
Parallel Manipulations of Octrees and

Quadtrees�

Vipin Chaudhary�� K� Kamath�� P� Arunachalam�� and J� K� Aggarwal�

� Department of Electrical and Computer Engineering
Wayne State University� Detroit� MI ������ USA
� Sun Microsystems� San Jose� CA ������ USA

� Department of Electrical and Computer Engineering
The University of Texas at Austin� Austin� TX 	�	��� USA

Abstract� Octrees o
er a powerful means for representing and manip�
ulating ��D objects� This paper presents an implementation of octree
manipulations using a new approach on a shared memory architecture�
Octrees are hierarchical data structures used to model ��D objects� The
manipulation of these data structures involves performing independent
computations on each node of the octree� Octrees are much easier to deal
with than other forms of representations used to model ��D objects espe�
cially where extensive manipulations are involved� When these operations
are distributed among multiple processing elements 
PEs� and executed
simultaneously� a signi�cant speedup may be achieved� Manipulations
such as a complement� a union� an intersection and other operations
such as �nding the volume and centroid which this paper describes are
implemented on the Sequent Balance multiprocessor� In this approach
the PEs are allocated dynamically� resulting in a uniform load balancing
among them� The experimental results presented illustrate the feasibility
of the approach� Although this evaluation has been originally done for
shared memory machines� it will provide insight for the evaluation on
other architectures�

� Introduction

E�cient manipulations of ��D objects are important in various applications such
as computer graphics� computer vision and other related areas� These schemes
can be categorized as surface descriptions or volumetric descriptions� Chien and
Aggarwal ��� summarize advantages and disadvantages of each category� Most
representation techniques su�er from severe memory and processing require�
ments with increasing input requirements �	�� The octree is a well known data
structure in the representation of ��D objects� It is used to determine various
geometric properties such as volume and centroid and to manipulate objects by
computing their complement� union� and intersection� An octree representation
scheme uses e�cient tree traversal algorithms to overcome the drawbacks stated
earlier� Chen and Huang ��� survey in detail the construction of octrees� Though

� This research was supported in part by IBM�



this can be done on a sequential machine� the nature of the algorithm suggests
the use of a parallel machine� As these algorithms use three orthogonal views to
generate the octree� they may pose problems for objects with cavities as three
views are insu�cient to generate an exact ��D description of an object with cav�
ities� Chien and Aggarwal �	� elaborate on an octree generation from more than
three views� While a tree structure indicates an increase in the data dependen�
cies� the regularity of the structure presents ways to avoid this problem� Samet
�
� presents a detailed study of the complexity of the tree traversal algorithms�
Moitra and Iyengar ��� also discuss an idea of the parallelism which can be found
in such algorithms�

The octree structure for the representation of ��D objects is an extension
of the quadtree structure for 	�D objects� The octree manipulation is computa�
tionally expensive because of the huge volume of data� Hence� it makes sense to
parallelize the operations especially in real time systems� However� due to the
tree nature of the algorithm the parallelization is not easy and requires more
complicated techniques� Another problem with these algorithms is that they are
not computationally intensive and require more data communication than in�
herent computation on a single node� Due to this reason the speedup increase is
not linear with the increase in number of PEs�

The rest of the paper is organized as follows� The next section describes the
parallel algorithms for generating octrees from three orthogonal views� Section
three describes the manipulation of octrees involving the union and intersection
of two octrees� evaluating the volume and centroid of an octree� and �nally
the displaying of the octree as an object� The results of the implementation
of the above algorithms on the Sequent Balance multiprocessor are detailed in
section four� We conclude in section �ve with comments on the results of our
implementation and possible extensions of this work�

� Representation of Octrees

The hierarchical representation of an octree represents a binary image in a com�
pressed form� Computations to be performed on these data structures can be
considered as simple tree traversal algorithms which can be e�ciently imple�
mented in parallel� It is assumed that the objects are speci�ed in a binary format
with an image represented by white pixels and background by black pixels� The
�gures representing the objects have been drawn in the inverse format� Figure �
illustrates an example of an octree and its three orthogonal views�

��� Parallel Method for Octree Construction

The octree of a binary image is constructed by subdividing the image into eight
octants recursively until each octant is either fully white 
object� or fully black

non�object�� Each octant is a node in the tree� and each node can be a terminal
node 
leaf node� or a non�terminal node 
grey node�� A leaf node can be white or
black and a grey node which is non�terminal� is a subtree which de�nes a part of



1

23

45

67

0

Object

Front view Top view Side view

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Grey

Non-object

Object

Root

Octree of the image

Quadtree of top view Quadtree of side viewQuadtree of front view

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3

Fig� �� Example of an octree generation by three orthogonal views of the object



the object neither completely white nor black� Each node in an octree contains
information regarding the structure of the octree� This information includes the
color� the surface pointers� the children� and the node pointers� Three quadtrees
corresponding to the top� front� and the side view of the object are �rst con�
structed from the scans of the three images� These are then intersected to get
the �nal octree of the object� Hence� the quadtree generation algorithm is used
thrice to get the quadtrees of the individual views� and the octree is obtained
from this� Table � gives the various octants of an image depending on the view
direction and the position of the quadrant�

Table �� Illustration of the various octants of an image depending on the view direction
and the position of the quadrant�

View NE NW SE SW

Front �� � �� � �� � �� 	
Top �� � �� 	 �� � �� �
Side �� � �� � �� 	 �� �

This part presents the parallel algorithm used for generating an octree� The
three quadtrees are traversed in parallel� and a logical AND operation is per�
formed on the node pairs� This intersection table data is maintained in the shared
memory� A task queue is set up� and the root pointers of the three quadtrees
and the octree pointer are inserted as the task in the task queue� When the
algorithm is invoked� a check is performed to see if all the three octnodes 
octree
nodes� have the same color� If not� eight children corresponding to the eight
octants are created and appended to the task queue which are obtained from
the children of the various quadtrees� This process continues until all the three
quadtree nodes checked are of the same color� An idle PE 
Processing Element�
picks up the next available task in the task queue and executes it� The entire
job is complete when the task queue is empty and the entire image has been
created� It should be noted that an empty queue does not imply a completion
of the job because the task may not have been appended to the queue� Table 	
gives the intersection table between the quadtrees and the �nal octree�

��� The Parallel Algorithm for Octree Generation

This section presents 
more elaborately� the actual algorithm used is the study�
An idle PE takes the task from the task queue and performs the following oper�
ation�

�� If all the three quadtree nodes are grey� then the octnode is marked grey�
eight child nodes are appended to it and eight tasks are created in the task
queue� Each task contains a child node of the octree and its corresponding
three intersection quadtree nodes referred from the intersection table�



Table �� Intersection table between the quadtrees corresponding to the �nal octree�

Quadtree node Quadtree node Quadtree node Corresponding

of front view of top view of side view octree node

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � 	

	� If all the three quadtree nodes are black� then the corresponding octree node
is marked black�

�� If one of the quadtree nodes is marked white� then the corresponding octree
node is marked white�

�� If two of the quadtree nodes are marked grey and the third is black or null�
then the corresponding octree node is marked grey� Then� eight nodes are
added to the octnode� and eight tasks are appended to the task queue� Each
entry in the task queue has two pointers to the children of the nodes marked
grey� and the third is marked null�

�� If one of the quadtree nodes is grey� one is black� and the third is null� then
the corresponding octree node is marked grey� Then� eight nodes are added
to the octnode� and eight tasks are appended to the task queue� Each entry
in the task queue has a pointer to a child node of the grey node while the
other two pointers are marked null�

�� If two of the nodes are marked black and the third is marked null� then the
corresponding octree node is marked black�

�� If two of the nodes are marked white and the third is marked black� then
the corresponding octree node is marked white�

In algorithm ��

�� the total object and background pixels are assumed to be a cube of dimension
bsize�

	� q ptr�� q ptr�� and q ptr� represent the pointers of the corresponding quadtrees
for the octree�

�� q size� represents the size of the �rst quadtree�

�� T const
meaning Tree constant� is a constant dependent on the image being
a quadtree or an octree� This is � for a quadtree and 
 for an octree�



Algorithm �� Octree Generation�

begin

while
IMAGE SIZE �� bsize��
while
TASK QUEUE�� Empty�

if
q ptr� � q ptr� � q ptr� � GREY�
O ptr � O ptr � T const

O color � GREY

TASK QUEUE � TASK QUEUE � T const

else if
q ptr� � q ptr� � q ptr� � BLACK�
O color � BLACK

B SIZE � q size�
else if
q ptr� or q ptr� or q ptr� � WHITE�
O color � WHITE

B SIZE � q size�
else if
two q ptrs are GREY� third q ptr is BLACK or NULL�
O ptr � O ptr � T const

O color � GREY

TASK QUEUE � TASK QUEUE � T const and q ptr� � NULL
else if
one q ptr is BLACK� one q ptr is GREY� one q ptr is NULL�
O ptr � O ptr � T const

O color � GREY

TASK QUEUE � TASK QUEUE � T const

else if
two q ptrs are BLACK and the third is NULL�
O color � BLACK

B SIZE � q size

else if
one of the two q ptrs is WHITE� and the third is NULL�
O color � WHITE

B SIZE � q size

IMAGE SIZE � IMAGE SIZE� B SIZE

end

Each PE executes the above code concurrently� In the implementation on
a shared memory machine� all the shared variables are locked when they are
updated to prevent simultaneous accesses by many processors and thus to avoid
erroneous values� The entire task queue� tail� and image size are the variables
shared by the entire process whereas all other variables are local to a processor�
All locked variables are accessible by only one processor� the other processors
must wait until it is released� This retards the speedup achieved by parallel
processing with the shared memory paradigm�

To get a picture of the object� one needs to store surface information explic�
itly in the octree nodes� Using this� a 	�D shaded image of the object can be
obtained� Such an octree is called a volume�surface 
VS� octree� This is usu�
ally done using a multi level boundary scan� This scheme was �rst suggested by
Chien and Aggarwal ��� and used to detect all the interfaces between the object



and the surrounding volume� As no neighbor �nding operations are involved�
the implementation is easier and faster� This is similar to that of Jackins and
Tanimoto ��� and more generalized than that which was suggested by Doctor
and Torborg ����

� Manipulation of Octrees

A wide variety of information can be obtained from the octrees� Such information
as evaluating the volume and centroid of the object� getting 	�D projections of
the object from various views and angles� and �nding the complement� the union�
and the intersection of the object can be obtained�

��� Union and Intersection of Octrees

The union and the intersection of octrees also involve the tree traversal con�
cepts� Figure 	 illustrates the union and Fig� � illustrates the intersection of
two objects 
and the corresponding octrees� respectively� It can be seen that the
resulting octree is obtained by manipulating the two octrees of the individual
objects themselves� The intersection involves traversing the trees in parallel and
performing a logical AND operation between them� The logical AND is necessary
as it generates a � if either object is absent and generates a � if both are present�
As the union of objects implies that the �nal image should have a pixel at any
point if either of the two objects are present at that location� the equivalent
logic operation is used� The union involves performing a logical OR operation
between the two trees�

Algorithm ��Union of octrees

begin

while
IMAGE SIZE�� bsize
��

while
TASK QUEUE �� Empty�
if
o ptr� � o ptr� �BLACK�
U color � BLACK

B SIZE � min
o ptr��size� o ptr��size�
else if
o ptr� or o ptr� � WHITE

U color � WHITE

B SIZE � min
o ptr��size� o ptr��size�
else

U ptr � U ptr � T const

U color � GREY

TASK QUEUE � TASK QUEUE � T const

IMAGE SIZE � IMAGE SIZE� B SIZE

end

In algorithm 	 and ��



1

23

45

67

0

Grey

Non-object

Object

Root

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

23

45

67

0

Root

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

23

45

67

0

Root

0 1 2 3 4 5 6 7

1

1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Object 1

Object 2

Octree of Object 2

Octree of Object 1

Octree of union of Objects 1 and 2

Union of Objects 1 and 2

Fig� �� Union of two objects and the corresponding octrees



�� the total object and background pixels are assumed to be a cube of dimension
bsize�

	� o ptr� and o ptr� are the pointers of the two octrees whose union is sought�
and

�� o ptr��size and o ptr��size represent the sizes of the nodes of the octree�
�� U ptr and U color are the pointers to and the colors of the union respectively�

In intersection� the root nodes of both the octrees and the intersection octree
are inserted as a task in the task queue� An idle PE takes the task from the
task queue and starts executing using the algorithm stored in the local memory�
If the node pointed to by q ptr� and q ptr� is white� the resultant node in the
intersection is marked as white� If one of the nodes is black� the resultant node
in the intersection is marked as black� If both are grey� or if one is grey and
the other is white� the resultant node in the intersection is marked as grey� Now
eight child nodes are created and are appended to the queue� Many PEs can
take these tasks and process them independantly resulting in an increased speed
of operation� The operation of the union is similar� If the node pointed to by
q ptr� and q ptr� is black� the resultant node in the union is marked black� If
one of the nodes is white� the resultant node in the union is marked white� If
both are grey� or if one is grey and the other is black� the resultant node in the
intersection is marked grey� Now eight child nodes are created and are appended
to the queue�

Algorithm ��Intersection of octrees

begin

while
IMAGE SIZE�� bsize��
while
TASK QUEUE �� Empty�

if
o ptr� � o ptr� �WHITE�
U color � WHITE

B SIZE � min
o ptr��size� o ptr��size�
else if
o ptr� or o ptr� � BLACK

U color � BLACK

B SIZE � min
o ptr��size� o ptr��size�
else

U ptr � U ptr � T const

U color � GREY

TASK QUEUE � TASK QUEUE � T const

IMAGE SIZE � IMAGE SIZE� B SIZE

end

��� Displaying the Object

In order to display the octree as an object� an operation needs to be performed
which will detect the boundary surfaces of the object� Meagher ��� �rst suggested



1

23

45

67

0

Grey

Non-object

Object

Root

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

23

45

67

0

Root

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

23

45

67

0

Root

0 1 2 3 4 5 6 7

1

1

0 1 2 3 4 5 6 7

Object 1

Object 2

Octree of Object 2

Octree of Object 1

Intersection of Objects 1 and 2

Intersection of Octrees 1 and 2

Fig� �� Intersection of two objects and the corresponding octrees�



attaching the surface normals to the nodes of the octrees� An octree can have
the surface information stored explicitly in its nodes� Such an octree is called
a volume�surface 
VS� octree� The surface information is computed using the
Multi level Boundary Search 
MLBS� method� Here� the octree is traversed�
and the surface normals of the surface nodes are computed from the adjacency
information� The orientation of the surface normals is coarsely quantized into 	�
directions and stored as the surface information in the nodes�

In ��D space there are �	 interfaces for �	 di�erent combinations of the child
node pairs that are adjacent to each other� The orientation of the surface normals
is maintained in a table� The root node of the octree is inserted as a task into
the task queue� An idle PE picks up the task and refers to the adjacency table
to �nd the nodes adjacent to the node picked from the queue� For each of those
adjacency nodes the following operations are performed�

�� If both of the octree nodes are grey� then the four pairs of child nodes adjacent
to each other are appended to the task queue�

	� If one of the octnodes is black and the other is white� then the surface
information is stored in the black node�

�� If one octnode is grey and the other non�grey� then the child nodes of the
grey node and the non�grey node are appended to the task queue�

As the positions of the black and white nodes are known� the surface normals
of each block can be computed by averaging the directions of all black and white
interfaces of each block� The directions are assumed to be moving from the
white to the black 
object to surounding�� The following is the algorithm for
this operation�



Algorithm �� Multi�level boundary search�

begin

while
IMAGE SIZE�� bsize
��

while
TASK QUEUE�� Empty�
if
o ptr� � GREY and o ptr� � NULL�
TASK QUEUE � TASK QUEUE �	�
TASKo ptr� � TASKo ptr��T const

TASKo ptr� � TASKo ptr� � �	 for each adjacent pair
else if
o ptr� � o ptr� � GREY�
TASK QUEUE � TASK QUEUE ��
TASKo ptr� � TASKo ptr� � � for pairs adjacent to o ptr�
TASKo ptr� � TASKo ptr� � � for pairs adjacent to o ptr�

else if
o ptr� �BLACK and o ptr� �WHITE�
o ptrBLACK � surface

B SIZE � min
o ptr��size � o ptr��size�
else if
o ptr� �GREY and o ptr� �� GREY�
TASK QUEUE � TASK QUEUE ��
TASKo ptr� � TASKo ptr� � �	 for each adjacent pair

IMAGE SIZE � IMAGE SIZE � B SIZE

end

�� the TASK QUEUE is the queue made for the elements of the search�
	� the TASKo ptr� implies those tasks of the �rst octree�
�� the o ptrBLACK are those octree pointers which point to octnodes which are

BLACK�
�� surface implies that the octree pointer referred to is on the surface�

Using this method� a ��D object can be given a 	�D projection� The visibility
of each block is determined by the dot product of its surface normal and the
viewing direction� Since the surface directions are quantized� a set of surface
directions visible are obtained by taking a dot product of the viewing direction
and the 	� orientations of surface normals� Once the MLBS is carried out� the
surface information is stored in each black terminal node� To get the projection�
the root node is inserted in the task queue� An idle PE takes up this task and
starts executing it� If the color is grey� eight tasks are appended to the task
queue� and the tree is traversed to a lower level� If the octree node pointed to
is black� its surface normal is compared with the set of visible orientations� If
there is a match� the node is projected onto the screen�

��� Other Operations on Octrees

The volume of the object can be calculated easily from the octree by traversing
down the tree until every white node has been visited� From the level of the
node� the volume of each individual octnode can be computed and summed up



to get the total volume of the object� If n is the level of the octnode� then 	��n

is the volume of the octnode�
The centroid of the object is a point which is the average of all the white

pixels in that coordinate� To locate the centroid the octree must have a struc�
ture which includes the starting points of the three coordinates� A procedure
can be constructed which computes the centroid of the object by summing up
the products of the centroid and the volume of each node� and then dividing this
sum by the total volume� If Xcent� Ycent and Zcent are the coordinates of the
centroid� the centroids of the individual nodes can be easily obtained by using
the formulaXcent � Xstart�	n�� where Xstart is the coordinate of the starting
address of the node� and similarly for Ycent and Zcent� Thus the �nal centroid is
given by

Xcent �
�

V ol

nX

i��

Xcenti � V oli�

Ycent �
�

V ol

nX

i��

Ycenti � V oli�

Zcent �
�

V ol

nX

i��

Zcenti � V oli

where n is the total number of octnodes� and V ol is the total volume�
The complement of an image is obtained by changing all the white pixels to

black and black pixels to white� This is accomplished in octrees by creating a
complimentary tree and inserting it in the task queue� Any idle PE starts on
the octree and traverses down� If the node is marked black� the node in the
complementary tree is marked white� If the node is marked white� the node in
the complementary tree is marked black� However� if the node is marked grey�
eight child pointers are appended to the task queue� and eight nodes are created
in the c tree where c tree is the complementary tree� Idle PEs will pick up tasks
from the task queue and execute them as long as they are available in the task
queue� The algorithm terminates when the task queue is empty� and the volume
of the complementary image equals that of the original image�

� Results

All the algorithms were implemented on the Sequent Balance multiprocessor�
We used images of two di�erent sizes for timing analysis� The results of these
implementations are shown in Fig� �� The display was done using the multi�level
boundary search� The speedups obtained for images of di�erent sizes are shown
separately� It should be mentioned that the amount of computation on each
node is much smaller than the amount of time required to create child processes
on the Sequent Balance and inserting them into the task queue� Thus� a large



