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Mapping Parallel Algorithms 
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Abstract-The mapping problem arises when the dependency 
structure of a parallel algorithm differs from the processor 
interconnection of the parallel computer or when the number 
of processes generated by the algorithm exceeds the number 
of processors available. The mapping problem (also known as 
task allocation) has been widely studied. We propose a new 
generalized mapping strategy that uses a combination of graph 
theory, mathematical programming, and heuristics. The key dif- 
ference between our strategy and those proposed previously is the 
interdependence between the algorithm and the architecture. We 
use the knowledge from the given algorithm and the architecture 
to guide the mapping. The approach begins with a graphical 
representation of the parallel algorithm (problem graph) and the 
parallel computer (host graph). Using these representations, we 
generate a new graphical representation (extended host graph) 
on which the problem graph is mapped. We use an accurate 
characterization of the communication overhead in our objective 
functions to evaluate the optimality of the mapping. An efficient 
mapping scheme is developed which uses two levels of optimiza- 
tion procedures. The objective functions include minimizing the 
communication overhead and minimizing the total execution time 
which includes both computation and communication times. The 
mapping scheme is tested by simulation and further confirmed 
by mapping a real world application onto actual distributed 
environments. 

Index Terms- Deadlock, feasibility, mapping, objective func- 
tions, scheduling, strongly connected components. 

I .  INTRODUCTION 

HE notion that a cooperating collection of loosely cou- T pled processors could function as a more powerful gen- 
era1 purpose computing facility has existed for quite some 
time. If properly designed and planned, such a collection of 
processors provides a more economical and reliable approach 
than that of centralized processing systems. Much work has 
been focused on the problem of cooperation among distributed 
resources of a system, resulting in a myriad of techniques 
and methodologies. Most of the proposed strategies apply to 
specific architectures and algorithms. On the other hand, little 
research attempts a generalized approach to the above problem. 
While the idea of distributed computing is tantalizing, various 
practical and theoretical problems must be solved to realize 
the idea’s potential. The major problems encountered are due 
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to the interprocessor communication and delay because of 
dependency between subtasks. The mapping problem arises 
when the dependency structure of a parallel algorithm differs 
from the processor interconnection of the parallel computer 
(topological variation), or when the number of processes 
generated by the algorithm exceeds the number of processors 
available (cardinality variation). 

The mapping problem, as described above, has been de- 
scribed a number of times and in a number of different 
ways in the literature [1]-[lo]. The mapping problem can 
be considered as a distributed scheduling problem or as a 
resource allocation problem. An implicit distinction often 
exists between the terms scheduling and allocation. However, 
it can be argued that these are merely alternative formulations 
of the same problem, with allocation posed in terms of resource 
allocation (from the resources’ point of view) and scheduling 
viewed from the consumer’s point of view [5]. In this sense, 
allocation and scheduling are merely two terms describing the 
same general mechanisms but from different viewpoints. The 
mapping problem incorporates both these viewpoints. 

In order to complete a task in a minimum execution time, 
it is desirable to take advantage of parallel processing. This 
type of problem, usually referred to as the minimum execution 
time (schedule length) multiprocessor scheduling problem, has 
been studied extensively [ 1 I]. The above problem, however, is 
extremely difficult to solve and generally intractable. It is well 
known that some simplified subproblems constructed from the 
original scheduling problem by imposing a variety of con- 
straints still fall in the class of NP-hard problems [11]-[14], 
[8], [15]. The obvious approach then is to concentrate on 
the development of polynomial time algorithms that provide 
near optimal solutions. A new generalized mapping strategy is 
proposed that optimizes a set of accurately specified objective 
functions for real-time applications in a distributed computing 
environment. 

A.  Problem Statement 

This paper focuses on the problem of optimally allocat- 
ing processes (commonly referred to as task allocation) and 
scheduling them. Henceforth, we use the terms process and 
tasks interchangeably. Optimal task allocation in a distributed 
computing environment requires the optimal assignment of 
processors to computations and communication resources to 
the implementation of dependency relations between the unit 
of computation able to be scheduled, i.e., tasks, in order to 
minimize certain objective functions. A distributed computing 
environment has conflicting requirements [ 161: 
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While minimizing interprocessor communication tends 
to assign the entire computation to a single processor, 
load balancing tries to distribute the computation evenly 
among the processors. 
While real-time constraint uses as many processors as 
possible to maximize parallel execution, the precedence 
relationships limit parallel execution. 
The saturation effect suggests the use of fewer processors 
since inefficiency increases with the number of proces- 
sors. 

A parallel computation can be represented by a directed 
acyclic graph [9], [17], [18]. We represent a parallel computa- 
tion by a directed static graph, the problem graph S = (V, E ) ,  
whose vertices 11' E V represent processes and whose edges 

E E represent communication paths. Note that this graph 
is distinct from the data dependency graph, since it  could be 
cyclic. Edges of the problem graph are assigned weights to 
indicate the traffic intensity along that edge. This problem 
graph is a restricted model in that it does not allow new nodes 
or edges to be created during run time. This restriction avoids 
ambiguity in determining the computation and communication 
requirements of the problem graph. We also assume that the 
subtasks are nonpreemptive. 

The system architecture specifies the actual hardware struc- 
ture of the multiprocessor. The architecture consists of a 
network of processors, each of which is composed of a 
processing node and a communication node. The network is 
an interconnection between processor communication nodes. 
It performs the routing of data involved in the processor 
communication, and is known prior to the mapping. Fig. 
3 illustrates an example of a host architecture. The traffic 
routing occurs at the communication node and is independent 
of the processing node. This separation of communication 
performed by the communication nodes allows the processors 
to achieve computational efficiency. The communication is 
packet switched. In addition, each processor has a queue 
which is used for both mapping and packet switching. The 
interconnection network structure of the host architecture is 
described by an undirected host graph H = ( P , & ) .  P = 
{ p 1 , p 2 , .  . . ,p"}  is the set of nodes and & = { ( p z , p J )  I (p ' , ,pJ)  
is a data link} is the set of edges. The nodes of the host graph 
represent the processors and the edges represent links. Each 
edge can be weighted on its data capacity or length. 

The basic problem we are trying to solve is to find a 
mapping of S onto H which optimizes certain objective 
functions. The objective functions usually calculate the cost 
of the mapping process based on certain cost functions. These 
costs must be minimized to obtain an optimal mapping. The 
various costs that need to be considered include the following: 

The execution cost of each process on each of the 
(heterogeneous) processors. 
The (interprocessor) communication cost incurred be- 
tween processes when they are assigned to different 
processors. 

The above discussion assumes that the processors could 
be heterogeneous. The generalized approach suggested here 
is a substantial advancement in scope over the current state- 

of-the-art. Most researchers have dealt with methodologies 
applicable only to specific configurations of resources or 
specific problems [19]-[22], [l],  [23], [ lo].  

The research defined and proposed in this paper is an 
attempt at a generalized approach to mapping processes onto 
processors. The proposed mapping is applicable to a broad 
class of application programs. Since the problem is NP-hard 
and no polynomial time algorithms exist, we have to rely on 
efficient heuristics. Most heuristics used for optimizing the 
mappings work only for restricted cases. We concentrate on 
developing heuristics which give optimal solutions for a wide 
spectrum of problems. 

R. Approach 

Most of the wotk done in the area of the cooperation 
of distributed resources uses one of three techniques: graph 
theoretic, integer programming, and heuristics. While the 
graph theoretic method is attractive in its simplicity, it has 
several limitations. First, the basic min-cut solution provides 
for a minimum cost allocation between two to three processors. 
In general, an extension of this method to an arbitrary number 
of processors requires an intractable n,-dimensional min-cut 
algorithm. It does not provide mechanisms for representing 
resource constraints, Queueing delays introduced due to car- 
dinality variations are also difficult to represent. 

The integer programming approach formulates the model as 
an optimization problem, and then solves it via a mathematical 
programming technique. The approach is a flexible technique 
because it allows constraints to be introduced into the model 
appropriate to the application. Its shortcomings include the 
representation of the effects of the current system state in 
the real-time constraint, and the representation of the effects 
of precedence relations in the data flow among the subtasks. 
Unlike the first two approaches, heuristic approaches aim only 
to find a suboptimal solution. Yet, heuristic approaches are 
faster, more extensible, and simpler than optimal solution 
techniques. In fact, in some cases heuristic techniques may 
be the only available tools for solving difficult problems. 

