE, and WORKSHARE directives that bind to
the same parallel region are not allowed to be nested.

@ DOf/for, SECTIONS, SINGLE, and WORKSHARE directives are not
allowed in the dynamical extent of CRITICAL, ORDERED, and MASTER
directives.

@ BARRIER and MASTER are not permitted in the dynamic extent of
DO/for, SECTIONS, SINGLE, WORKSHARE, MASTER, CRITICAL, and
ORDERED directives.

@ ORDERED must appear in the dynamical extent of a DO or PARALLEL
DO with an ORDERED clause. ORDERED is not allowed in the
dynamical extent of SECTIONS, SINGLE, WORKSHARE, CRITICAL,
and MASTER.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 10/48

OpenMP Issues & Gotchas Shared vs. Private

Data Storage Defaults

@ Most variables are SHARED by default
Fortran: common blocks, save variables , MODULE variables.
C: file scope variables, static variables.
@ with some exceptions ...

e stack variables in sub-programs called from a PARALLEL region.
e automatic variables within a statement block
@ loop indices (in C just on “work-shared” loops)

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 11/48

OpenMP Issues & Gotchas Shared vs. Private

Data Storage Gotchas

@ Assumed size and assumed shape arrays can not be privatized.

@ Fortran allocatable arrays (and pointers) can be PRIVATE or
SHARED, but not FIRSTPRIVATE or LASTPRIVATE.

@ Constituent elements of a PRIVATE
(FIRSTPRIVATE/LASTPRIVATE) name common block can not be
declared in another data scope clause.

@ Privatized elements of shared common blocks are no longer
storage equivalent with the common block.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 12/48

OpenMP Issues & Gotchas Synchronization & Barriers

Synchronization Awareness

Implied Barriers :

END
END
END
END
END

00000

M. D. Jones, Ph.D. (CCR/UB)

PARALLEL
DO (unless NOWAIT)
SECTIONS (unless NOWAIT)
CRITICAL

SINGLE (unless NOWAIT)

Practical Issues in OpenMP

HPC1 Fall 2009

13/48

OpenMP Issues & Gotchas Synchronization & Barriers

Implied Flushes :

BARRIER

CRITICAL/END CRITICAL
END DO

END PARALLEL

END SECTIONS

END SINGLE
ORDERED/END ORDERED

0000000

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 14/48

OpenMP Issues & Gotchas Synchronization & Barriers

Synchronization Costs

@ Overhead for synchronization on an SGI Origin 2000 (MIPS
250MHz R10000 processors)

Nihreads | PARALLEL[us] | DO[us] | ATOMIC[us] | REDUCTION[.sS]
1 2.0 2.3 0.1 2.1
2 8.4 7.8 0.4 11.0
4 11.6 6.8 15 20.7
8 28.0 14.1 3.1 31.0

@ 10us? Isn’t that pretty small?
@ 10usx250MHz =2500 clock cycles - lost computation.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 15/48

OpenMP Issues & Gotchas Synchronization & Barriers

Synchronization Costs (cont'd)

@ Overhead for synchronization on an SGI Altix 3700 (Intel
1300MHz ltanium2 processors)

Nthreads | PARALLEL[us] | DO[us] | ATOMIC[us] | REDUCTION[us]
1 0.3 0.3 0.1 05

2 2.3 2.1 0.4 2.6

4 5.9 4.7 0.4 9.6

8 6.6 6.8 0.5 24.1

16 10.3 10.7 0.6 60.7
32 19.2 19.3 0.7 132
64 418 40.9 0.7 316

@ 10us? Isn’t that pretty small?
@ 10usx1300MHz =13000 clock cycles - lost computation.
@ Not exactly great progress ...

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 16/48

OpenMP Issues & Gotchas Synchronization & Barriers

Synchronization Costs (cont'd)

@ Overhead for synchronization on an Intel “Clovertown” (dual
quad-core 1.866GHz Xeon processors)

Nihreads | PARALLEL[us] | DO[us] | ATOMIC[us] | REDUCTION[.sS]
1 0.2 0.2 0.02 0.2
2 1.6 1.7 0.08 2.0
4 2.3 2.4 0.14 3.1
8 3.8 3.9 0.52 5.8

@ 5.8usx1866MHz =10823 clock cycles - lost computation.

