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Abstract—The mapping problem arises when the dependency
structure of a parallel algorithm differs from the processor
interconnection of the parallel computer or when the number
of processes generated by the algorithm exceeds the nmumber
of processors available. The mapping problem (also known as
task allocation) has been widely studied. We propose a new
generalized mapping strategy that uses a combination of graph
theory, mathematical programming, and heuristics. The key dif-
ference between our strategy and those proposed previously is the
interdependence between the algorithm and the architecture. We
use the knowledge from the given algorithm and the architecture
to guide the mapping. The approach begins with a graphical
representation of the parallel algorithm (problem graph) and the
parallel computer (host graph). Using these representations, we
generate a new graphical representation (extended host graph)
on which the problem graph is mapped. We use an accurate
characterization of the communication overhead in our objective
functions to evaluate the optimality of the mapping. An efficient
mapping scheme is developed which uses two levels of optimiza-
tion procedures. The objective functions include minimizing the
communication overhead and minimizing the total execution time
which includes both computation and communication times. The
mapping scheme is tested by simulation and further confirmed
by mapping a real world application onto actual distributed
environments.

Index Terms— Deadlock, feasibility, mapping, objective func-
tions, scheduling, strongly connected components.

1. INTRODUCTION

HE notion that a cooperating collection of loosely cou-

pled processors could function as a more powerful gen-
eral purpose computing facility has existed for quite some
time. If properly designed and planned, such a collection of
processors provides a more economical and reliable approach
than that of centralized processing systems. Much work has
been focused on the problem of cooperation among distributed
resources of a system, resulting in a myriad of techniques
and methodologies. Most of the proposed strategies apply to
specific architectures and algorithms. On the other hand, little
research attempts a generalized approach to the above problem.
While the idea of distributed computing is tantalizing, various
practical and theoretical problems must be solved to realize
the idea’s potential. The major problems encountered are due
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to the interprocessor communication and delay because of
dependency between subtasks. The mapping problem arises
when the dependency structure of a parallel algorithm differs
from the processor interconnection of the parallel computer
(topological variation), or when the number of processes
generated by the algorithm exceeds the number of processors
available (cardinality variation).

The mapping problem, as described above, has been de-
scribed a number of times and in a number of different
ways in the literature [1]-[10]). The mapping problem can
be considered as a distributed scheduling problem or as a
resource allocation problem. An implicit distinction often
exists between the terms scheduling and allocation. However,
it can be argued that these are merely alternative formulations
of the same problem, with allocation posed in terms of resource
allocation (from the resources’ point of view) and scheduling
viewed from the consumer’s point of view [5]. In this sense,
allocation and scheduling are merely two terms describing the
same general mechanisms but from different viewpoints. The
mapping problem incorporates both these viewpoints.

In order to complete a task in a minimum execution time,
it is desirable to take advantage of parallel processing. This
type of problem, usually referred to as the minimum execution
time (schedule length) multiprocessor scheduling problem, has
been studied extensively {11]. The above problem, however, is
extremely difficult to solve and generally intractable. It is well
known that some simplified subproblems constructed from the
original scheduling problem by imposing a variety of con-
straints still fall in the class of NP-hard problems [11]-[14],
[8], [15]. The obvious approach then is to concentrate on
the development of polynomial time algorithms that provide
near optimal solutions. A new generalized mapping strategy is
proposed that optimizes a set of accurately specified objective
functions for real-time applications in a distributed computing
environment.

A. Problem Statement

This paper focuses on the problem of optimally allocat-
ing processes (commonly referred to as task allocation) and
scheduling them. Henceforth, we use the terms process and
tasks interchangeably. Optimal task allocation in a distributed
computing environment requires the optimal assignment of
processors to computations and communication resources to
the implementation of dependency relations between the unit
of computation able to be scheduled, i.e., tasks, in order to
minimize certain objective functions. A distributed computing
environment has conflicting requirements {16]:
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e While minimizing interprocessor communication tends
to assign the entire computation to a single processor,
load balancing tries to distribute the computation evenly
among the processors.

e While real-time constraint uses as many processors as
possible to maximize parallel execution, the precedence
relationships limit parallel execution.

» The saturation effect suggests the use of fewer processors
since inefficiency increases with the number of proces-
SOr1S.

A parallel computation can be represented by a directed
acyclic graph [9], [17], [18]. We represent a parallel computa-
tion by a directed static graph, the problem graph S = (V, E),
whose vertices v* € V represent processes and whose edges
e € E represent communication paths. Note that this graph
is distinct from the data dependency graph, since it could be
cyclic. Edges of the problem graph are assigned weights to
indicate the traffic intensity along that edge. This probiem
graph is a restricted model in that it does not allow new nodes
or edges to be created during run time. This restriction avoids
ambiguity in determining the computation and communication
requirements of the problem graph. We also assume that the
subtasks are nonpreemptive.

The system architecture specifies the actual hardware struc-
ture of the multiprocessor. The architecture consists of a
network of processors, each of which is composed of a
processing node and a communication node. The network is
an interconnection between processor communication nodes.
It performs the routing of data involved in the processor
communication, and is known prior to the mapping. Fig.
3 illustrates an example of a host architecture. The traffic
routing occurs at the communication node and is independent
of the processing node. This separation of communication
performed by the communication nodes allows the processors
to achieve computational efficiency. The communication is
packet switched. In addition, each processor has a queue
which is used for both mapping and packet switching. The
interconnection network structure of the host architecture is
described by an undirected host graph H = (P.€). P =
{p,p?,---,p"} is the set of nodes and £ = {(p*,p) | (p*, p?)
is a data link} is the set of edges. The nodes of the host graph
represent the processors and the edges represent links. Each
edge can be weighted on its data capacity or length.

The basic problem we are trying to solve is to find a
mapping of S onto H which optimizes certain objective
functions. The objective functions usually calculate the cost
of the mapping process based on certain cost functions. These
costs must be minimized to obtain an optimal mapping. The
various costs that need to be considered include the following:

s The execution cost of each process on each of the
(heterogeneous) processors.

s The (interprocessor) communication cost incurred be-
tween processes when they are assigned to different
Processors.

The above discussion assumes that the processors could
be heterogeneous. The generalized approach suggested here
is a substantial advancement in scope over the current state-
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of-the-art. Most researchers have dealt with methodologies
applicable only to specific configurations of resources or
specific problems [19]-[22], [1], [23], [10].

The research defined and proposed in this paper is an
attempt at a generalized approach to mapping processes onto
processors. The proposed mapping is applicable to a broad
class of application programs. Since the problem is NP-hard
and no polynomial time algorithms exist, we have to rely on
efficient heuristics. Most heuristics used for optimizing the
mappings work only for restricted cases. We concentrate on
developing heuristics which give optimal solutions for a wide
spectrum of problems.

B. Approach

Most of the work done in the area of the cooperation
of distributed resources uses one of three techniques: graph
theoretic, integer programming, and heuristics. While the
graph theoretic method is attractive in its simplicity, it has
several limitations. First, the basic min-cut solution provides
for a minimum cost allocation between two to three processors.
In general, an extension of this method to an arbitrary number
of processors requires an intractable n-dimensional min-cut
algorithm. It does not provide mechanisms for representing
resource constraints. Queueing delays introduced due to car-
dinality variations are also difficult to represent.