We use a combination of the graph theoretic, mathematical 
programming, and heuristic approaches. This enables us to 
easily represent all constraints in our model. Unlike previously 
proposed strategies, we formulate an accurate set of objective 
functions to evaluate the optimality of the solutions. We use the 
concept of pseudo processors, and derive conditions to prevent 
deadlock due to dependency relations among the subtasks. 
The key difference between this strategy and those proposed 
previously is the interdependence between the algorithm and 
the architecture. The knowledge from the given algorithm and 
the architecture guides the mapping. 

The approach begins with a graphical representation of the 
parallel algorithm (problem graph) and the parallel computer 
(host graph). Using these representations, a new graphical 
representation (extended host graph) is generated onto which 
the problem graph is mapped. A n  accurate characterization of 
the communication overhead is used in our objective function 
to evaluate the mapping's optimality. An efficient mapping 
scheme is developed which uses two levels of optimization 
procedures. A combination of the graph theoretic, mathemat- 
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Fig. I .  Flowchart outlining thc entire mapping scheme 

ical programming, and heuristic ailproaches is used, enabling 
us to easily represent numerous constraints in  our model. The 
objective functions include minimizing the communication 
overhead and minimizing the total execution time, which 
includes both computation and communication times. The 
mapping scheme is tested by simulation and further confirmed 
by mapping a real world application onto actual distributed 
environments. The flowchart in Fig. 1 outlines the entire 
mapping scheme. 

The rest of the paper is organized as follows. Section 11 
briefly reviews previous work in related areas. The various 
mapping schemes, task allocation strategies, and multiproces- 
sor scheduling techniques are grouped, depending on their 
proximity to each other. Section 111 begins with the description 
of the mapping model followed by properties of this model. 
Section IV presents a description of the objective functions and 
their evaluations. Section V describes the mapping strategy 
and its computational complexity. Section VI summarizes the 
performance results of the simulation and implementation of 
the mapping scheme. Section VI1 proposes a traffic sched- 
uling scheme. The paper concludes with comments on the 
superiority of the proposed strategy and its extensions. 

11. A SURVEY OF RELATED RESEARCH 

The multiprocessor scheduling problem is extremely dif- 
ficult to solve and generally intractable [11]-[14], [XI, [IS]. 
Even the simplified subproblems constructed from the original 

scheduling problem by imposing a variety of constraints still 
fall in the class of NP-hard problems [24]. The difficulty of 
solution varies with the inclusion or exclusion of preemption, 
the number of parallel processors, precedence constraints, 
etc. Surveys of the rapidly expanding area of deterministic 
scheduling theory and task allocation are given in [8], [7], [5], 
and [25]. 

An efficient O(n)  algorithm was developed by [26] where 
the task processing times are equal and the task graph is tree 
shaped. If arbitrary precedences are allowed, then Coffman and 
Graham [27] proposed an O(n2)  algorithm for two processors. 
If any of these restrictions are relaxed, the problem becomes 
NP-hard [ll],  [15]. Other scheduling problems are discussed 
in [24] and [19]. 

We now classify the various strategies for multiprocessor 
scheduling, task mapping, and resource allocation under a 
common, uniform set of terminology [5]. Broadly, the various 
strategies can be classified as being either static or dynamic. In 
the case of static scheduling, the entire information regarding 
the processes in the host system, as well as the processes 
involved in a job, is assumed to be available a priori [28], 
[29], [7 ] ,  [30]. As the name suggests, dynamic scheduling is 
the inverse of static scheduling. 

In the case that all the information regarding the state 
of the host system, as well as the processes, is known, an 
optimal assignment can be made based on some objective 
function [4], [31]-[34], [23]. In the event that these problems 
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are computationally infeasible, suboptimal solutions may be 
tried [35]-(381. Within the realm of suboptimal solutions, 
the heuristic algorithms represent the category of static al- 
gorithms that make a realistic assumption about a priori 
knowledge concerning process and host system characteristics 
[16], [39]-[41]. The distinguishing feature about heuristic 
algorithms is their use of special parameters which affect 
the system in indirect ways. Usually, the parameter being 
monitored is correlated to the system performance in an 
indirect way but is easier to monitor, i.e., clustering [9], [42]. 

Regardless of whether a static solution is optimal or 
suboptimal-approximate, there are four basic categories of 
task mapping algorithms: Solution space enumeration and 
search [23], graph theoretic [3], [43], [44], mathematical 
programming [4], [31]-[34], and queueing theoretic [21], [45], 

In the case of dynamic solutions, a more realistic assumption 
is made that very little a priori knowledge is available about 
the resource needs of a process. Unlike the static case, no 
decision is made for a process before it is executed [42], [47]. 
Since it is the responsibility of the processes to decide where 
a process is to be executed, it is critical to decide where such 
decisions are made. Mapping schemes can be classified based 
on the locality of the responsibility of the process's scheduling, 
i.e., whether it physically resides in a single processor [29] or 
whether the work involved in the decision making is physically 
distributed among the processors [48]. 

Since the problem is NP-hard, several heuristic algorithms 
have been proposed in the past. Most of these previous 
approaches focused primarily on specific mapping strategies 
for particular multiprocessor architectures. Some strategies 
attempt to take advantage of hardware characteristics, such 
as the interconnection network of architectures. Since none of 
these strategies are general purpose, they apply to a limited 
class of multiprocessors, e.g., tightly-coupled homogeneous 
architectures [49], loosely-coupled homogeneous architectures 
[19], loosely-coupled heterogeneous architectures [ 191, or mul- 
ticomputers connected in a point-to-point fashion [20]. 

Several simplifying assumptions are common. Bokhari [2  J 
describes a mapping scheme assuming no cardinality variation. 
The objective function is the number of edges of the problem 
graph that fall on the edges of the system graph. That is, the 
objective function takes into account only the matched edges. 
However, the unmatched edges may, in some cases, determine 
the system's performance. The problem graph edges are also 
assumed to be identical, although, in general, they could have 
different traffic intensities, represented as weights. 

Another simplifying assumption is made in the quadratic 
assignment problem [51]. The objective function is the sum of 
products of the weights of problem edges and the distances of 
the corresponding system edges for all problem edges, i.e., the 
sum of communication overheads of all problem edges, which 
seems to be a reasonable measure. However, this measure does 
not specify exactly what is to be minimized (maximized) in 
parallel processing applications. Moreover, the actual distance 
of the system edge is not really independent of the problem 
graph unless the problem edges share none of the system 
edges. 

~461. 

McDowell and Appelbe [52] discuss the problem of assign- 
ing processes to the processors interconnected as a ring. The 
problem graphs are restricted to binary trees, and a heuristic 
algorithm is suggested to minimize the communication delay. 
A tight, necessary condition for finding assignments of pro- 
gram fragments to linearly connected processors that require 
no communication delays is presented. 

Sahni [53] presents the scheduling of tasks on multipipeline 
and multiprocessor computers. In this paper, the class of com- 
puters considered is not general. Lee and Agganval [IO] and 
Bianchini and Shen [54] both assume that the number of tasks 
is less than the number of processors and, hence, only consider 
the topological variation. Further, [54] assumes that processor 
allocation has already been done. Berman and Snyder [I]  use 
edge grammars to abstract graphs from the system but only 
consider a restricted class of interconnection structures. The 
mapping strategy proposed by Kim and Browne [9] uses the 
abstraction of the system graph without any knowledge about 
the problem graph, and vice versa. Furthermore, the merging 
of clusters resulting in the reduction of resource utilization 
may lead to a worse load balancing. 

For brevity and completeness, we merely mention some of 
the other mapping schemes: [55]-[65], [47], [66]-[68], [30], 
[691-[741, [21], [75]-[77], [34], [78]-[80]. 

From the above review, it is apparent that a myriad of mul- 
tiprocessor scheduling strategies exist which can be applied 
to specific architectures. On the other hand, little research 
attempts a generalized approach to multiprocessor scheduling 
applicable to multiprocessors regardless of the underlying 
architectural characteristics. 