@ Overhead for synchronization on an Intel “Nehalem” (dual
quad-core 2.8GHz Xeon processors)

Nthreads | PARALLEL[us] | DO[us] | ATOMIC[us] | REDUCTION[usS]
1 0.1 0.1 0.01 0.1
2 1.1 1.1 0.04 12
4 1.2 1.2 0.05 15
8 17 1.8 0.05 2.5

@ 2.5145x2800MHz =7000 clock cycles - lost computation.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 17/48

OpenMP Issues & Gotchas Synchronization & Barriers

Common Errors

Race conditions : outcome of the program depends on detailed
scheduling of thread team (the answer is different every
time | run the code!).

Deadlock : threads wait forever for a locked resource to become
free.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 18/48

OpenMP Issues & Gotchas Synchronization & Barriers

Race Conditions

@ What is wrong with this code fragment?

real tmp,x
I$OMP PARALLEL DO REDUCTION (+:x)
do i=1,10000
tmp=dosomework (i)
X=X+tmp

end do
I$OMP END DO

y(iam) = work(x,iam)
I$OMP END PARALLEL

O©CoONOOOA~WN =

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 19/48

OpenMP Issues & Gotchas Race Conditions & Deadlock

Race Conditions

@ What is wrong with this code fragment?

real tmp,x
I$OMP PARALLEL DO REDUCTION (+:x)
do i=1,10000
tmp=dosomework (i)
X=X+tmp

I$OMP END DO
y(iam) = work(x,iam)
I$OMP END PARALLEL

O©CoONOOOA~WN =

@ The programmer did not make tmp PRIVATE, hence the results
are unpredictable.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 20/48

OpenMP Issues & Gotchas Race Conditions & Deadlock

Race Conditions

@ What about now?

real tmp,x
I$OMP PARALLEL DO REDUCTION(+:x) ,PRIVATE (tmp)
do i=1,10000
tmp=dosomework (i)
X=X+tmp

end do
I$OMP END DO NOWAIT

y(iam) = work(x,iam)
I$OMP END PARALLEL

O©CoONOOOA~WN =

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 21/48

OpenMP Issues & Gotchas Race Conditions & Deadlock

Race Conditions

@ What about now?

real tmp,x
I$OMP PARALLEL DO REDUCTION(+:x) ,PRIVATE (tmp)
do i=1,10000
tmp=dosomework (i)
X=X+tmp

end do
I$OMP END DO NOWAIT

y(iam) = work(x,iam)
I$OMP END PARALLEL

OCoONOOOA~WN =

@ The value of x is not dependable without the barrier at the end of
the DO construct - be careful with NOWAIT!

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 22/48

OpenMP Issues & Gotchas Race Conditions & Deadlock

Deadlock

OoONOOH~WN =

@ A somewhat artificial example of deadlock - watch that resources
are freed if you are using locks!

call OMP_INIT_LOCK(lock0)
I$OMP PARALLEL SECTIONS
I$OMP SECTION
call OMP_SET_LOCK(lock0)
iret = dolotsofwork ()
if (iret.le.tol) then
call OMP_UNSET_LOCK(lock0)
else
call error(iret)
endif
I$OMP SECTION
call OMP_SET_LOCK(lock0)

call compute(A,B,iret)
call OMP_UNSET _LOCK(lock0)
$!OMP END SECTIONS

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 23/48

OpenMP Issues & Gotchas Load Balancing

Load Balancing

@ Consider the following code fragment - can you see why it not
efficient to parallelize on the outer loop?