The integer programming approach formulates the model as
an optimization problem, and then solves it via a mathematical
programming technique. The approach is a flexible technique
because it allows constraints to be introduced into the model
appropriate to the application. Its shortcomings include the
representation of the effects of the current system state in
the real-time constraint, and the representation of the effects
of precedence relations in the data flow among the subtasks.
Unlike the first two approaches, heuristic approaches aim only
to find a suboptimal solution. Yet, heuristic approaches are
faster, more extensible, and simpler than optimal solution
techniques. In fact, in some cases heuristic techniques may
be the only available tools for solving difficult problems.

We use a combination of the graph theoretic, mathematical
programming, and heuristic approaches. This enables us to
easily represent all constraints in our model. Unlike previously
proposed strategies, we formulate an accurate set of objective
functions to evaluate the optimality of the solutions. We use the
concept of pseudo processors, and derive conditions to prevent
deadlock due to dependency relations among the subtasks.
The key difference between this strategy and those proposed
previously is the interdependence between the algorithm and
the architecture. The knowledge from the given algorithm and
the architecture guides the mapping.

The approach begins with a graphical representation of the
parallel algorithm (problem graph) and the parallel computer
(host graph). Using these representations, a new graphical
representation (extended host graph) is generated onto which
the problem graph is mapped. An accurate characterization of
the communication overhead is used in our objective function
to evaluate the mapping’s optimality. An efficient mapping
scheme is developed which uses two levels of optimization
procedures. A combination of the graph theoretic, mathemat-
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Fig. 1.

ical programming, and heuristic approaches is used, enabling
us to easily represent numerous constraints in our model. The
objective functions include minimizing the communication
overhead and minimizing the total execution time, which
includes both computation and communication times. The
mapping scheme is tested by simulation and further confirmed
by mapping a real world application onto actual distributed
environments. The flowchart in Fig. 1 outlines the entire
mapping scheme.

The rest of the paper is organized as follows. Section I
briefly reviews previous work in related areas. The various
mapping schemes, task allocation strategies, and multiproces-
sor scheduling techniques are grouped, depending on their
proximity to each other. Section III begins with the description
of the mapping model followed by properties of this model.
Section IV presents a description of the objective functions and
their evaluations. Section V describes the mapping strategy
and its computational complexity. Section VI summarizes the
performance results of the simulation and implementation of
the mapping scheme. Section VII proposes a traffic sched-
uling scheme. The paper concludes with comments on the
superiority of the proposed strategy and its extensions.

II. A SURVEY OF RELATED RESEARCH

The multiprocessor scheduling problem is extremely dif-
ficult to solve and generally intractable [11]-[14], [8], [15].
Even the simplified subproblems constructed from the original

Problem Host
Graph S Graph H
Extended Host Graph
G
Initial Yes Modified
Feasible? bt Pairwise
Assignment
Exchange
Yes
Acceptabie? .
Feasible?

Flowchart outlining the entire mapping scheme.

scheduling problem by imposing a variety of constraints still
fall in the class of NP-hard problems [24]. The difficulty of
solution varies with the inclusion or exclusion of preemption,
the number of parallel processors, precedence constraints,
etc. Surveys of the rapidly expanding area of deterministic
scheduling theory and task allocation are given in [8], [7], [5],
and [25].

An efficient O(n) algorithm was developed by [26] where
the task processing times are equal and the task graph is tree
shaped. If arbitrary precedences are allowed, then Coffman and
Graham [27] proposed an O(n?) algorithm for two processors.
If any of these restrictions are relaxed, the problem becomes
NP-hard [11], [15]. Other scheduling problems are discussed
in [24] and [19].

We now classify the various strategies for multiprocessor
scheduling, task mapping, and resource allocation under a
common, uniform set of terminology [5]. Broadly, the various
strategies can be classified as being either static or dynamic. In
the case of static scheduling, the entire information regarding
the processes in the host system, as well as the processes
involved in a job, is assumed to be available a priori [28],
[29], [7], [30]). As the name suggests, dynamic scheduling is
the inverse of static scheduling.

In the case that all the information regarding the state
of the host system, as well as the processes, is known, an
optimal assignment can be made based on some objective
tunction [4], [31]—[34], [23]. In the event that these problems

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 24, 2008 at 15:17 from IEEE Xplore. Restrictions apply.



CHAUDHARY AND AGGARWAL: MAPPING PARALLEL ALGORITHMS

are computationally infeasible, suboptimal solutions may be
tried [35]—[38]. Within the realm of suboptimal solutions,
the heuristic algorithms represent the category of static al-
gorithms that make a realistic assumption about a priori
knowledge concerning process and host system characteristics
[16], [39]-[41]. The distinguishing feature about heuristic
algorithms is their use of special parameters which affect
the system in indirect ways. Usually, the parameter being
monitored is correlated to the system performance in an
indirect way but is easier to monitor, i.e., clustering [9], [42].

Regardless of whether a static solution is optimal or
suboptimal-approximate, there are four basic categories of
task mapping algorithms: Solution space enumeration and
search [23], graph theoretic [3], [43], [44], mathematical
programming [4], [31]-[34], and queueing theoretic [21], [45],
[46].

In the case of dynamic solutions, a more realistic assumption
is made that very little a priori knowledge is available about
the resource needs of a process. Unlike the static case, no
decision is made for a process before it is executed [42], [47].
Since it is the responsibility of the processes to decide where
a process is to be executed, it is critical to decide where such
decisions are made. Mapping schemes can be classified based
on the locality of the responsibility of the process’s scheduling,
i.e., whether it physically resides in a single processor [29] or
whether the work involved in the decision making is physically
distributed among the processors [48].

Since the problem is NP-hard, several heuristic algorithms
have been proposed in the past. Most of these previous
approaches focused primarily on specific mapping strategies
for particular multiprocessor architectures. Some strategies
attempt to take advantage of hardware characteristics, such
as the interconnection network of architectures. Since none of
these strategies are general purpose, they apply to a limited
class of multiprocessors, e.g., tightly-coupled homogeneous
architectures [49], loosely-coupled homogeneous architectures
[19], loosely-coupled heterogeneous architectures [19], or mul-
ticomputers connected in a point-to-point fashion [20].

Several simplifying assumptions are common. Bokhari [2]
describes a mapping scheme assuming no cardinality variation.
The objective function is the number of edges of the problem
graph that fall on the edges of the system graph. That is, the
objective function takes into account only the matched edges.
However, the unmatched edges may, in some cases, determine
the system’s performance. The problem graph edges are also
assumed to be identical, although, in general, they could have
different traffic intensities, represented as weights.

Another simplifying assumption is made in the quadratic
assignment problem [51]. The objective function is the sum of
products of the weights of problem edges and the distances of
the corresponding system edges for all problem edges, i.e., the
sum of communication overheads of all problem edges, which
seems to be a reasonable measure. However, this measure does
not specify exactly what is to be minimized (maximized) in
parallel processing applications. Moreover, the actual distance
of the system edge is not really independent of the problem
graph unless the problem edges share none of the system
edges.
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McDowell and Appelbe [52] discuss the problem of assign-
ing processes to the processors interconnected as a ring. The
problem graphs are restricted to binary trees, and a heuristic
algorithm is suggested to minimize the communication delay.
A tight, necessary condition for finding assignments of pro-
gram fragments to linearly connected processors that require
no communication delays is presented.