111. THE MAPPING MODEL 

We illustrate a problem graph 5' = (V, E )  by the directed 
graph in Fig. 2. The weights on the arcs denote the traffic 
intensity. The problem graph is described by a problem matrix 
P M .  The element ( z , ~ )  is denoted by r tJ,  whose magnitude is 
the weight for the problem edge e2J and whose sign indicates 
the direction of the communication. If rtJ is positive, then the 
communication size is 1 7rzJ  1 from v' to w3. If rtJ is negative, 
then the communication of the same size is in the reverse 
direction. If there is no communication between wz and wJ, 
rtJ is zero. The problem matrix corresponding to the problem 
graph of Fig. 2 is given below. 

Definition A physical processor pk corresponds to a set 
of pseudo processors {p," I 7 2 1). The queues in pk are 
9". z 2 1, i.e., the incoming packets for p: will reside in q". 

The above definition involves certain assumptions. First, it 
assumes that the packets are consumed eventually. Second, it 
assumes that a finite number of unused queues are released 
and allocated to other pseudo processors. Finally, it assumes 
that the number of queues can be less than the number of 
pseudo processors. 

Definition: The interconnection network structure of the 
host architecture is described by an undirected host graph 
H = (P .8 ) .  P = { p 1 . p 2 : . . , p 7 ' )  is the set of nodes and 
E = { ( p z 3 p J )  I ( p z , p J )  is a data link} is the set of edges. 
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1 1  

1 1  

-1 1 

0 1  1: -1 1 

Fig. 2. The problem graph and its corresponding problem matrix. 

I I I - 
Fig. 3. An example of a host architecture: A mesh network of nine processors 

The nodes of the host graph represent the processors and 
the edges represent links. Each edge can be weighted on its 
data capacity or length. A host matrix H M  describes the host 
graph. The element ( z , j )  is denoted by h13, whose magnitude 
is the weight of the host edge (p’,,pJ). Fig. 4. gives an example 
of a host graph and the corresponding host matrix. 

Definition: A n  extended host graph G = ( P 3  E )  where 
N 

P = U P 7 : N > 1  
2 = 1  

- 
0 

1 

-1 

-1 

l -  

1 1 11 
Fig. 4. An example of a host graph and the corresponding host matrix. 

there is a directed edge from pf to 113” in G. Note that pt can 
communicate with p y  if p‘ is executing the process of pl and 
if 717 has not completed its execution. 

An extended matrix E M  describes the extended host graph. 
The element ( L , , ] )  is denoted by m,2J, whose magnitude is 
the weight of the extended host edge. Note that we can 
have numerous extended host graphs (matrices) depending 
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Fig. 5 .  An example of an extended host graph and the corresponding Problem graph 
extended matrix. 

Mapping on the extended 

host graph 

on the particular problem and host graphs. Fig. 5 shows an 
extended host graph and the corresponding extended matrix, 
corresponding to the problem graph of Fig. 2 and the host 
graph of Fig. 4. 

A. Properties of the Model 

The mapping of a parallel algorithm on a parallel architec- 
ture can be described by a one-to-one mapping M from the 
vertices of a problem graph S onto the nodes of the extended 
host graph G [2]. 

p: for p k  
are ordered as pf, ,pf2 , . . . ,pfn, where I ,  < l r + l ,  1 5 r < m, 
then the processes associated with these pseudo processors will 
be executed by p k  in that order, i.e., the lower subscript has 
a higher priority. Hence, a directed edge from 1): to p t  in G 
will force i < j and thus p," can communicate with p;  but 
not vice versa. 

Consider the case when the host graph has I H 1 processors 
and the problem graph has 1 S 1 processes. Depending on the 
values of I H 1 and I S 1, we will either have one extended 
host graph or several extended host graphs. 

If 1 H 121 S 1, then every host processor is itself a pseudo 
processor, i.e., we have only one extended host graph. 
If 1 H I < (  S 1, then at least one processor will have more 
than one pseudo processor, i.e., there will be more than 
one extended host graph. The next proposition derives an 
expression to evaluate the number of these extended host 
graphs. 

Proposition I :  Given d processors and d + 11 processes, the 
number of ways in which the processes can be allocated to the 
processors such that each processor has at least one process is 

Given M ,  if the allocated pseudo processors 

( n  + d - l)! 
7L!(d - l)! ' 

In order to cut down on this combinatorial explosion of the 
number of extended host graphs, we restrict the extended host 
graph by imposing certain constraints. We split the processors 
into pseudo-processors in the ratio of their computational 
power. 

In the next section we deal with the feasiblility of mappings 
introduced due to the priorities assigned to pseudo-processors. 

Definition: A mapping is feasible if the parallel algorithm 
executed on the parallel machine according to this mapping 
terminates. 

1) Processor Deadlock: We make certain assumptions 
about the host architecture which do not restrict the generality 

Fig. 6. An example of a mapping leading to processor deadlock. 

of the mapping scheme described in this paper. First, we 
assume that each processor is capable of computing its 
task. Second, we assume that the interconnection between 
processors is loss free, i.e., no packets are lost in 
communication. Thus, a pseudo processor will wait for any 
packets sent from another pseudo processor and will eventually 
receive them. 

It  can be easily shown that not all mappings of S onto H will 
yield a feasible mapping. If there is a limit on the number of 
queues per processor, then merely sending packets numbering 
more than the number of queues to any particular processor 
will result in a deadlock (q-deadlock). But, a deadlock could 
result even if we do not constrain the number of queues. 
Fig. 6 illustrates this by an example. Consider a host with 
two processors. The problem graph S has three vertices. To 
take care of the cardinality problem, one of the processors 
will correspond to two pseudo processors. The host graph 
H ,  with these three pseudo processors, is then constructed. 
If we construct a mapping with p i  onto wl, p i  onto I]', and 
p: onto i i 3 ,  then it is clear that this will lead to a deadlock. 
The p-deadlock is due to the violation of the data dependence 
presented by the problem graph. 

We shall now formally derive a condition that will guarantee 
a p-deadlock free mapping. We say that the process w k  depends 
on ii' if there is a path from d to i l k .  Also, p;  is busy if p" 
is executing the process of 1);. 

Lemma 1 :  A mapping is p-deadlock free iff there is no such 
list of S-nodes i i k l  . w k 2 .  . . . , vkTTi ,  ,dl , d 2 ,  . . . , dn1 mapped 

.y[,n+ I ."L] to pseudo processors 11;; , pi;, . . . . p:;; , p;; , p z  , . . . . prim + , m i ,  

respectively, such that I I 'J  depends on W'J and t j  > r j ,  
1 5 , j  5 m., where [,i, ,m.] 5 ( i )  mod m. 

Proof: First we assume that the mapping is not p- 
deadlock free. Hence, a p-deadlock occurs. Thus, for all busy 
pseudo processors p::, we can find py;+',' such that 7 i k 3  of 
pi :  depends on W ' J  of pLi,+l' and cannot be allocated to 
the processor occupied by p:;:,', i.e., t j + l  > rJ+l .  Next, we 
check whether the processor p S 3 + l .  j 2 1 is occupied by p i ; ,  
1 5 z 5 .j. Since the number of busy processors are finite, 
we can find such a pseudo processor p;f. Thus, the list of S- 
nodes i ~ ~ . ,  w k r + l , .  . ., i i k ~ + l ,  ii'=, d~+1 ,  . . ., I J ' J + ~  contradicts 
the condition of Lemma 1. 

We now assume that such a list of S-nodes exists. Since 
the pseudo processors p z ; ,  p:; ~ . . . . p;;:'';: ::; cannot execute 
their processes, p21', p:;; . ., p;;;; cannot receive the packets. 
Hence, these pseudo processors will be busy, implying that a 
p-deadlock will occur. 0 
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Consider the special case when m = 1, i.e., there are only 
two processes. If process i l k  depends on 71' and these are 
mapped to pseudo processors p [  and py ,  respectively, then 
s i  > j ,  i.e., process 11' is to execute before illc to prevent a p- 
deadlock. Note that a p-deadlock occurs because of the priority 
assigned to the pseudo-processors, i.e., they need to execute 
sequentially within a processor. Hence, we are allocating and 
scheduling processes simultaneously. 