Fig� �� Results of the various implementations� 
a� Octree generation� 
b� Union of
Octrees� and 
c� Intersection of Octrees�



portion of the time is spent in system overhead and not actual processing� This
is an inherent drawback of the load balancing paradigm we follow and was found
quite visible with lesser image sizes� Examples of intersection and union of some
objects are are also shown�

It can be seen that while there is a great variation in the speedups� general
trends can be noted� In general� the times taken for smaller images are lesser
than those for larger images� provided the images are complicated enough� If
the images are simple� then time required for the octree construction would
be obviously less� The time necessary for union or intersection of octrees is
much more than that of a single octree generation as three octrees need to be
constructed 
two for the initial objects and one for the �nal object� with a large
increase in the amount of shared data and thus problems with variable locking�
It is also seen that the time taken increases after a certain number of PEs� This is
mainly due to the increase in the overhead of creating new tasks and the shared
data being much larger in volume than the data local to a processor�

We veri�ed the algorithms by displaying the union and intersection of several
objects� Figures �� �� �� and 
 verify the correctness of the algorithms�

Fig� �� In clockwise order from top left� Object �� Object �� Union of objects � and ��
Intersection of objects � and ��

� Conclusions

It can be inferred from the graphs that low speedups were obtained for smaller
image sizes but the speedups are generally low even in a large image size� This



Fig� �� In clockwise order from top left� Object �� Object �� Union of objects � and ��
Intersection of objects � and ��

Fig� �� In clockwise order from top left� Object �� Object �� Union of objects � and ��
Intersection of objects � and ��



Fig� �� In clockwise order from top left� Object �� Object �� Union of objects � and ��
Intersection of objects � and ��

is due to the large overhead involved in the creation of new tasks 
 ��ms for
each�� While dynamic scheduling may improve the load balancing� it does create
other processes which actually increase the load� The bottleneck of the entire
computation is the shared task queue whose access is mutually exclusive to the
processors� Since the task sizes in all the octree algorithms are extremely small�
most of the processors are waiting for access to the globally shared task queue�
Thus� there is a tradeo� involved between load balancing and speedup�

It will be worthwhile to compare the speedups obtained by statically parti�
tioning the data or by using a combination of static and dynamic partitioning�

� Acknowledgements

It is our pleasure to acknowledge the help of Mr� Michael Schulte in debugging
a part of the code used for implementation�

References

�� Chien� C� H�� Aggarwal� J� K�� Volume�surface octrees for the representation of
three�dimensional objects� Computer Vision� Graphics and Image Processing� ��

����� �������

�� Chien� C� H�� Aggarwal� J� K�� Reconstruction and matching of �D objects using
quadtrees�octrees� Proceedings of �rd Workshop on Computer Vision� 
����� �����



�� Chen� H� H�� Huang� T� S�� A survey of the construction and manipulation of octrees�
Computer Vision� Graphics and Image Processing� �� 
����� �������

�� Schneier� M�� Calculations of geometric properties using quadtrees� Computer
Graphics and Image Processing� �� 
����� �������

�� Meagher� D� J� R�� The octree encoding method for e�cient solid modeling� Ph� D�
dissertation� Electrical and Systems Engineering Department� Rensselaer Polytech�
nic Institute� Troy� New York ������

�� Jackins� C� L�� Tanimoto� S� L�� Quad�trees� oct�trees and K�trees� a generalized
approach to recursive decomposition of euclidean space� IEEE Trans� Pattern Anal�
Mach� Intell� PAMI	� 
����� �������

	� Doctor� L� J�� Torborg� J� G�� Display techniques for octree�encoded objects� IEEE
Comput� Graphics Appl� � 
����� �����

�� Samet� H�� A top�down quadtree traversal algorithm� IEEE Trans� Pattern anal�
Mach� Intell� PAMI	� 
����� �����

�� Moitra� A�� Iyengar� S� S�� Parallelism from recursive programs� Advances in Com�
puters� June 
�����

This article was processed using the LaTEX macro package with LLNCS style