Sahni [53] presents the scheduling of tasks on multipipeline
and multiprocessor computers. In this paper, the class of com-
puters considered is not general. Lee and Aggarwal [10] and
Bianchini and Shen [54] both assume that the number of tasks
is less than the number of processors and, hence, only consider
the topological variation. Further, [54] assumes that processor
allocation has already been done. Berman and Snyder [1] use
edge grammars to abstract graphs from the system but only
consider a restricted class of interconnection structures. The
mapping strategy proposed by Kim and Browne [9] uses the
abstraction of the system graph without any knowledge about
the problem graph, and vice versa. Furthermore, the merging
of clusters resulting in the reduction of resource utilization
may lead to a worse load balancing.

For brevity and completeness, we merely mention some of
the other mapping schemes: [55])-[65], [47], [66]-[68], [30],
[69]-[74], [21], [75]-[77], [34], [78]—-[80].

From the above review, it is apparent that a myriad of mul-
tiprocessor scheduling strategies exist which can be applied
to specific architectures. On the other hand, little research
attemnpts a generalized approach to multiprocessor scheduling
applicable to multiprocessors regardless of the underlying
architectural characteristics.

[1I. THE MAPPING MODEL

We illustrate a problem graph S = (V, E) by the directed
graph in Fig. 2. The weights on the arcs denote the traffic
intensity. The problem graph is described by a problem matrix
PM. The element (3, ) is denoted by m;;, whose magnitude is
the weight for the problem edge €/ and whose sign indicates
the direction of the communication. If 7;; is positive, then the
communication size is | 7;; | from ¥ to vJ. If m;; is negative,
then the communication of the same size is in the reverse
direction. If there is no communication between v* and v/,
m;; is zero. The problem matrix corresponding to the problem
graph of Fig. 2 is given below.

Definition A physical processor p* corresponds to a set
of pseudo processors {p¥ | i > 1}. The queues in p* are
q**,i > 1, i.e., the incoming packets for p¥ will reside in ¢*°.

The above definition involves certain assumptions. First, it
assumes that the packets are consumed eventually. Second, it
assumes that a finite number of unused queues are released
and allocated to other psendo processors. Finally, it assumes
that the number of queues can be less than the number of
pseudo processors.

Definition: The interconnection network structure of the
host architecture is described by an undirected host graph
H = (P.£). P = {p'.p>.---,p"} is the set of nodes and
E={(p'.p?) | (p*,p’) is a data link} is the set of edges.
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Fig. 2.
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The problem graph and its corresponding problem matrix.
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Fig. 3. An example of a host architecture: A mesh network of nine processors.

The nodes of the host graph represent the processors and
the edges represent links. Each edge can be weighted on its
data capacity or length. A host matrix HM describes the host
graph. The element (4, §) is denoted by h;;, whose magnitude
is the weight of the host edge (p*, p’). Fig. 4. gives an example
of a host graph and the corresponding host matrix.

Definition: An extended host graph G = (P, E) where

N
P=JP.N2>1

i=1
N
E= (U UlUgw
i=1 i#j
,Pi = {p117p127 e 77)?}

E={Lp!") | ('.p™) € €}
Eajy = {hp) | (B, p™) € EV(I=mAj>i)}.

The nodes P; of G represent the pseudo processors of H.
If there is a link between processors p' and p™ in H, then

1 1 1
1 1 1
1 1 1

Fig. 4. An example of a host graph and the corresponding host matrix.

there is a directed edge from p! to pj" in G. Note that pl can
communicate with p7* if p! is executing the process of p! and
if p7* has not completed its execution.

An extended matrix EM describes the extended host graph.
The element (i,7) is denoted by m;;, whose magnitude is
the weight of the extended host edge. Note that we can
have numerous extended host graphs (matrices) depending
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Ve

An example of an extended host graph and the corresponding
extended matrix.

(2 (o)
S
Y

on the particular problem and host graphs. Fig. 5 shows an
extended host graph and the corresponding extended matrix,
corresponding to the problem graph of Fig. 2 and the host
graph of Fig. 4.

A. Properties of the Model

The mapping of a parallel algorithm on a parallel architec-
ture can be described by a one-to-one mapping M from the
vertices of a problem graph S onto the nodes of the extended
host graph G [2].

Given M, if the allocated pseudo processors U;l p* for p*
are ordered as p;“l ,p;?),~-~ ,pfm where [, <l 11, 1 <7 < m,
then the processes associated with these pseudo processors will
be executed by p* in that order, i.e., the lower subscript has
a higher priority. Hence, a directed edge from p} to p¥ in G
will force i < j and thus pf can communicate with p¥ but
not vice versa.

Consider the case when the host graph has | H | processors
and the problem graph has | S | processes. Depending on the
values of | H | and | S |, we will either have one extended
host graph or several extended host graphs.

* If | H |>| S |, then every host processor is itself a pseudo

processor, i.e., we have only one extended host graph.

* If | H |<| S |, then at least one processor will have more
than one pseudo processor, i.e., there will be more than
one extended host graph. The next proposition derives an
expression to evaluate the number of these extended host
graphs.

Proposition 1: Given d processors and d -+ n processes, the

number of ways in which the processes can be allocated to the
processors such that each processor has at least one process is

(n+d-1)!
ni(d—1)!

In order to cut down on this combinatorial explosion of the
number of extended host graphs, we restrict the extended host
graph by imposing certain constraints. We split the processors
into pseudo-processors in the ratio of their computational
power.

In the next section we deal with the feasiblility of mappings
introduced due to the priorities assigned to pseudo-processors.

Definition: A mapping is feasible if the parallel algorithm
executed on the parallel machine according to this mapping
terminates.

I) Processor Deadlock: We make certain assumptions
about the host architecture which do not restrict the generality
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Fig. 6. An example of a mapping leading to processor deadlock.

of the mapping scheme described in this paper. First, we
assume that each processor is capable of computing its
task. Second, we assume that the interconnection between
processors is loss free, i.e., no packets are lost in
communication. Thus, a pseudo processor will wait for any
packets sent from another pseudo processor and will eventually
receive them.

It can be easily shown that not all mappings of S onto H will
yield a feasible mapping. If there is a limit on the number of
queues per processor, then merely sending packets numbering
more than the number of queues to any particular processor
will result in a deadlock (g-deadlock). But, a deadlock could
result even if we do not constrain the number of queues.
Fig. 6 illustrates this by an example. Consider a host with
two processors. The problem graph S has three vertices. To
take care of the cardinality problem, one of the processors
will correspond to two pseudo processors. The host graph
H, with these three pseudo processors, is then constructed.
If we construct a mapping with p} onto v!, pi onto v2, and
p% onto v, then it is clear that this will lead to a deadlock.
The p-deadlock is due to the violation of the data dependence
presented by the problem graph.

We shall now formally derive a condition that will guarantee
a p-deadlock free mapping. We say that the process v* depends
on v' if there is a path from o' to v*. Also, p{ is busy if p*
is executing the process of pj.

Lemma 1: A mapping is p-deadiock free iff there is no such
list of S-nodes vkt wk2 ... vkm plt pla o gyl mapped
10 pseudo Processors Py, P2« - Pyl Di s Byds e s Prim s 1om)s
respectively, such that v*5 depends on v and t; > rj,
1 < j < m, where [i,m] = (¢) mod m.

Proof: First we assume that the mapping is not p-
deadlock free. Hence, a p-deadlock occurs. Thus, for all busy
pseudo processors p:”, we can find p:jrl‘ such that v* of
p:‘]’ depends on v’ of p:;:“ and p:]JL' cannot be allocated to
the processor occupied by pfjj]‘, ie, tjy1 > ri41. Next, we
check whether the processor p®+', j > 1 is occupied by p;*,
1 < ¢ < j. Since the number of busy processors are finite,
we can find such a pseudo processor p;*. Thus, the list of S-
nodes vks, pke+r .o vlet1 . wli+r contradicts
the condition of Lemma 1.