Processes uk and i l l  are strongly connected if there is a path 
from v k  to v 1  and from v 1  to 11'. In the problem graph S ,  the 
S-nodes can be partitioned into disjoint Strongly Connected 
Components (SCC) [81]. 

Once we have derived the conditions to check if a mapping 
is p-deadlock free, the next question is whether such a mapping 
exists. If so, then given the problem graph and the host graph, 
is it possible to say that a p-deadlock free mapping exists? 
The necessary and sufficient condition to answer the above 
question is stated next as a theorem. 

Theorem 1: Given a problem graph S, there is a p-deadlock 
free mapping for a host graph H iff the number of processors 
in H is at least equal to the maximum number of nodes in 
an SCC of S. 

Proof: Suppose that a mapping exists such that the 
number of pseudo processors in H is greater than or equal 
to the number of nodes in an SCC of S. Order the SCC's 
C1,C2,...,Cn such that if a node in C, depends on a node 
in Cj, then i < j. Assigning processes in C, to pseudo 
processors in the set U P ,  satisfies the condition of Lemma 
1. Hence, this mapping is p-deadlock free. 

Now assume that the number of processors in H is less 
than the maximum number of nodes in an SCC of S. Hence, 
for every mapping we have to assign two nodes of the SCC 
to some p".  Since these two nodes depend on each other, we 
can always find two nodes i lk and I? mapped to p r  and py  
such that v k  depends on 71' and i > , j .  Thus, the corresponding 

0 
2) Queue Deadlock: As the previous subsection states, lim- 

iting the number of queues can lead to a deadlock. We shall 
now derive an expression for the minimum number of queues 
required to avoid a queue deadlock (q-deadlock). We first 
illustrate with an example in which the q-deadlock is induced 
by a particular mapping. 

Example: Consider the case when the number of S-nodes 
is equal to the number of H-nodes and when there are two 
SCC's, C1 and C2 in S. One node in C1 depends on a node in 
C,, and each processor in H has only one queue. If we have 
a mapping (maybe p-deadlock free) in which any processor is 
assigned with two processes, i l k  and I)', the mapping is not 
q-deadlock free. This happens when the process i l k  sends a 
packet to process v' (since the pseudo-processors share the 
queues of the processor in which they reside). 

Theorem 2: Given a problem graph S, if the number of 
queues in each processor of the host architecture H is greater 
than or equal to the number 71 of strongly connected compo- 
nents in s, then a p-deadlock free mapping is also q-deadlock 
free. 

Proof: If the mapping is p-deadlock free, then any two 
nodes in an SCC must be assigned to distinct processors 

mapping is not p-deadlock free. 

(Lemma 1). Hence, each SCC will have at most one process 
assigned to each processor. Thus, each processor will be 
allocated at most n processes for any p-deadlock free mapping. 
0 

There are some interesting consequences of the above 
theorem. If S has only one SCC, then S is itself strongly 
connected. Hence, each processor requires only one queue to 
support any p-deadlock free mapping. If the number of SCC's, 
n,, is equal to the number of S-nodes and the S-nodes form a 
path, then by Theorem 2, n queues are required for q-deadlock 
free mapping. But, a q-deadlock free mapping for such an S 
can be obtained by a maximum of two queues. Hence, this 
gives us a better bound on the maximum number of queues 
required for any p-deadlock free mapping to be q-deadlock 
free. 

A procedure to evaluate a better bound on the maximum 
number of queues required for any p-deadlock free mapping 
to be q-deadlock free is proposed. It is not the best bound 
though. For a given problem graph S ,  the procedure Q-min() 
calculates a better bound than Theorem 2. 

Definition: The maximum independent strongly connected 
component set M I S C ( S )  in a directed graph S is a maximum 
set of strongly connected components of S ,  i.e., 

M I S C ( S )  = {CZ 11 5 2 5 n}  

such that for any node i l k ,  if v k  E Ci, then no node in Cj, 
j # i ,  depends on vk. The graph Si is defined as a subgraph 
obtained from S by removing all the nodes in M I S C ( S ) .  

Q-min (S: problem graph): Integer; 
begin 

end 
0 Q-min= ( 1  M I S C ( S )  I +Q-recurse(S')}; 

Q-recurse (S: problem graph): Integer; 
begin 

0 If S' = 4 then Q-recurse =( M I S C ( S )  1; 
1 If the cardinality of an SCC in M I S C ( S )  > 1, 

then Q-recurse = ( I  M I S C ( S )  I +Q-recurse(S')); 
else Q-recurse = ( 1  M I S C ( S )  1 SQ-recurse(S ) - 1); 

end 

Example: Consider the problem graph S as shown in Fig. 
7(a). The maximum SCC set of S is { { n l } ,  {.;2}}. Fig. 7(b) 
shows the maximum independent SCC set of S , i.e., {{n3}J.  

Fig. 7(c) shows the maximum independent SCC set of S , 
i.e., {{n.4},  {n?,)}. Fig. 7(d) shows the maximum independent 
SCC set of S , i.e., ((716)). Since Q-recurse(S ) returns 
1, Q-recurse(S") returns 2, and Q-recurse(S') returns 2, the 
procedure Q-min(S) returns 4. This bound on the number 
of queues necessary in each node for any p-deadlock free 
mapping to be q-deadlock free and derived using the procedure 
Q-min() is lower than the bound derived using Theorem 2. It 
can be easily seen that the bound derived using the theorem 
is 6. 

The correctness of the procedures Q-min and Q-recurse can 
be easily established. If a node in the maximum SCC set of S 
is assigned to the processor allocated to some process v k ,  then 
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0 0 n 6  

Fig. 7. Illustrating the procedures U-min and U-recurse. (a) S ,  (b) .?', 
(c) S" , and (d) S"' . 

the recently assigned process can be executed and can send 
messages to other processes only after v k  is completed. Since a 
process is assigned a queue only after receiving a message, the 
worst case occurs when one of the nodes ,U'' in M I S C (  S ' )  is 
assigned to a processor that has not been assigned any process; 
and the node starts executing by sending a message to all the 
nodes in the maximum SCC set of S . If any SCC, C, in 
M I S C ( S ' )  has more than one node, then u" may be in this 
component and the other nodes in M I S " (  S' ) can be assigned 
to the processors p k  that have been assigned the maximum 
number of processes among all processors; otherwise, the only 
node in C, cannot be used to increase the queue requirement of 
the processor p k ,  as done in step 2 of the procedure Q-recurse. 

B. Constraints in a Distributed Environment 

In a general distributed computing environment, processes 
will exist that cannot execute on certain processors, two 
processes need to execute on the same processor, or a process 
might need more than one processor at the same time to 
execute. Thus, the additional constraints may be incorporated 
in the mapping model: 

We define a binary exclusion matrix E M  that describes 
the computability of a particular task on a particular 
processor. If the element ( i 3 , j )  is zero, then the process 
i cannot execute on processor j .  Otherwise, the value of 
the element ( i , j )  is 1. This restriction could result from 
several reasons. The obvious reasons include 1 )  the type 
of computation required, and 2) the amount of memory 
required. 
We define an interference matrix I M  that describes the 
degree of incompatibility between two processes. The 
value of the element (i.,?) ranges between 0 and 1. The 
closer the value is to zero, the more incompatible are 

the two processes. As an example, a pair of tasks that are 
both highly CPU bound will have more interference costs 
than a pair in which one is CPU bound and the other is 
IO bound. Adding interference costs should increase the 
concurrency between the processes. 
We define a simultuneous matrix SM that describes the 
processors needed by a process for its execution. The 
processors needed simultaneously for the execution of a 
process i are found by checking the columns of the matrix 
SM corresponding to row i ,  i.e., ( i . j ) ,  where j ranges 
for all the processors. 

Iv. OBJECTIVE FUNCTIONS 

The mapping problem essentially involves two distinct pro- 
cedures. First, we formulate an objective function to accurately 
measure what we need to optimize. Then, we propose a 
mapping scheme to optimize the formulated objective function. 
We now discuss the various objective functions and their 
evaluations. 