do i=1N
do j=1,i

a(j,i)=a(j,i)+b(j)=c(i)
o

ap N =

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 24 /48

OpenMP Issues & Gotchas Load Balancing

Load Balancing

@ One strategy - break up the loop into interleaved chunks,

1 I$OMP PARALLEL SHARED (num_threads)
2 I$OMP SINGLE

3 num_threads = OMP_GET_NUM _THREADS()
4 I$OMP END SINGLE NOWAIT

5 I$OMP END PARALLEL

6 I$OMP PARALLEL DO PRIVATE(i ,j ,k)

7 do k = 1, num_threads

8 do i = k, n, num_threads
9 do j = 1,i

10 a(j,i

11

12

13

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 25/48

OpenMP Issues & Gotchas Load Balancing

Load Balancing

@ Another equivalent (and somewhat cleaner!) way,

I$OMP PARALLEL DO PRIVATE(i , j) SCHEDULE(static ,4)
do i=1,n
do j=1,i

a(j,i)=a(j,i)+b(j)*c(j)
end do
end do

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 26 /48

OpenMP Issues & Gotchas Load Balancing

Toward Coarser Grains

What is wrong with fine grain (loop) parallelism?
@ Overhead kills performance
@ Not scalable to large number of threads

_ Ts+ T 1
S(No) = Ts+7p/P S+(1-9)/P

Remember Amdahl’s law!

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP

HPC1 Fall 2009

27/48

OpenMP Issues & Gotchas Coarsening

Coarsening

Strategies for increasing OpenMP performance,

@ do more work per parallel region, and decrease fraction of time
spent in sequential code.

@ reduce synchronization across threads

@ combine multiple parallel do directives into larger parallel region
(with work-sharing constructs therein)

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 28/48

OpenMP Issues & Gotchas Coarsening

Coarsening (cont'd)

Domain Decomposition
@ Break Data domain into sub-domains,

@ Compute loop bounds once depending on number of threads (a
priori loop decomposition),

@ Reduces loop overhead, but shifts burden from compiler back to
the programmer,

@ Implements the Single Program Multiple Data model (SPMD).

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 29/48

OpenMP Issues & Gotchas Coarsening

Coarse Grain SPMD Example

program spmd
$!OMP PARALLEL DEFAULT(PRIVATE) SHARED(N, global)
num_threads = OMP_GET_NUM_THREADS()
iam = OMP_GET_THREAD_NUM()
ichunk = N/num_threads
ibegin = iamxichunk
iend = ibegin + ichunk — 1
call lotsofwork(ibegin ,iend,local)
$!10MP ATOMIC
10 global = global + local
11 | $!OMP END PARALLEL
12 print«, global
13 end program spmd

O©CoONOOOAWN =

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 30/48

OpenMP Issues & Gotchas Coarsening

Coarse Grain SPMD Example

program spmd M ibegin ibegin
!$OMP PARALLEL ... iend iend
!$& SHARED(M,global) local local
!$& DEFAULT(PRIVATE)

. ibegin ibegin
. iend iend

. local local

T

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 31/48

OpenMP Issues & Gotchas Coarsening

SPMD Implementation

@ Manual decomposition - valid for any number of threads (make
sure that cost/benefit ratio is high enough!)

@ Same program on each thread, but a different (PRIVATE)
sub-domain of the program data.

@ Synchronization necessary to handle global variable updates
(ATOMIC usually more efficient than CRITICAL).

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 32/48

OpenMP Issues & Gotchas Coarsening

Advantages over Message Passing

@ Domain decomposition methodology is the same, but
implementing it in OpenMP can be easier, as global data can be
read without any need for synchronization or message passing.

@ Parallelize only parts of the code that require it (profiling is key!).
Pre and Post Processing can be left sequential.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 33/48

OpenMP Issues & Gotchas Coarsening

Best of Both Worlds?

How about combining OpenMP with Message Passing?
@ Message Passing between machines, OpenMP within.
@ Allow application dependent mixing within an SMP.
@ Coarse grain with Message Passing, fine grain with OpenMP.