We now assume that such a list of S-nodes exists. Since
the pseudo processors pj2,ps2, -, pyl "7} cannot execute

T Tlm+1,m]
their processes, p;', p;Z,---, p;,’ cannot receive the packets.

m

Hence, these pseudo processors will be busy, implying that a
p-deadlock will occur. g

k I
prIF oyt
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Consider the special case when m = 1, i.e., there are only
two processes. If process v* depends on ©' and these are
mapped to pseudo processors p; and p3, respectively, then
i> j, i.e., process v' is to execute before v* to prevent a p-
deadlock. Note that a p-deadlock occurs because of the priority
assigned to the pseudo-processors, i.e., they need to execute
sequentially within a processor. Hence, we are allocating and
scheduling processes simultaneously.

Processes v* and v' are strongly connected if there is a path
from v* to v! and from v’ to v*. In the problem graph S, the
S-nodes can be partitioned into disjoint Strongly Connected
Components (SCC) [81].

Once we have derived the conditions to check if a mapping
is p-deadlock free, the next question is whether such a mapping
exists. If so, then given the problem graph and the host graph,
is it possible to say that a p-deadlock free mapping exists?
The necessary and sufficient condition to answer the above
question is stated next as a theorem.

Theorem 1: Given a problem graph S, there is a p-deadlock
free mapping for a host graph H iff the number of processors
in H is at least equal to the maximum number of nodes in
an SCC of S.

Proof: Suppose that a mapping exists such that the
number of pseudo processors in H is greater than or equal
to the number of nodes in an SCC of S. Order the SCC’s
C1,Cs,- - +,Cy, such that if a node in C; depends on a node
in C;, then ¢ < j. Assigning processes in C, to pseudo
processors in the set | J P, satisfies the condition of Lemma
1. Hence, this mapping is p-deadlock free.

Now assume that the number of processors in H is less
than the maximum number of nodes in an SCC of S. Hence,
for every mapping we have to assign two nodes of the SCC
to some p®. Since these two nodes depend on each other, we
can always find two nodes v* and v' mapped to p? and pj
such that v* depends on ! and 4 > j. Thus, the corresponding
mapping is not p-deadlock free. O

2) Queue Deadlock: As the previous subsection states, lim-
iting the number of queues can lead to a deadlock. We shall
now derive an expression for the minimum number of queues
required to avoid a queue deadlock (g-deadlock). We first
illustrate with an example in which the q-deadlock is induced
by a particular mapping.

Example: Consider the case when the number of S-nodes
is equal to the number of H-nodes and when there are two
SCC’s, C} and C3 in S. One node in C; depends on a node in
(5, and each processor in H has only one queue. If we have
a mapping (maybe p-deadlock free) in which any processor is
assigned with two processes, v* and v!, the mapping is not
g-deadlock free. This happens when the process v* sends a
packet to process v' (since the pseudo-processors share the
queues of the processor in which they reside).

Theorem 2: Given a problem graph S, if the number of
queues in each processor of the host architecture H is greater
than or equal to the number n of strongly connected compo-
nents in S, then a p-deadlock free mapping is also g-deadlock
free.

Proof: 1f the mapping is p-deadlock free, then any two
nodes in an SCC must be assigned to distinct processors

(Lemma 1). Hence, each SCC will have at most one process
assigned to each processor. Thus, each processor will be
allocated at most n processes for any p-deadlock free mapping.
a

There are some interesting consequences of the above
theorem. If S has only one SCC, then S is itself strongly
connected. Hence, each processor requires only one queue to
support any p-deadlock free mapping. If the number of SCC’s,
n, is equal to the number of S-nodes and the S-nodes form a
path, then by Theorem 2, n queues are required for q-deadlock
free mapping. But, a q-deadlock free mapping for such an §
can be obtained by a maximum of two queues. Hence, this
gives us a better bound on the maximum number of queues
required for any p-deadlock free mapping to be g-deadlock
free.

A procedure to evaluate a better bound on the maximum
number of queues required for any p-deadlock free mapping
to be g-deadlock free is proposed. It is not the best bound
though. For a given problem graph S, the procedure Q_min()
calculates a better bound than Theorem 2.

Definition: The maximum independent strongly connected
component set M ISC(S) in a directed graph S is a maximum
set of strongly connected components of S, i.e.,

MISC(S)={C;|1<i<n}

such that for any node v*, if v* € C;, then no node in C;,
j # i, depends on v*. The graph S’ is defined as a subgraph
obtained from S by removing all the nodes in MISC(S).

Q_min (S: problem graph): Integer;
begin ’

0 Q.min= {| MISC(S) | +Q_recurse(S )};
end

Q_recurse (S: problem graph): Integer;
begin
0If ' = ¢ then Q_recurse =| MISC(S) |;
1 If the cardinality of an SCC in MISC(S) > 1,
then Q_recurse = (| MISC(S) | +Q_recurse(S'));
else Q_recurse = (| MISC(S) | +Q_recurse(S') — 1);
end

Example: Consider the problem graph S as shown in Fig.
7(a). The maximum SCC set of S is {{n;}, {no}}. Fig. 7(b)
shows the maximum independent SCC set of S, i.c., {{ns}}.
Fig. 7(c) shows the maximum independent SCC set of S I,
ie., {{ns}, {n?,}}. Fig. 7(d) shows the maximum independent
SCC set of S, ie., {{ng}}. Since Q_recurse(S ) returns
1, Q_recurse(S ”) returns 2, and Q_recurse(S ') returns 2, the
procedure Q_min(S) returns 4. This bound on the number
of queues necessary in each node for any p-deadlock free
mapping to be q-deadlock free and derived using the procedure
Q_min() is lower than the bound derived using Theorem 2. It
can be easily seen that the bound derived using the theorem
is 6.

The correctness of the procedures Q_min and Q_recurse can
be easily established. If a node in the maximum SCC set of s
is assigned to the processor allocated to some process v*, then
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Fig. 7. TIlustrating the procedures Q_min and Q_recurse. (a) S, (b) 5,,
(©S ,and(d) S .

the recently assigned process can be executed and can send
messages to other processes only after v* is completed. Since a
process is assigned a queue only after receiving a message, the
worst case occurs when one of the nodes v* in MISC(S) is
assigned to a processor that has not been assigned any process;
and the node starts executing by sending a message to all the
nodes in the maximum SCC set of S . If any SCC, C; in
MISC(S") has more than one node, then v* may be in this
component and the other nodes in ]MISC‘(S/) can be assigned
to the processors p* that have been assigned the maximum
number of processes among all processors; otherwise, the only
node in C; cannot be used to increase the queue requirement of
the processor p*, as done in step 2 of the procedure Q_recurse.

B. Constraints in a Distributed Environment

In a general distributed computing environment, processes
will exist that cannot execute on certain processors, two
processes need to execute on the same processor, or a process
might need more than one processor at the same time to
execute. Thus, the additional constraints may be incorporated
in the mapping model:

s We define a binary exclusion matrix EM that describes
the computability of a particular task on a particular
processor. If the element (i, 7) is zero, then the process
1 cannot execute on processor j. Otherwise, the value of
the element (¢, ) is 1. This restriction could result from
several reasons. The obvious reasons include 1) the type
of computation required, and 2) the amount of memory
required.