A .  Communication Oiwheuds 

Minimizing the communication overhead is especially im- 
portant when mapping parallel algorithms onto parallel com- 
puters [lo], [ 2 ] .  Chaudhary and Agganval [82]-[84] have 
shown that the communicational complexity of certain vision 
algorithms dominates the computational complexity for most 
distributed memory architectures. In other words, the commu- 
nication overhead increases at a rate higher than the rate of 
decrease in the computation time. This leads to a decrease 
in processor efficiency [85] and throughput with an increase 
in the number of processors. We now propose an objective 
function that minimizes the communication overhead, with a 
constraint that the number of processors may be less than the 
number of processes. 

If the number of processes in S is more than the number 
of processors in H ,  then by the Pigeonhole principle [86], a 
processor is assigned more than one process. The processor is 
split into pseudo-processors such that each process is assigned 
to one pseudo-processor. In fact, more than one processor 
may be split into several pseudo-processors, each with a 
process assigned to it. Since any two pseudo-processors 11; 
and 1,; share the same communication node, we assume that 
the communication overhead for these pseudo-processors is 
zero. Hence, we can take advantage of the above to reduce 
the communication overhead by mapping pseudo-processors 
requiring much communication among them onto the same 
processor. 

We use the terms defined by Lee and Aggarwal [lo]. A 
stugr is a time interval during which the computation for a 
process is carried out. A phuse is a time interval during which 
the communication for a problem edge is carried out. A step 
is a time interval for the communication through a link. A 
phase, in general, may be comprised of a set of steps if i t  
takes several links to realize a problem edge. 

Due to precedence relationships, certain processes can ex- 
ecute concurrently while others cannot. Accordingly, certain 
communications can occur in the same phase while others 
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need distinct phases. Hence, the set of problem edges E can 
be sorted into subsets Ek according to the phase in which 
they are required, shown below: 

where Np is the number of phases (subsets) and LI, is the 
number of problem edges in the subset Ek. F k J  is to be 
distinguished from the problem edge e k J .  A problem edge 
might appear in more than one such subset, each with a 
different weight associated with it. Thus, the messages required 
by the process ii' can only be generated and sent out by 
another process i l k  in different phases. Also, two problem 
edges from different subsets may share links in the system 
without increasing the communication overhead, since they do 
not need the links simultaneously. Thus, they can be treated 
independently when being mapped onto the host edges. Due to 
cardinality variation, the computation and communication of 
messages of some of the processes has to be delayed. Hence, 
the subsets EI, are determined by the given problem graph 
and the particular mapping. 

Before defining the objective functions related to the com- 
munication overhead, let us examine the communication over- 
head of a problem edge in more detail. First, the frequency 
of use of a problem edge indicates the traffic intensity along 
the problem edge. The weight assigned to the problem edge 
is proportional to the traffic intensity. Second, the nominal 
distance between the host nodes, i.e., the shortest distance 
between the host nodes, cannot be used directly. The nominal 
distance D,' is the length of the shortest path between the 
host nodes, p z  and p'. If ( p ' , p ' )  E &, i.e., there is an edge 
between p z  and p ' ,  then the nominal distance D,' is one or 
else it is equal to the number of host edges in the shortest 
path between p t  and p' .  Consider a case involving more than 
one problem edge mapped onto a single host edge. Then, the 
communication of some of the problem edges will be delayed 
unless the host edge comprises an adequate number of multiple 
links. Thus, the communication overhead of the problem edge 
ekJ may be distinct from the nominal distance D,' when 
the problem edge ekJ is mapped onto the host edge ( p ' , p ' ) .  
Hence, given the problem and host graphs, the communication 
overhead C k j  of the problem edge (p ' . p ' )  depends on the 
particular mapping and the communication control parameters 
of the host System. To obtain an accurate characterization 
of the communication overhead, the actual communication 
overhead of the problem edge should be used instead of the 
nominal distance. 

B. Minimizing the Schedule Length 

In a heterogeneous computing environment where the com- 
puting power of the individual processors can vary tremen- 
dously, the computation time of the processes on various 
processors will greatly influence the task performance. A very 
common objective function is to minimize the schedule length 
(or makespan) defined as the sum of all computations and 
communications between the processes. 

The computation time of every process on each processor 
is represented by a computation matrix comp. Depending on 

the particular mapping 2, the computation time of the process 
i can be easily found from the computation matrix comp, i.e., 
if the mapping 2 maps the process i onto processor j ,  then the 
computation time is comp(i, j ) .  This computation time is also 
represented as comp, (2). The communication time between 
processes i and j is computed as described in the previous 
section. 

C. The Objective Functions 

overhead EkJ of the problem edge 
follows: 

We define an objective function based on the communication 
for a mapping D as 

In OFl ,  some problem edges in the same subset Ek are 
required simultaneously but the subsets are required in a 
sequence, i.e., N ,  > 1 and LI, > 1 for some k .  There are 
two special cases of OF1. 

First, consider the case when I l k  = 1,b'k. This amounts 
to sequential processing since no two problem edges are 
processed in the same phase, i.e., none of the problem edges 
are processed simultaneously. The objective function OF; for 
this special case can be represented as follows: 

N ,  

OF; = X E k l .  

k=l 

Second, consider the case when Ne = 1, i.e., all the problem 
edges are processed simultaneously. This implies total paral- 
lelism. The objective function OF! for this special case can 
be represented as follows: 

It is easy to see that OF: may decrease while OFF 
increases. 

Before we compute the objective functions, we define 
certain matrix representations used. A nominal distance matrix 
D represents the nominal distances in a host graph. The 
element ( 2 , ~ )  is the nominal distance D,, for the host edge 
(p' , pJ  ). An extended nominal distance matrix D' represents 
the nominal distance in an extended host graph. Note that the 
nominal distances for two pseudo processors in the same host 
processor are the same. Figs. 8(c) and (d) show an extended 
host graph and its corresponding extended nominal distance 
matrix. 

An assignment matrix A describes a particular mapping. 
This matrix is obtained by permuting the columns and rows 
of the problem matrix according to the mapping. For example, 
performing the mapping indicates that the second and third 
columns and the second and third rows are exchanged. Fig. 
8(e) shows the resulting assignment matrix. 

A communication overhead matrix GM is obtained from the 
nominal distance and assignment matrices. The element (2 ,  j )  
indicates the communication overhead (denoted by c,]) of the 
problem edge e'J for a particular mapping. For a problem edge 
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Fig. 8. Calculating the communication overhead. (a) The problem graph, (b) the problem matrix, (c) the extended host graph, (d) the extended nominal 
distance matrix, (e) the assignment matrix, and (f) the communication overhead. The * s  indicate that the corresponding problem edges are not used. 

with a negative r tJ,  ctJ is undefined since it is redundant. Fig. 
8(f) gives the communication overhead matrix for the mapping 
(1 2), where the star indicates that the corresponding problem 

I )  Synchronous Communication: We calculate the commu- 
nication overhead Ck3 by the following procedure: 

edge is not used. The following sections describe in detail the 
procedures to evaluate c;j. 

The objective function for minimizing the schedule length 
is given as follows: 

OF2 = Injn (F cmnp,( i )  + c,, . 
2 j # i  ) )  

In OF*, the first term is the summation of the computation 
times of the processes and the second term is the summation 
of the communication times between these processes. The 
objective is to find a mapping z that minimizes this sum. The 
next section describes the evaluation of the communication 
overhead. 

D. Computing the Communication Overhead 

The communication mode can be classified into two classes: 
synchronous and asynchronous. In a synchronous mode of 
communication, the steps for all the links are synchronized; 
whereas in an asynchronous mode of communication, com- 
munication for a problem edge can occur at any time. 

OF-Calculate-sync ( S :  problem graph; D :  mapping); 

begin 
0 Sort E into subsets Ek according to the phases when 

1 For each El, do 
the problem edges are used. 

1.1 E,, = Ek. Assume that a problem edge FkJ is 
mapped onto a path between pseudo processors 
p i  and p:,, . 

1.2.1 If T = s then 

od 

1.3.1 Find the nominal distance DLs of the 

1.2 For each problem edge f?kj do 
= 0 and delete P I . ]  

from E k .  