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 34 /48

Practical OpenMP Compiler Support

Platforms & Compilers

This table lists the various compiler suites available on the production
computing platforms along with their OpenMP compiliance:

Platform Compiler OMP Invocation
Linux IA64 Gnu (g77/gcc/g++) No -

Intel (ifort/icc/icpc) 25 -openmp -openmp_report2
Linux x86_64 Gnu? (g77/gcc/g++) 2.5(>4.1) -

PGl (pgf90/pgcc/pgCC) 2.5 -mp

Intel (ifort/icc/icpc) 2.5,3.0(> 11.0) -openmp -openmp_report2

4The Gnu compiler suite supports OpenMP for versions >4.2, although some Linux distributions
(e.g. RedHat) have backported support to 4.1

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 36/48

Practical OpenMP Example - Simple

Simple OpenMP example

program simple
USE omp_lib ! comment out for pgf90 — if not openmp 2.0 compliant
implicit none

integer :: myid, nthreads, nprocs
linclude this declaration for pgf90
linteger :: OMP_GET_NUM THREADS,OMP_GET_THREAD_NUM,OMP_GET_NUM PROCS

I$OMP PARALLEL default(none) private (myid) &
I$OMP shared (nthreads , nprocs)
!

| Determine the number of threads and their id
|

myid = OMP_GET_THREAD_NUM()

nthreads = OMP_GET_NUM_THREADS() ;

nprocs = OMP_GET_NUM PROCS();

I$OMP BARRIER
if (myid==0) printx, 'Number of available processors: ’,nprocs
printx, 'myid = ', myid, ' nthreads ', nthreads

I$OMP END PARALLEL
end program simple

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 37/48

Practical OpenMP Example - Simple

Altix - simple example

[jonesm@lennon
[jonesm@lennon
simple . f90

simple.f90(19)

simple .90 (9)
[jonesm@lennon
[jonesm@lennon

was successful.

~/d_omp]$ module load intel
~/d_omp]$ ifort —O3 —o simple_ifort —openmp —openmp_report2

(col. 6) remark: OpenMP multithreaded code generation BARRIER
(col. 6) remark: OpenMP DEFINED REGION WAS PARALLELIZED.

~/d_omp]$ setenv OMP_NUM_THREADS 4
~/d_omp]$./simple_ifort

myid = 1 nthreads 4
myid = 3 nthreads 4
myid = 2 nthreads 4
Number of available processors: 4
myid = 0 nthreads 4

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 38/48

Practical OpenMP Example - Simple

U2 - simple example

[jonesm@bono ~/d_omp]$ module load intel

[jonesm@bono ~/d_omp]$ ifort —O3 —o simple_ifort —openmp simple.f90
[jonesm@bono ~/d_omp]$ setenv OMP_NUM THREADS 4

[jonesm@bono ~/d_omp]$./simple_ifort

Number of available processors: 4

myid = 1 nthreads 4

myid = 0 nthreads 4

myid = 2 nthreads 4

myid = 3 nthreads 4

[jonesm@bono ~/d_omp]$ module load pgi

[jonesm@bono ~/d_omp]$ pgf90 —O3 —mp —o simple_pgi simple.f90
[jonesm@bono ~/d_omp]$./simple_pgi

Number of available processors: 4

myid = 0 nthreads 4

myid = 3 nthreads 4

myid = 1 nthreads 4

myid = 2 nthreads 4

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 39/48

Practical OpenMP Example - Molecular Dynamics

MD Sample Code

Let’s take this as a trial of parallelizing a real code:
@ Take the sample MD code from www.openmp.org

@ Modify it slightly for our environment (uncomment the line for use
omp_11ib, add conditional compilation for the API function calls ...

@ Then do a quick profile to see where the code spends is spending
time ...

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 40/ 48

www.openmp.org

Practical OpenMP Example - Molecular Dynamics

[jonesm@lennon ~/d_omp]$ ifort —O3 —o md.pg —g —p md. f90
[jonesm@lennon ~/d_omp]$ /usr/bin/time ./md.pg
November 5 2005 3:39:39.245 PM

MD
A molecular dynamics program.

100 124395. 0.226163 0.162282E—05
200 124395. 0.918574 0.659101E—05
300 124395. 2.07756 0.149066E—04
400 124395. 3.70360 0.265724E—04
500 124395. 5.79733 0.415922E—-04
600 124395. 8.35961 0.599709E—04
700 124394. 11.3914 0.817147E—-04
800 124394. 14.8940 0.106831E—-03
900 124393. 18.8688 0.135327E—-03
1000 124393. 23.3172 0.167213E—-03

MD
Normal end of execution.