» We define an interference matrix I M that describes the
degree of incompatibility between two processes. The
value of the element (4. j) ranges between 0 and 1. The
closer the value is to zero, the more incompatible are
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the two processes. As an example, a pair of tasks that are
both highly CPU bound will have more interference costs
than a pair in which one is CPU bound and the other is
10 bound. Adding interference costs should increase the
concurrency between the processes.

¢ We define a simultaneous matrix SM that describes the
processors needed by a process for its execution. The
processors needed simultaneously for the execution of a
process ¢ are found by checking the columns of the matrix
SM corresponding to row i, i.e., (i.j), where j ranges
for all the processors.

IV. OBIECTIVE FUNCTIONS

The mapping problem essentially involves two distinct pro-
cedures. First, we formulate an objective function to accurately
measure what we need to optimize. Then, we propose a
mapping scheme to optimize the formulated objective function.
We now discuss the various objective functions and their
evaluations.

A. Communication Overheads

Minimizing the communication overhead is especially im-
portant when mapping parallel algorithms onto parallel com-
puters [10], [2]. Chaudhary and Aggarwal [82]-[84] have
shown that the communicational complexity of certain vision
algorithms dominates the computational complexity for most
distributed memory architectures. In other words, the commu-
nication overhead increases at a rate higher than the rate of
decrease in the computation time. This leads to a decrease
in processor efficiency [85] and throughput with an increase
in the number of processors. We now propose an objective
function that minimizes the communication overhead, with a
constraint that the number of processors may be less than the
number of processes.

If the number of processes in S is more than the number
of processors in [, then by the Pigeonhole principle [86], a
processor is assigned more than one process. The processor is
split into pseudo-processors such that each process is assigned
to one pseudo-processor. In fact, more than one processor
may be split into several pseudo-processors, each with a
process assigned to it. Since any two pseudo-processors p¥
and pj’ share the same communication node, we assume that
the communication overhead for these pseudo-processors is
zero. Hence, we can take advantage of the above to reduce
the communication overhead by mapping pseudo-processors
requiring much communication among them onto the same
processor.

We use the terms defined by Lee and Aggarwal [10]. A
stage is a time interval during which the computation for a
process is carried out. A phase is a time interval during which
the communication for a problem edge is carried out. A step
is a time interval for the communication through a link. A
phase, in general, may be comprised of a set of steps if it
takes several links to realize a problem edge.

Due to precedence relationships, certain processes can ex-
ecute concurrently while others cannot. Accordingly, certain
communications can occur in the same phase while others
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need distinct phases. Hence, the set of problem edges £ can
be sorted into subsets Fj according to the phase in which
they are required, shown below:

Ep = {&1},1 <k <N, 1<j< Ly

where N, is the number of phases (subsets) and Lj is the
number of problem edges in the subset Ej. &, is to be
distinguished from the problem edge 7. A problem edge
might appear in more than one such subset, each with a
different weight associated with it. Thus, the messages required
by the process »' can only be generated and sent out by
another process v* in different phases. Also, two problem
edges from different subsets may share links in the system
without increasing the communication overhead, since they do
not need the links simultaneously. Thus, they can be treated
independently when being mapped onto the host edges. Due to
cardinality variation, the computation and communication of
messages of some of the processes has to be delayed. Hence,
the subsets Ej; are determined by the given problem graph
and the particular mapping.

Before defining the objective functions related to the com-
munication overhead, let us examine the communication over-
head of a problem edge in more detail. First, the frequency
of use of a problem edge indicates the traffic intensity along
the problem edge. The weight assigned to the problem edge
is proportional to the traffic intensity. Second, the nominal
distance between the host nodes, i.e., the shortest distance
between the host nodes, cannot be used directly. The nominal
distance D;; is the length of the shortest path between the
host nodes, p* and p'. If (pi,p') € &, ie., there is an edge
between p* and p', then the nominal distance Dj; is one or
else it is equal to the number of host edges in the shortest
path between p* and p’. Consider a case involving more than
one problem edge mapped onto a single host edge. Then, the
communication of some of the problem edges will be delayed
unless the host edge comprises an adequate number of multiple
links. Thus, the communication overhead of the problem edge
eki may be distinct from the nominal distance D; when
the problem edge e*/ is mapped onto the host edge (p*,p).
Hence, given the problem and host graphs, the communication
overhead ci; of the problem edge (p’,p') depends on the
particular mapping and the communication control parameters
of the host system. To obtain an accurate characterization
of the communication overhead, the actual communication
overhead of the problem edge should be used instead of the
nominal distance.

B. Minimizing the Schedule Length

In a heterogeneous computing environment where the com-
puting power of the individual processors can vary tremen-
dously, the computation time of the processes on various
processors will greatly influence the task performance. A very
common objective function is to minimize the schedule length
(or makespan) defined as the sum of all computations and
communications between the processes.

The computation time of every process on each processor
is represented by a computation matrix comp. Depending on

the particular mapping z, the computation time of the process
1 can be easily found from the computation matrix comp, i.e.,
if the mapping = maps the process 7 onto processor j, then the
computation time is comp(i, j). This computation time is also
represented as comp, (). The communication time between
processes ¢ and j is computed as described in the previous
section.

C. The Objective Functions

We define an objective function based on the communication
overhead ¢y; of the problem edge é; for a mapping D as
follows:

AL Ly
OF, = ; (ljnflxckj).
In OF;, some problem edges in the same subset Fj are
required simultaneously but the subsets are required in a
sequence, i.e., N. > 1 and L; > 1 for some k. There are
two special cases of OF}.

First, consider the case when L, = 1,Vk. This amounts
to sequential processing since no two problem edges are
processed in the same phase, i.e., none of the problem edges
are processed simultaneously. The objective function O F} for
this special case can be represented as follows:

Ne
()FI‘I: E Ck1-
k=1

Second, consider the case when N, = 1, i.e., all the problem
edges are processed simultaneously. This implies total paral-
lelism. The objective function OF} for this special case can
be represented as follows:

L _
OFt = max c;.
Jj=1

It is easy to see that OFP may decrease while OF}
increases.

Before we compute the objective functions, we define
certain matrix representations used. A nominal distance matrix
D represents the nominal distances in a host graph. The
element (4, j) is the nominal distance D;; for the host edge
(p'.p). An extended nominal distance matrix D’ represents
the nominal distance in an extended host graph. Note that the
nominal distances for two pseudo processors in the same host
processor are the same. Figs. 8(c) and (d) show an extended
host graph and its corresponding extended nominal distance
matrix.

An assignment matrix A describes a particular mapping.
This matrix is obtained by permuting the columns and rows
of the problem matrix according to the mapping. For example,
performing the mapping indicates that the second and third
columns and the second and third rows are exchanged. Fig.
8(e) shows the resulting assignment matrix.

A communication overhead matrix C M is obtained from the
nominal distance and assignment matrices. The element (i, )
indicates the communication overhead (denoted by c;;) of the
problem edge e* for a particular mapping. For a problem edge
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Fig. 8. Calculating the communication overhead. (a) The problem graph, (b) the problem matrix, (c) the extended host graph, (d) the extended nominal
distance matrix, (€) the assignment matrix, and (f) the communication overhead. The *s indicate that the corresponding problem edges are not used.

with a negative m;;, c;; is undefined since it is redundant. Fig.
8(f) gives the communication overhead matrix for the mapping
(1 2), where the star indicates that the corresponding problem
edge is not used. The following sections describe in detail the
procedures to evaluate c;;.