1.3 For each problem edge P k J  in Ek do 

corresponding host edge (p‘, p ” )  by 
superimposing A onto D . 

1.3.2 If the length of the path in the host graph 
H is greater than 1, then the path in the 
host graph is divided into a sequence of 
links. 
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od 

1.4.1 Assign the packets to 1); such that the 
1.4 For each problem edge F k l  in En do 

number of packets is equal to the weight 
of the edge F n J .  

1.4.2 Assign the data structures SOURCE, 
DESTINATION, and STEP in each packet 
with pp,  pi , , ,  and 0, respectively. 

Od 
1.5 Repeat 

1.5.1 STEP := STEP + 1 
1.5.2 Move packet(s) to the next node dccording 

to the implementation of the particular 
system. 

1.5.3 If a packet reaches its destination, then 
Remove the packet. 
If it is the last packet from the source, then 
?A, = STEP of the last packet from pi to 
1)1, 

1.5.4 else add it to the queue of the current 
node. 

2 Calculate the OF. 
Until all the packets reach their de5tination. 

end 

The decomposition of the problem edge ([  1.3.21) is deter- 
mined a priori by the host’s routing parameters. The choice of 
the packets to be moved ([1.5]) is determined by the routing 
scheme of the particular host system. Finally, the number of 
packets ([1.4.1]) and the increment ([1.5.1]) may be adjusted 
according to the particular system. 

The computational complexity of the procedure is domi- 
nated by loop [1.5]. The number of iterations of this loop 
varies with the assignment and the routing rules. The number 
is bounded by 1 V I DlIL7rirlrl computations where I T’ 1 is the 
number of problem nodes, D:, is the diameter of the extended 
host graph, i.e., the maximal extended nominal distance, and 
7rT,, is the maximum weight in a problem. 

2) Asynchronous Communicatiorz: The procedure, OF- 
Calculate-sync, used to evaluate the communication overhead 
for the synchronous mode of communication may not give 
a precise evaluation of the communication overhead for an 
asynchronous mode of communication. We present another 
procedure, OF-Calculate-async(), which approximates the 
communication overhead for an asynchronous mode of 
communication. 

OF-Calculate-async ( S :  problem graph; D :  mapping); 

begin 
0 Sort E into subsets l?k according to the phases when 

1 For each En. do 
the problem edges are used. 

1.1 E k  = Ek. Assume that a problem edge is 
mapped onto a path between processors pl’ and 
P ; l .  

1.2 For each problem edge en../ do 
1.2.1 If T = s then CkJ 0 and delete Fk,] from 

E k  . 

od 

1.3.1 Find the nominal distance Di., of the 
1.3 For each problem edge t ‘k,  do 

corresponding host edge { p ” ,  p ” )  by 
superimposing A onto D . 

1.3.2 The communication overhead Pk, ,  = 

od 
2 Calculate the OF. 

Tk.1 o:.., . 

end 

The sorting of the problem edges in the procedure 
OF-Calculate-async is carried out only when some problem 
edges are distinguishable in time from others and hence can 
be partitioned into different sets. Otherwise, the problem 
edges will all belong to just one set. Thus, the computational 
complexity of the procedure is bounded by [1.3], which is 
executed I 1- I times. 

The procedure OF-Calculate-sync gives a very accurate 
evaluation of the communication overhead but is very 
expensive to evaluate. Since step [ 1 .SI in OF-Calculate-sync 
simulates the routing on the target host, it is unsuitable 
for very large applications. In contrast, the procedure 
OF-Calculate-async is easy to evaluate but is not as 
accurate as OF-Calculate-sync. Thus, one can also use 
OF-Calculate-async to evaluate the communication overhead 
for a synchronized mode of communication when the priority 
is the time for evaluation. 

V. MAPPING SCHEME 

Once the objective function for a particular mapping is 
available, it must be optimized. This optimization of the 
mapping from S to H involves two steps. We first try to 
evaluate a good initial assignment, and then improve the 
mapping incrementally by a modified painvise exchange. 
This approach leads more efficiently to an optimal solution, 
although i t  does not guarantee it. First, evaluation of a good 
initial assignment can save a great deal of computation in 
the optimization performed later. Since we have a reasonably 
good initial assignment, we could find an optimal solution 
without going through an exhaustive painvise exchange (which 
requires an exponential order of computation). 

A .  Initial Assignment 

We present a procedure which attempts to achieve a very 
small value of the objective function rather than to rely on 
a random initial assignment. If the mapping obtained by this 
algorithm is not optimal or does not satisfy certain constraints, 
we use the modified pairwise exchange method described later. 
We define the communication intensity of 11‘ to be the sum of 
the weights of all the edges incident on it. The degree of a node 
( 1  is denoted by d ( , i f ) .  The choice of the S-node to be assigned 
is based on the communication intensity and connectivity of S 
whereas the choice of the corresponding H-node is determined 
by a certain measure derived from the objective function. 
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Init-assign ( S :  problem graph; H :  host graph); 

begin 
0 V z {ll' I 7,' E S} 
1 Assign tasks using the exclusion matrix E M .  
2 Check for the interference matrix lhf and the 

3 Make the extended host graph G. 
4 Find the process 71' with the largest communication 

intensity from V .  In case of a tie, choose one arbi- 
trarily. 

5 If there are 71 SCC's in S whose nodes are such that 
7)' depends on them, then assign i l k  to p:,+l such 
that d ( p i )  is as close to d ( ' u k )  as possible. 

simultaneous matrix S M .  

6 V = V - PI ' .  

7 While 1 V )> 0 do 
7.1 Find 71' with the largest communication 

intensity from the nodes adjacent to 5-nodes 
which are already assigned. 

7.2 Assign PI' to p!,, such that a certain measure of 
the objective function is minimized and the 
assignment is a feasible mapping. 

7.3 v = v - ,d. 
od 

end 

The time complexity of the above procedure is determined 
by subprocedure 7.2, which is repeated 71 - 1 times. This 
subprocedure has a complexity of O ( n 3 )  due to the procedure 
to check the feasibility of a particular mapping. Hence, the 
execution of Init-assign takes O ( 7 r ' )  time. 

B. Modified Pairwise Exchange 

The procedure Init-assign does not guarantee an optimal 
solution. Hence, we may use the pairwise exchange of two 
problem nodes to improve the mapping. This pairwise ex- 
change could be done iteratively until we exhaust all the 
possibilities. Unfortunately, the method is exponential in com- 
putational compkxity. Instead, we propose a modified painvise 
exchange scheme in which we consider only a selected set until 
a certain criteria is satisfied. This technique is expected to give 
a reasonable solution efficiently since the initial assignment 
scheme reduces the search space considerably. But, there is 
still a possibility that the solution is a local optima. One may 
use another distinct initial assignment to get out of this local 
optima if the solution is unsatisfactory. The algorithm for the 
whole mapping, including the modified painvise exchange, is 
given below. 

Mod-pair-xchange (S: problem graph; H :  host graph); 

begin 
0 Init-assign(S,H); 
1 Evaluate objective function. 
2 If mapping is satisfactory then goto end. 
3 Repeat 

3.1 find 71" for the exchange according to certain 
measures derived from the objective function 

used. 
3.2 Vvv E {V - 3) do 

3.2.1 exchange(w". P L ~ )  temporarily 
3.2.2 If Is-feasible(S,H) then evaluate the 

objective function. 
od 
3.3 Determine 71' which gives the best objective 

3.4 If the new objective function is better than the 
function. 

old objective function then exchange(v" , PI'). 

Until -satisfactory. 
end 

The complexity of the above algorithm is given by O ( M  * 
N * F )  where M is the number of iterations of the while 
loop. Step 4.2 takes O ( N )  time and evaluating the OF takes 
O( F )  time. 

C. Feasibility 

feasibility of a mapping and to prove its correctness. 

Is-feasible (S: problem graph; G: extended host graph): 

This section proposes a procedure, Is-feasible, to check the 

Boolean; 

begin 
0 Construct 6 = (P ,  E ) .  For any two processes 71' 

and 11' which are mapped to pS and p,", if there is an 
edge from 71' to 71' in S (or T = s A z < j )  then there 
is an edge (pf,p;) E E .  