November 5 2005 3:40:50.247 PM
70.94user 0.00system 1:11.23elapsed 99%CPU (0avgtext+Oavgdata Omaxresident)k
Oinputs+0outputs (116major+120minor)pagefaults Oswaps

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 41/48

Practical OpenMP Example - Molecular Dynamics

[jonesm@lennon ~/d_omp]$ gprof —line ./md.pg gmon.out > report.gmon
[jonesm@lennon ~/d_omp]$ less report.gmon

Flat profile:
Each sample counts as 0.000976562 seconds.

% cumulative self self total

time seconds seconds calls ns/call ns/call name
12.02 6.88 6.88 dist (md.f90:302@40000000000065e0)
10.68 12.99 6.11 dist (md.f90:300@40000000000065a0)
9.71 18.55 5.56 dist (md.f90:302@4000000000006bf1)
8.95 23.67 5.12 compute (md.f90:194@4000000000004fa0)
7.50 27.96 4.29 compute (md.f90:168@4000000000004e31)
7.35 32.16 4.20 compute (md.f90:167@4000000000004a80)
6.67 35.98 3.82 compute (md.f90:167@40000000000048f0)
5.02 38.85 2.87 249749500 11.50 11.50 dist_ (md.f90:266@4000000000005d40)
2.83 40.46 1.62 dist (md.f90:305@4000000000006be1)
2.06 41.64 1.18 compute (md.f90:167@40000000000048e1)
2.06 42.82 1.18 compute (md.f90:188@40000000000048e2)
2.02 43.97 1.15 dist (md.f90:300@4000000000005e52)
1.94 45.08 1.1 compute (md.f90:194@400000000000451)
1.45 4591 0.83 compute (md.f90:192@4000000000004b91)
1.33 46.67 0.76 dist (md.f90:305@4000000000006d01)

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 42 /48

Practical OpenMP Example - Molecular Dynamics

... and now let us take a look at the critical code sections,

164 I This potential is a harmonic well which smoothly saturates to a
165 ! maximum value at Pl/2.

166 | !

167 v(x) = (sin (min (x, PI2)))*%2

168 dv(x) = 2.0D+00 = sin (min (x, PI2)) % cos (min (x, PI2))
169

170 pot = 0.0D+00

171 kin = 0.0D+00

which are implicit function declarations - the time consumption actually
comes from where they are used,

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 43 /48

Practical OpenMP Example - Molecular Dynamics

and not too suprisingly, it is the loop over particles that updates forces
and momenta that is responsible for most of the consumed time:

178 do i =1, np

179 | !

180 | Compute the potential energy and forces.
181 !

182 f(1:nd,i) = 0.0D+00

183
184 doj =1, np
185
186 if (i /= j) then
187
188 call dist (nd, pos(1,i), pos(1,j), rij, d)
189 | !

190 | ! Attribute half of the potential energy to particle J.
191 !

192 pot = pot + 0.5D+00 = v(d)

193
194 f(1:nd,i) = f(1:nd,i) — rij(1:nd) = dv(d) / d

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 44 /48

Practical OpenMP Example - Molecular Dynamics

Adding OpenMP directives to this loop:

173 I$OMP parallel do &

174 I$OMP default (shared) &

175 I$OMP shared (nd) &

176 | !$OMP private (i, j, rij, d) &

177 I$OMP reduction (+ : pot, kin)

178 do i =1, np

179 | !

180 ! Compute the potential energy and forces.

181 !

182 f(1:nd,i) = 0.0D+00

183

184 do j =1, np

185

186 if (i /= j) then

187

188 call dist (nd, pos(1,i), pos(1,j), rij, d)
189 | !

190 | ! Attribute half of the potential energy to particle J.
191 !

192 pot = pot + 0.5D+00 * v(d)

193

194 f(1:nd,i) = f(1:nd,i) — rij(1:nd) = dv(d) / d

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 45/ 48

Practical OpenMP Example - Molecular Dynamics

so, based on these OpenMP directives, what kind of speedup can we
get?