The objective function for minimizing the schedule length
is given as follows:

OF; = mrin Z comp, () + Z z Cij
i i j#i

In OFy;, the first term is the summation of the computation

times of the processes and the second term is the summation

of the communication times between these processes. The

objective is to find a mapping z that minimizes this sum. The

next section describes the evaluation of the communication
overhead.

D. Computing the Communication Overhead

The communication mode can be classified into two classes:
synchronous and asynchronous. In a synchronous mode of
communication, the steps for all the links are synchronized;
whereas in an asynchronous mode of communication, com-
munication for a problem edge can occur at any time.

1) Synchronous Communication: We calculate the commu-
nication overhead ¢,; by the following procedure:

OF _Calculate_sync (S: problem graph; D: mapping);

begin )
0 Sort E into subsets E) according to the phases when
the problem edges are used.
1 For each E; do
1.1 Ex = Ej. Assume that a problem edge &;; is
mapped onto a path between pseudo processors
p; and p;,.
1.2 For each problem edge ex; do
1.2.1 If r = s then ¢;; = 0 and delete é;
from Ej.
od
1.3 For each problem edge é;; in E; do
1.3.1 Find the nominal distance D, of the
corresponding host edge (p”, p®) by
superimposing A onto D'
1.3.2 If the length of the path in the host graph
H is greater than 1, then the path in the
host graph is divided into a sequence of
links.
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od
1.4 For each problem edge ¢i; in E}. do

1.4.1 Assign the packets to p; such that the
number of packets is equal to the weight
of the edge ¢y;.

1.4.2 Assign the data structures SOURCE,
DESTINATION, and STEP in each packet
with pj, p,, and O, respectively.

od

1.5 Repeat
1.5.1 STEP := STEP + 1
1.5.2 Move packet(s) to the next node according
to the implementation of the particular
system.
1.5.3 If a packet reaches its destination, then
Remove the packet.
If it is the last packet from the source, then
¢x; = STEP of the last packet from pj to
P
1.5.4 else add it to the queue of the current
node.
Until all the packets reach their destination.
2 Calculate the OF.
end

The decomposition of the problem edge ([1.3.2]) is deter-
mined a priori by the host’s routing parameters. The choice of
the packets to be moved ([1.5]) is determined by the routing
scheme of the particular host system. Finally, the number of
packets ([1.4.1]) and the increment ([1.5.1]) may be adjusted
according to the particular system.

The computational complexity of the procedure is domi-
nated by loop [1.5]. The number of iterations of this loop
varies with the assignment and the routing rules. The number
is bounded by | V | D, x,, computations where | V | is the
number of problem nodes, D,’n is the diameter of the extended
host graph, i.e., the maximal extended nominal distance, and
T 1S the maximum weight in a problem.

2) Asynchronous Communication: The procedure, OF_
Calculate_sync, used to evaluate the communication overhead
for the synchronous mode of communication may not give
a precise evaluation of the communication overhead for an
asynchronous mode of communication. We present another
procedure, OF_Calculate_async(), which approximates the
communication overhead for an asynchronous mode of
communication.

OF_Calculate_async (S: problem graph; D: mapping);

begin
0 Sort E into subsets F;. according to the phases when
the problem edges are used.
1 For each Ej. do
1.1 Ej, = Ej. Assume that a problem edge & is
mapped onto a path between processors p; and
Doy
1.2 For each problem edge ¢;; do
1.2.1 If r = 5 then &;; = 0 and delete ¢;; from
E;.

od
1.3 For each problem edge ¢ ; do

1.3.1 Find the nominal distance D;S of the
corresponding host edge (p”.p°) by
superimposing A onto D.

1.3.2 The communication overhead ¢;; =
7(1\-‘,'D;.S.

od

2 Calculate the OF.

end

The sorting of the problem edges in the procedure
OF_Calculate_async is carried out only when some problem
edges are distinguishable in time from others and hence can
be partitioned into different sets. Otherwise, the problem
edges will all belong to just one set. Thus, the computational
complexity of the procedure is bounded by [1.3], which is
executed | V' | times.

The procedure OF Calculate_sync gives a very accurate
evaluation of the communication overhead but is very
expensive to evaluate. Since step [1.5] in OF_Calculate_sync
simulates the routing on the target host, it is unsuitable
for very large applications. In contrast, the procedure
OF Calculate _async is easy to evaluate but is not as
accurate as OF_Calculate_sync. Thus, one can also use
OF_Calculate_async to evaluate the communication overhead
for a synchronized mode of communication when the priority
is the time for evaluation.

V. MAPPING SCHEME

Once the objective function for a particular mapping is
available, it must be optimized. This optimization of the
mapping from S to H involves two steps. We first try to
evaluate a good initial assignment, and then improve the
mapping incrementally by a modified pairwise exchange.
This approach leads more efficiently to an optimal solution,
although it does not guarantee it. First, evaluation of a good
initial assignment can save a great deal of computation in
the optimization performed later. Since we have a reasonably
good initial assignment, we could find an optimal solution
without going through an exhaustive pairwise exchange (which
requires an exponential order of computation).

A. Initial Assignment

We present a procedure which attempts to achieve a very
small value of the objective function rather than to rely on
a random initial assignment. If the mapping obtained by this
algorithm is not optimal or does not satisfy certain constraints,
we use the modified pairwise exchange method described later.
We define the communication intensity of ©* to be the sum of
the weights of all the edges incident on it. The degree of a node
v is denoted by d(v). The choice of the S-node to be assigned
is based on the communication intensity and connectivity of S
whereas the choice of the corresponding H-node is determined
by a certain measure derived from the objective function.
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Init_assign (S: problem graph; H: host graph);

begin

0V = {v* | vk € 8§}

1 Assign tasks using the exclusion matrix M.

2 Check for the interference matrix /M and the
simultaneous matrix SM.

3 Make the extended host graph G.

4 Find the process v* with the largest communication
intensity from V. In case of a tie, choose one arbi-
trarily.

5 If there are n SCC’s in S whose nodes are such that
vk depends on them, then assign v* to 7’i1+1 such
that d(p?) is as close to d(v*) as possible.

6V =V — ok

7 While | V |> 0 do

7.1 Find v' with the largest communication
intensity from the nodes adjacent to S-nodes
which are already assigned.

7.2 Assign v! to p], such that a certain measure of
the objective function is minimized and the
assignment is a feasible mapping.

73V =V -

od
end

The time complexity of the above procedure is determined
by subprocedure 7.2, which is repeated n — 1 times. This
subprocedure has a complexity of O(n*) due to the procedure
to check the feasibility of a particular mapping. Hence, the
execution of Init_assign takes O(n*) time.

B. Modified Pairwise Exchange

The procedure Init_assign does not guarantee an optimal
solution. Hence, we may use the pairwise exchange of two
problem nodes to improve the mapping. This pairwise ex-
change could be done iteratively until we exhaust all the
possibilities. Unfortunately, the method is exponential in com-
putational compicxity. Instead, we propose a modified pairwise
exchange scheme in which we consider only a selected set until
a certain criteria is satisfied. This technique is expected to give
a reasonable solution efficiently since the initial assignment
scheme reduces the search space considerably. But, there is
still a possibility that the solution is a local optima. One may
use another distinct initial assignment to get out of this local
optima if the solution is unsatisfactory. The algorithm for the
whole mapping, including the modified pairwise exchange, is
given below.