1 Compute the adjacency matrix G, of G. 
2 Compute the transitive closure G: _Of G,. 
3 Vpt , if there is an edge (p," , p ; )  E E and if the item 

of G i  in row p: and column pf has a path from p j  
to p: in G then Is-feasible = false. Goto end. 

4 Is-feasible = true. 
end 

The complexity of Is-feasible is O ( n 3 ) ,  which is essentially 
the complexity of computing the transitive closure in step 3.  
The correctness of Is-feasible can be easily shown using the 
previous lemmas and theorems. 

I )  The Correctness of Feasibility: By Lemma 1, if a map- 
ping is not p-deadlock free, we can find a list of S-nodes u k l ,  

l , L  r ' 3 ,  , [,,, + ,,,, respectively, such that U') depends on 
0'2 and t, 2 r J ,  1 5 j 5 rn. Hence, we can find a cycle 
. ~ [ , r , + l , ! , ? ~  S a  S["X+l..n] 

step 4 returns Is-feasible = false. 
Conversely, if step 4 returns Is-feasible = false, then a cycle 

K in G exists. A series of continuous nodes in K ,  p;; ,  p z  ,. . ., 
j ~ : , ; ~  is a sequence if %I = L2 = . . .  = i, j ,  < j 2 ,  < . . .  < j ,  
and if it is maximal. In the above sequence, pi: is the initial 
node and pS; is the terminal node. K can be expressed as a 
series of sequences K 1 ,  Kz, ..., K ,  whose initial nodes are 
p i ; ,  p;:,. . ', py; and whose terminal nodes are p : ~ ,  p:: ,. . ., 
p;::: I . This list of pseudo processors forming K violates 

0 

d.1, . . .,  PI'^^^, 71'1, 71 '2 ,  . . ., 71',, mapped to p:,', p:,Z,. . ., p t m ,  S m  

! )? [ , , ,+I  ,,,,, 7 1);; , P;; 7 P t ,  3 p;; 7 .  . ' >  p;," 9 P7.[m+l,m] in G and thus 

Il,s2 , p" 1 . . . I "' + 1 , m 1 

Lemma 1. Thus, the mapping is infeasible. 
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Fig. 9, 4-node and X-node hypercubes as host graphs. 

VI. IMPLEMENTATION RESULTS 

The mapping scheme was tested using several synthetic 
problem graphs and host graphs, and also on a real-time stereo 
in a distributed environment. The synthetic examples were a 
simulation of real situation problems and hosts. The next two 
sections summarize the results of both these implementations. 

A. Simulation 

To compare our strategy with previous strategies we applied 
the mapping scheme on the problem graphs used by Lee and 
Agganval [lo]. We used 4-node and 8-node hypercubes to 
introduce the cardinality variation which is not dealt in [lo]. 
Fig. 9 illustrates the host graphs used for the simulation. The 
use of hypercubes trivializes the evaluation of the shortest 
path in the host graph. We evaluate the shortest path by 
complementing the less significant bit first. I t  is also assumed 
that each link of the host can independently send or receive 
messages. 

The problem graphs considered [lo] are those that would 
appear in real applications. A synchronous mode of com- 
munication is assumed. The problem graphs for the 4-node 
and 8-node host graphs are given in Fig. I O  and Fig. 11, 
respectively. The weight for each edge is given and the number 
within the parenthesis indicates the phase in  which the edge 
is required. The computational requirement at each node in 
the problem graph is the same, and so is the computability of 
each node in the host graph. Thus, these examples do not fully 
exploit the generality of the mapping scheme but are used for 
comparison. 

The examples considered here do not have any constraints 
involved. Furthermore, the uniformity of the computational 
requirement of the problem nodes and the computability of the 
host nodes leads to the splitting of each host processor into 
two pseudo-processors. Thus, the modified pairwise exchange 
involves only the changes of assignments of the processes onto 
the pseudo-processors. There is no change in the extended host 
graph. Fig. 12 gives an example of the extended host graph 
for the first set problem nodes and the 4-node host graph. 

The mappings were tested with the objective function as 
OFl .  The implementations exactly follow the procedures 
explained earlier. The results are tabulated in Tables I and 
I1 for the 4-node host and in Tables 111 and IV for the 8- 
node host. The number of iterations in the modified pairwise 
exchange procedure is represented by N .  The results obtained 
indicate that the proposed mapping strategy takes care of 
both the cardinality variation and the topological variation. 
The objective functions and the number of iterations in the 

1 4  

0 1 2 3  

(4 All unmarked (b) 
edges: l (1)  

1 4 

0 
0 

(f 

Fig. 10. The problem graphs for the 4-node hosts: (a) SI, (b) S r ,  (c) ss ,  
(d) .SI (e) S-,, (f) Si,. 

modified pairwise exchange indicate that our strategy works 
well and gives near optimal results (if not optimal in most 
cases). 

B. Real-Time Stereo 

To further evaluate the mapping scheme, a significantly 
large problem was considered to be mapped in a distributed 
environment with several constraints. The problem was to 
determine the three-dimensional position of object points in 
a scene using a stereo algorithm [87]. 

The stereo algorithm was split into processes as shown in 
Fig. 13. This splitting into processes was done arbitrarily. 
However, the processes are logically independent and data 
dependence between the processes is very streamlined. The 
processes are implemented in C and Fortran. Two CCD 
cameras are used to input the stereo images. Since we use only 
one frame grabber the images are extracted in three steps: first 
the camera grabs the left image; then it snaps the image and; 
finally it  saves the image. This is repeated for the right camera. 
The left and right images are then processed independently. 
This processing involves low level image processing. It is 
followed by matching the left and right processed images 
to determine the three-dimensional position of object points 
in a scene. The low level processing involves convolution 
with a Laplacian filter (LPCN) followed by extracting zero- 
crossings (EDGE) and thresholding these edges (TEDGE). The 
left and right images are displayed before and after the low 
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34 1 

(b) All unmarked 
edges: l(1) 

1 1 

15 15 

Fig. 11, The problem graphs for the X-node hosts: (a) ST, (b) Sx, (C) Sri, (d) SI 0 .  

Fig. 12. An example of the extended host grdph for the 4-node host graph 

level processing (DISPLAY processes). After independently 
processing the left and right images, they are matched using a 
relaxation algorithm (RELAXATION). The final diparity map 
is then displayed. The images are gray level images of size 
256x256. Thus, the communication volume of every edge 
(except the edge between RELAXATION and DISPLAYS) in 
the problem graph is 256 Kbits. The communication volume 
between RELAXATION and DISPLAYS is 512 Kbits. All the 
DISPLAY processes take approximately 1.8 s. 

The distributed environments (Fig. 14) are comprised of 
four processors connected in two different ways. ZEUS is a 
Sun 4 capable of 10 MIPS and 1 MFLOPS. TOMJR is an 
IBM RT/PC I1 with 4.4 MIPS and 1 MFLOPS. AMAZON is 
an IBM RS/6000 (520) with 27.5 MIPS and 7.4 MFLOPS. 
GANGES is an IBM RS/6000 (530) with 34.5 MIPS and 
10.9 MFLOPS. The interconnection between them as shown 
in Fig. 14 is via Ethernet at 10 MB/s. There are certain 
constraints introduced in the mapping. The processes GRAB, 

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 15:17 from IEEE Xplore.  Restrictions apply.