[jonesm@lennon ~/d_omp]$ module load intel

[jonesm@lennon ~/d_omp]$ ifort —O3 —o md.no—omp md. {90

[jonesm@lennon ~/d_omp]$ ifort —O3 —openmp —openmp_report2 —o md md. {90
[jonesm@lennon ~/d_omp]$ /usr/bin/time ./md.no—omp

November 5 2005 3:58:53.408 PM

MD
A molecular dynamics program.
100 124395. 0.226163 0.162282E—05
200 124395. 0.918574 0.659101E—05
300 124395. 2.07756 0.149066E—04
400 124395. 3.70360 0.265724E—04
500 124395. 5.79733 0.415922E—04
600 124395. 8.35961 0.599709E—04
700 124394. 11.3914 0.817147E—04
800 124394. 14.8940 0.106831E—03
900 124393. 18.8688 0.135327E—03
1000 124393. 23.3172 0.167213E-03

MD

Normal end of execution.
November 5 2005 3:59:49.310 PM
55.86user 0.00system 0:55.90elapsed 99%CPU (0Oavgtext+Oavgdata Omaxresident)k
Oinputs+0outputs (114major+43minor)pagefaults Oswaps

M. D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 46/ 48

Practical OpenMP Example - Molecular Dynamics

[jonesm@lennon ~/d_omp]$ setenv OMP_NUM THREADS 2
[jonesm@lennon ~/d_omp]$ /usr/bin/time ./md
November 5 2005 4:00:31.129 PM

MD

A molecular dynamics program.

The number of threads is 1

This is processor 0

This is processor 1

100 124395. 0.226163 0.162282E—05
200 124395. 0.918574 0.659101E—05
300 124395. 2.07756 0.149066E—04
400 124395. 3.70360 0.265724E—04
500 124395. 5.79733 0.415922E—04
600 124395. 8.35961 0.599709E—-04
700 124394. 11.3914 0.817147E—04
800 124394. 14.8940 0.106831E—03
900 124393. 18.8688 0.135327E—03
1000 124393. 23.3172 0.167213E—03
MD

Normal end of execution.
November 5 2005 4:01:00.928 PM
59.44user 0.00system 0:29.86elapsed 199%CPU (0avgtext+Oavgdata Omaxresident)k
Oinputs+0outputs (155major+75minor)pagefaults Oswaps

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 47/ 48

Practical OpenMP Example - Molecular Dynamics

[jonesm@lennon ~/d_omp]$ setenv OMP_NUM THREADS 4
[jonesm@lennon ~/d_omp]$ /usr/bin/time ./md
November 5 2005 4:01:23.317 PM
MD
A molecular dynamics program.
The number of threads is 1
This is processor 0
This is processor 1
This is processor 2
This is processor 3
0.
0.

100 124395. 226163 0.162282E—05
200 124395. 918574 0.659101E—05
300 124395. 2.07756 0.149066E—04
400 124395. 3.70360 0.265724E—04
500 124395. 5.79733 0.415922E—04
600 124395. 8.35961 0.599709E—04
700 124394. 11.3914 0.817147E—-04
800 124394. 14.8940 0.106831E—03
900 124393. 18.8688 0.135327E—-03
1000 124393. 23.3172 0.167213E—-03

MD

Normal end of execution.
November 5 2005 4:01:38.260 PM
59.64user 0.00system 0:14.98elapsed 398%CPU (0avgtext+Oavgdata Omaxresident)k
Oinputs+0outputs (155major+81minor)pagefaults Oswaps

D. Jones, Ph.D. (CCR/UB) Practical Issues in OpenMP HPC1 Fall 2009 48 /48

	Scheduling
	Load Balance

	OpenMP Issues & Gotchas
	Nesting
	Shared vs. Private
	Synchronization & Barriers
	Race Conditions & Deadlock
	Load Balancing
	Coarsening

	Practical OpenMP
	Compiler Support
	Example - Simple
	Example - Molecular Dynamics