Mod_pair_xchange (S: problem graph; H: host graph);

begin
0 Init_assign(S,H);
1 Evaluate objective function.
2 If mapping is satisfactory then goto end.
3 Repeat
3.1 find v* for the exchange according to certain
measures derived from the objective function
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used.
32v¥ € {V —v"} do
3.2.1 exchange(v™, v¥) temporarily
3221f Is_feasible(S' ,H) then evaluate the
objective function.
od
3.3 Determine »* which gives the best objective
function.
3.4 If the new objective function is better than the
old objective function then exchange(v®, v*).
Until —satisfactory.
end

The complexity of the above algorithm is given by O(M x
N % F) where M is the number of iterations of the while
loop. Step 4.2 takes O(N) time and evaluating the OF takes
O(F) time.

C. Feasibility

This section proposes a procedure, Is_feasible, to check the
feasibility of a mapping and to prove its correctness.

Is_feasible (S: problem graph; G: extended host graph):
Boolean;

begin

0 Construct G = (P, E‘). For any two processes v
and v' which are mapped to p! and p;, if there is an
edge from v¥ to v in S (or r = s Ai < j) then there

is an edge (p{,pj) € E.

Compute the adjacency matrix G, of G.

2 Compute the transitive closure G of G,.

3 Vp', if there is an edge (p},p}) € E and if the item
of G< in row P} and column p} has a path from p}
to p! in G then Is_feasible = false. Goto end.

4 Is_feasible = true.

k

—_

end

The complexity of Is_feasible is O(n?), which is essentially
the complexity of computing the transitive closure in step 3.
The correctness of Is_feasible can be easily shown using the
previous lemmas and theorems.

1) The Correctness of Feasibility: By Lemma 1, if a map-
ping is not p-deadlock free, we can find a list of S-nodes vk,
ok2, o ke plt vl mapped to pyl, piZ, - i,
P2, P prn il respectively, such that v*5 depends on
o' and t; > 7;,1 < j < m. Hence, we can find a cycle
[):{w:j»:::]l’ P::, pf.ﬁ, pi?’ pi;" T pi:’ pf{::i:} in G and thus
step 4 returns Is_feasible = false.

Conversely, if step 4 returns Is_feasible = false, then a cycle
K in G exists. A series of continuous nodes in K, péll , p;-i,- o
=in 1 < j2,< 0 < Jn
and if it is maximal. In the above sequence, p;‘l is the initial

py is a sequence if iy = iy = -

node and p;.“ is the terminal node. K can be expressed as a
series of sequences K, Ko, ---, K,, whose initial nodes are

pils piZ, - pir and whose terminal nodes are p;, pil,- -,
pr" 21, This list of pseudo processors forming K violates
Lemma 1. Thus, the mapping is infeasible. g
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Fig. 9. 4-node and 8-node hypercubes as host graphs.

VI. IMPLEMENTATION RESULTS

The mapping scheme was tested using several synthetic
problem graphs and host graphs, and also on a real-time stereo
in a distributed environment. The synthetic examples were a
simulation of real situation problems and hosts. The next two
sections summarize the results of both these implementations.

A. Simulation

To compare our strategy with previous strategies we applied
the mapping scheme on the problem graphs used by Lee and
Aggarwal [10]. We used 4-node and 8-node hypercubes to
introduce the cardinality variation which is not dealt in [10].
Fig. 9 illustrates the host graphs used for the simulation. The
use of hypercubes trivializes the evaluation of the shortest
path in the host graph. We evaluate the shortest path by
complementing the less significant bit first. It is also assumed
that each link of the host can independently send or receive
messages.

The problem graphs considered [10] arc those that would
appear in real applications. A synchronous mode of com-
munication is assumed. The problem graphs for the 4-node
and 8-node host graphs arc given in Fig. 10 and Fig. 11,
respectively. The weight for each edge is given and the number
within the parenthesis indicates the phase in which the edge
is required. The computational requirement at each node in
the problem graph is the same, and so is the computability of
each node in the host graph. Thus, these examples do not fully
exploit the generality of the mapping scheme but are used for
COmPpaArison.

The examples considered here do not have any constraints
involved. Furthermore, the uniformity of the computational
requirement of the problem nodes and the computability of the
host nodes leads to the splitting of each host processor into
two pseudo-processors. Thus, the modified pairwise exchange
involves only the changes of assignments of the processes onto
the pseudo-processors. There is no change in the extended host
graph. Fig. 12 gives an example of the extended host graph
for the first set problem nodes and the 4-node host graph.

The mappings were tested with the objective function as
OFy. The implementations exactly follow the procedures
explained earlier. The results are tabulated in Tables 1 and
Il for the 4-node host and in Tables Il and IV for the 8-
node host. The number of iterations in the modified pairwise
exchange procedure is represented by N. The results obtained
indicate that the proposed mapping strategy takes care of
both the cardinality variation and the topological variation.
The objective functions and the number of iterations in the
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Fig. 10.

modified pairwise exchange indicate that our strategy works
well and gives near optimal results (if not optimal in most
cases).

B. Real-Time Stereo

To further evaluate the mapping scheme, a significantly
large problem was considered to be mapped in a distributed
environment with several constraints. The problem was to
determine the three-dimensional position of object points in
a scene using a stereo algorithm [87].

The stereo algorithm was split into processes as shown in
Fig. 13. This splitting into processes was done arbitrarily.
However, the processes are logically independent and data
dependence between the processes is very streamlined. The
processes are implemented in C and Fortran. Two CCD
cameras are used to input the stereo images. Since we use only
one frame grabber the images are extracted in three steps: first
the camera grabs the left image; then it snaps the image and,;
finally it saves the image. This is repeated for the right camera.
The left and right images are then processed independently.
This processing involves low level image processing. It is
tollowed by matching the left and right processed images
to determine the three-dimensional position of object points
in a scene. The low level processing involves convolution
with a Laplacian filter (LPCN) followed by extracting zero-
crossings (EDGE) and thresholding these edges (TEDGE). The
left and right images are displayed before and after the low
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Fig. 12. An example of the extended host graph for the 4-node host graph.

level processing (DISPLAY processes). After independently
processing the left and right images, they are matched using a
relaxation algorithm (RELAXATION). The final diparity map
is then displayed. The images are gray level images of size
256x256. Thus, the communication volume of every edge
(except the edge between RELAXATION and DISPLAYS) in
the problem graph is 256 Kbits. The communication volume
between RELAXATION and DISPLAYS is 512 Kbits. All the
DISPLAY processes take approximately 1.8 s.