342 l E E t  TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 4, NO 3 ,  MARCH l Y Y 3  

TABLE I 
INITIAL ASSIGNMENTS FOR TllE 4-No111- HCJSI 

Initial Mapping OF1 ‘ 0 0 1 )E /,,J ):J 
s 

1’0 1’1 1’; 1’1 1 0  1 0 I 1  

S1 (1  2 5 6 0 3 4 7 )  2 

SE ( 0 1 2 4 3 6 5 7 )  I 

s:1 ( 2 . 5 0 1 3 4 7 6 )  5 
S1 ( 2 5 0  1 3 4 7 6 )  4 
S5 (0 1 2 7 5 3 4 6) S 

Sf, ( 0 2 7 5  1 3 4 6 )  4 

TABLE I1 
FINAL A S S I G N M ~ N I S  tOK I H I  ~ - N o I ) I  HO\l 

AITFR M O D I F I ~ D  PAIRWISF E X ~ I I A N G F  

51 ( 1 2 5 6 0 3 4 7 )  2 0 

5 2  ( 0 1 2 4 3 6 5 7 )  I 0 

53 (2 1 0 5 3 4 7 6) 3 1 

SI ( 5 3 6 0 4 2 7 1 )  2 X 

s., (4 1 2 7 0 3 5 6 )  3 2 

sc, ( I  2 4 5 0 3 7 6) 3 7 

TABLE I11 
INITIAL ASSIGNMENTS FOR THE 8-NODE HOST 

S Initial Mapping OF1 
1,; 1): 1,; 1,; 1,; 1): 1,; I,,; 1,; 1,; 1); 1,; 1,; 1,; 18 1,; 

s: (5 h 9 10 1 2 13 14 4 7 8 1 1  0 3 12 15) 

sx ( 0 1  1 3 9 3 2 1 0 7 5 1 1 4 1 4 6 8 1 5 1 2 )  4 

S O  (0 2 10 9 12 h 11 7 3 1 4  13 5 8 14 15) 

S I 0  (0 2 10 9 12 6 I I  7 3 I 4 13 5 8 14 IS) 

2 

7 

5 

TABLE 1V 
F I N N  ASSICNMFNTS FOR THI- X-Norii HO\I 

AFTER MODltlkD PAlRWl5t EXCHANCrI 

si 
s x  
s., 
Sin 

(5  6 9 10 1 2 13 14 4 7 8 I 1  0 3 12 15) 

(0 1 7 9 3 2 10 13 5 1 1  4 14 6 X 15 12) 

(9 1 10 2 12 8 11 3 7 0 6 13 5 4 14 15) 

(1 2 10 9 12 6 11 7 3 0 4 13 5 X 14 15) 

2 0 
3 1  
5 5  
4 1  

SNAP, and SAVE can only be done on ZEUS (since the 
frame grabber is in ZEUS). DISPLAYS is done only on 
TOMJR. RELAXATION is executed only on TOMJR for 
the first distributed environment [Fig. 14(a)]. Finally, none 
of the processes other than GRAB, SNAP, and SAVE can 
be executed on ZEUS. The computation times of the various 
processes on the processors are given in Table V. 

The mapping for the first distributed environment starts 
with the assignment of tasks using the exclusion matrix. The 
initial assignment included GRAB, SNAP, and SAVE mapped 
onto ZEUS and RELAXATION and DISPLAYS mapped onto 
TOMJR. Since no other process can be mapped onto ZEUS, 
the remaining 10 processes need to be mapped onto TOMJR, 

-0 

SAVE , -p 8 SNAP 

SAVE 

DISPLAY 3 

LPCN 

Fig. 13. The s t c r ~ o  problem graph. The processes within thc dotted lines 
indicate constraints. 

TABLE V 

PROCESSI-,S O N  I til PKOCI.SSOKX. Tiit Rows INDICATF THF. 
THL COMI’LI~Al~ION TIMI-s IN Sl.(.ONUS O r  THE VARIOUS 

PKO(.E.SSOKS A N D  T l l t  COLUMNS 1Nl)lCAlF ‘THE PROCESSES 

5 6 7 13 14 15 17 

1 0.1 0.07 0 08 0.  I 0.07 0.08 2.2 

2 0.11  0.07 0.OX 0 . 1 1  0.07 0.08 2.4 

3 0.94 0.72 0.85 0.94 0.72 0.85 6.9 

GANGES, and AMAZON. Because of the relative compu- 
tational powers of TOMJR, AMAZON, and GANGES the 
extended host graph formed is as shown in Fig. 15. Fig. 15 also 
gives the mapping of the processes onto the pseudo-processors. 
Fig. 16 gives the mapping of the processes onto the processors 
for the first distributed environment. 

The mapping for the second distributed environment is 
similar to the first distributed environment except that RE- 
LAXATION is not constrained to be executed on TOMJR. 
Moreover, GANGES and AMAZON can communicate with 
each other. Fig. 17 shows the extended host graph and the 
mappings of processes onto pseudo-processors. Note that 
GANGES has the largest number of pseudo processors since it 
is computationally the most powerful machine. Fig. 18 gives 
the mapping of the processes onto the processors for the 
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ZEUS ZEUS x-g 
TOMJR GANGES TOMJR GANGES 

(a) (b) 

Fig. 14. (a) The first distributed environment and (b) the second distributed environment. 

AMAZON 

GANGES 

Fig. 15. The extended host graph with the processes mapped onto the pseudo-processors for the first distributed environment. 

second distributed environment. In both examples of the dis- ZEUS 

tributed environments, no pairwise exchange was performed. 
Both these mappings were implemented using OF:, on the 

respective distributed environments and real-time stereo was 
achieved. 

VII. TRAFFIC SCHEDULING 
Having done the mapping of processors onto the pseudo 

processors to optimize certain objective functions, the traffic 
splitting ability of the communication node (packet switching) 
can be used to optimize the traffic volume through the phys- 
ical links by using different routes. By routing traffic along 
different paths, the total traffic volume can be increased to 
maximize the network throughput. When determining traffic 
paths, both traffic volume and delay must be considered. We 
shall assume that the network delay due to the transfer of 
messages is negligible in comparison to the actual time of 
transfer of the messages 1541. 

2 

TOMJR 

- -~ 
we start with 'Orti% the pseudo processors into subsets 

according to the phase in which they communicate, as shown 
Fig. 16. The final mapping of the processes onto the processors for the first 

distributed environment. 
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AMAZON 

GANGES 

Fig. 17. The extended host graph with the processes mapped 7 onto thc pseudo-processors for the second distributed environment. 

below: 

where N p  is the number of phases (subsets) and L k  is the 
number of pseudo processors in the subset Pk that commu- 
nicates with other pseudo processors in the same subset Pk. 
p i  is to be distinguished from the pseudo processor pi.. The 
communication volume for each pair of pseudo processors in 
the same phase is known. The purpose of traffic scheduling is 
to maximize the total network traffic. 

Optimal traffic scheduling can be obtained by optimizing 
the traffic schedule for each phase. Consider the case where 
a pseudo processor p z ,  = p;' communicates with a pseudo 
processor p i ,  = p:. This creates two possibilities: 

1) If m = T ,  then the pseudo processors p;" and pk share 
the same communication node. Thus, the communication 
cost between them can be ignored. 

2 )  If m # T ,  then the communication of the message from 
p i ,  to p i ,  will use some path from the processor p,,, to 
the processor p ,  in the host graph. 

Thus, for each phase I C ,  a multiple commodity flow network 
problem can be generated. The flow volume between proces- 
sors prn and p r  is equal to the communication flow between the 
pseudo processors p;' and p i .  The multiple commodity flow 
network problem can be solved by the interprocessor traffic 
scheduling algorithm proposed by Bianchini and Shen [54]. 

VIII. CONCLUSION 

A generalized mapping scheme for a distributed computing 
environment is proposed. The proposed strategy uses the 
knowledge from the given algorithm and the given architecture 
to guide the mapping. The concept of pseudo processors can 
help us understand and describe the feasibility of a mapping, 
p-deadlock, and q-deadlock. An accurate characterization of 
the communication overhead is used as our objective function 
to evaluate the optimality of the mapping. The two level 

Fig. 1X. The final mapping of thc processes onto the processors for the 
second distributed environment. 

optimization schemes described here illustrate the use of 
pseudo processors in reducing the communication overhead 
for a generalized system. 

The proposed scheme is a substantial advancement in scope 
over the current state-of-the-art. Conditions are derived to 
prevent deadlock and to check the feasibility of the mapping. 
The mapping model is very general and can incorporate almost 
every practicaf constraint. A two level mapping optimization 
technique is used to arrive at extremely good results. The key 
difference between our strategy and those proposed previously 
is the interdependence between the algorithm and the archi- 
tecture. We use the knowledge from the given algorithm and 
the given architecture to guide the mapping. 

The proposed strategy was tested in both a simulated 
environment and a real distributed environment. The results 
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achieved in both implementations indicate the efficacy of the 
proposed mapping scheme. 
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