The distributed environments (Fig. 14) are comprised of
four processors connected in two different ways. ZEUS is a
Sun 4 capable of 10 MIPS and 1 MFLOPS. TOMIR is an
IBM RT/PC II with 4.4 MIPS and 1 MFLOPS. AMAZON is
an IBM RS/6000 (520) with 27.5 MIPS and 7.4 MFLOPS.
GANGES is an IBM RS/6000 (530) with 34.5 MIPS and
10.9 MFLOPS. The interconnection between them as shown
in Fig. 14 is via Ethernet at 10 MB/s. There are certain
constraints introduced in the mapping. The processes GRAB,
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TABLE 1
INITIAL ASSIGNMENTS FOR THE 4-NODE HoST

S Initial Mapping OF,

40,0 ,1 1,2 ,,2 .3 .3
Po Py Pg Py Py PY PO Pi

S5 (12560347)
S5 (01243657)
Sy (25013476)
Sy (25013476)
Ss 01275346)
Sa 02751346)

o= 9

&~

TABLE 11
FINAL ASSIGNMENTS FOR THE 4-NobpE HosT
AFTER MODIFIED PAIRWISE EXCHANGE

S Modified Pairwise Exchange
pg 1y pg piopg 13 v p

OF, N

S (12560347) 2 0
S, 01243657 1 0
Sy (21053476)
Sa (53604271)
S5 (41270356)
Sg (12450376)

R L S )

TABLE 111
INITIAL ASSIGNMENTS FOR THE 8-NODE HosT

S Initial Mapping o
2§ P9 vy b1 Pg B3 P Y e 01 PSP 06 1Y A

OF,

S~ (569101213144781103 1215)
Ss (011393210751141468 15 12)
Sy (021091261173 14135814 15)
Sio 021091261173 141358 14 15)

[ NS N

TABLE 1V
FINAL ASSIGNMENTS FOR THE 8-NoDk Hosr
AFTER MODIFIED PAIRWISE EXCHANGE

SNAP

DISPLAYY

° DISPLAY 3
ol
() =
° TEDGE
° DISPLAY 4
o RELAXATION

o DISPLAY 5

The stereo problem graph. The processes within the dotted lines
indicate constraints.

DISPLAY 2

Fig. (3.

TABLE V
THE COMPUTATION TIMES IN SECONDS OF THE VARIOUS
CESSES ON THE  PROCESSORS. THE ROWS INDICATE THE
SSORS AND THE COLUMNS INDICATE THE PROCESSES

S Modified Pairwise Exchange ~
P Y Py i P PT PG P PG P PG BT DG PSP D

OF, N

S (5691012131447811031215)
S 0179321013511414681512)
So 9110212811370613541415)
Sio (1210912611730413581415)

(S v ]

£ W
—_tn —

SNAP, and SAVE can only be done on ZEUS (since the
frame grabber is in ZEUS). DISPLAYS is done only on
TOMIJR. RELAXATION is executed only on TOMIJR for
the first distributed environment [Fig. 14(a)]. Finally, none
of the processes other than GRAB, SNAP, and SAVE can
be executed on ZEUS. The computation times of the various
processes on the processors are given in Table V.

The mapping for the first distributed environment starts
with the assignment of tasks using the exclusion matrix. The
initial assignment included GRAB, SNAP, and SAVE mapped
onto ZEUS and RELAXATION and DISPLAY5 mapped onto
TOMIR. Since no other process can be mapped onto ZEUS,
the remaining 10 processes need to be mapped onto TOMIJR,

5 6 7 13 14 15 17

0.1 0.07 0.08 0.1 0.07 0.08 2.2
0.07 0.08 0.11 0.07 0.08 2.4
0.72 0.85 0.94 0.72 0.85 6.9

oo —

GANGES, and AMAZON. Because of the relative compu-
tational powers of TOMJR, AMAZON, and GANGES the
extended host graph formed is as shown in Fig. 15. Fig. 15 also
gives the mapping of the processes onto the pseudo-processors.
Fig. 16 gives the mapping of the processes onto the processors
for the first distributed environment.

The mapping for the second distributed environment is
similar to the first distributed environment except that RE-
LAXATION is not constrained to be executed on TOMJR.
Moreover, GANGES and AMAZON can communicate with
each other. Fig. 17 shows the extended host graph and the
mappings of processes onto pseudo-processors. Note that
GANGES has the largest number of pseudo processors since it
is computationally the most powerful machine. Fig. 18 gives
the mapping of the processes onto the processors for the
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ZEUS AMAZON

GANGES TOMJR
(a)

343

ZEUS AMAZON

GANGES TOMJR

(b)

Fig. 14. (a) The first distributed environment and (b) the second distributed environment.

AMAZON

ZEUS

\ TOMJR

GANGES

Fig. 15. The extended host graph with the processes mapped onto the pseudo-processors for the first distributed environment.

second distributed environment. In both examples of the dis-
tributed environments, no pairwise exchange was performed.

Both these mappings were implemented using OF, on the
respective distributed environments and real-time stereo was
achieved.

VII. TRAFFIC SCHEDULING

Having done the mapping of processors onto the pseudo
processors to optimize certain objective functions, the traffic
splitting ability of the communication node (packet switching)
can be used to optimize the traffic volume through the phys-
ical links by using different routes. By routing traffic along
different paths, the total traffic volume can be increased to
maximize the network throughput. When determining traffic
paths, both traffic volume and delay must be considered. We
shall assume that the network delay due to the transfer of
messages is negligible in comparison to the actual time of
transfer of the messages [54].

We start with sorting the pseudo processors into subsets
according to the phase in which they communicate, as shown

Fig. 16.

ZEUS

AMAZON

¢
\J

The final mapping of the processes onto the processors for the first
distributed environment.
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AMAZON
12 13 14 15 16
ZEUS / TOMJR
——
13 ——— 18
2-11 %
4 5 6 7 8 7
GANGES

Fig. 17. The extended host graph with the processes mapped 7 onto the pseudo-processors for the second distributed environment.

below:
Po={pi} 1<k <N, 1<j< Ly

where N, is the number of phases (subsets) and L; is the
number of pseudo processors in the subset Pj that commu-
nicates with other pseudo processors in the same subset Pj.
7y is to be distinguished from the pseudo processor pj. The
communication volume for each pair of pseudo processors in
the same phase is known. The purpose of traffic scheduling is
to maximize the total network traffic.

Optimal traffic scheduling can be obtained by optimizing
the traffic schedule for each phase. Consider the case where
a pseudo processor ;17};1 = p;" communicates with a pseudo
processor ﬁfw = pg- This creates two possibilities:

1) If m = r, then the pseudo processors p;"* and p) share
the same communication node. Thus, the communication
cost between them can be ignored.

2) If m # r, then the communication of the message from
17};1 to ﬁiz will use some path from the processor p,, to
the processor p, in the host graph.

Thus, for each phase k, a multiple commodity flow network
problem can be generated. The flow volume between proces-
sors p™ and p” is equal to the communication flow between the
pseudo processors pi* and py. The multiple commodity flow
network problem can be solved by the interprocessor traffic
scheduling algorithm proposed by Bianchini and Shen [54].

VIII. CONCLUSION

A generalized mapping scheme for a distributed computing
environment is proposed. The proposed strategy uses the
knowledge from the given algorithm and the given architecture
to guide the mapping. The concept of pseudo processors can
help us understand and describe the feasibility of a mapping,
p-deadlock, and q-deadlock. An accurate characterization of
the communication overhead is used as our objective function
to evaluate the optimality of the mapping. The two level

TOMJR

GANGES

Fig. 18. The final mapping of the processes onto the processors for the

second distributed environment.

optimization schemes described here illustrate the use of
pseudo processors in reducing the communication overhead
for a generalized system.

The proposed scheme is a substantial advancement in scope
over the current state-of-the-art. Conditions are derived to
prevent deadlock and to check the feasibility of the mapping.
The mapping model is very general and can incorporate almost
every practical constraint. A two level mapping optimization
technique is used to arrive at extremely good results. The key
difference between our strategy and those proposed previously
is the interdependence between the algorithm and the archi-
tecture. We use the knowledge from the given algorithm and
the given architecture to guide the mapping.

The proposed strategy was tested in both a simulated
environment and a real distributed environment. The results
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achieved in both implementations indicate the efficacy of the
proposed mapping scheme.
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