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Abstract — A set of directed permutation graphs called rotator
graphs were proposed as an alternative to the star and pancake graphs
for multiprocessor interconnection networks. The rotator graphs have
a smaller diameter than star and pancake graphs for the same num-
ber of nodes, while sharing the properties of star, pancake, and bina-
ry hypercubes like maximal fault tolerance, partitionability, etc. In
this paper we develop a class of algorithms for recognizing undirected
mesh structures in n-rotator graphs. The average dilation of the em-
beddings are very low as compared to the dilation of the embedding.
These embeddings will be very useful for regular computations with
bi-directional requirements, in addition to the irregular computations
in n-rotator graphs. Most of the results presented here equally apply
to another set of directed Cayley graphs, the cycle prefix digraphs.

INTRODUCTION

In recent years the symmetric Cayley graphs as possible interconnec-
tion nectworks have been studied by many researchers {1, 2, 3, 4, 5).
Many Cayley graphs have been introduced in recent years [1, 5, 6, 7].
These Cayley graphs are maximally fault-tolerant and have simple
routing algorithms (2, 8, 9, 6]. Most of the proposed Cayley inter-
connection networks are undirected graphs. However, few directed
Cayley interconnection networks have also been proposed recently duc
to their practical importance. Some of the advantages of the directed
interconnections are their ease to construct and faster communication
[10, 11, 12]. The comparative performance analysis of the directed
Manhattan Street Network (MSN) and bi-directional mesh connected
(2D-Torus) network by Chung and Agrawal [13] shows similarities in
performance of MSN and mesh, while the MSN is cost-effective. Due
to the practical importance of the directed communication links, the
uni-directional versions of several well studied undirected interconnec-
tion networks like the Star graph |14}, the Hypercube [12], and meshes
[15] have also been proposed and analyzed.

Real world applications present a variety of communication re-
quirements like regular communication patterns (sorting, searching),
irregular communication patterns (computer vision, artificial intelli-
gence), all-to-all communication (direct n-body computation, matrix-
vector multiplication) [16], one way communication patterns (one-way
cellular automata-OCA) [11], etc. Directed graph models have been
used for many scientific and engineering applications like neural net-
works {17]. On the other hand, the computational requirements of
most of the parallel algorithms for regular applications often lead to
the exchange of information between adjacent processing elements and
communication between neighboring processors. Also, many existing
algorithms were designed with the assumption of the availability of a
shortest bi-directional link between the processing elcments. A general
purpose interconnection network should efficiently emulate both regu-
lar and irregular communication patterns. Embedding algorithms for
the star interconnection network have been studied by many authors
(18, 19, 20].

The n-rotator graph as an alternative to star and pancake graphs
was introduced by Corbett {2]. The rotator graphs are a class of direct-
ed interconnection networks. The n-rotator graph has n! nodes and
each vertex is represented by a unique permutation of » symbols. The
generators of the n-rotator graphs are of the form (a1,az,aa,.....,qa;,
Qi1 sak) — (62,83, ey G4, G1,ig 1, . ,ag) where 1 < i < k.
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The cycle prefix symmetric networks introduced by Faber, Moore,
and Chen [21, 7] were similarly defined. A simple and optimal routing
algorithm for n-rotator graphs is given by Corbett [2]. The diameter
and average diameter of the n-rotator graph are lower than that of
star and pancake graphs. The star graph and the rotator graph have
degree of (n — 1), but the average diameter of n-rotator converges
rapidly as compared to the star graph. A comparison of the diameter
and the average diameter of star, pancake, hypercube, and n-rotator
is given by Corbett [10]. The hierarchical and cyclic structure of the
n-rotator graph can be used in applications like fast Fourier transforms
[22], sorting [23], load balancing, broadcasting, personalized commu-
nication [24, 16], etc.

Unlike the star graph which has only even cycles, the n-rotator
graph has both odd and even cycles [25]. However. not all genera-
tors are immediately reversible in n-rotator graphs. In an attempt to
gencralize the proposed n-rotator graphs and to solve the conflicting
requirements of the nature of computations and the implementation
constraints we propose embeddings of undirected nctworks on directed
permutation graphs. We develop a class of algorithms for embedding
meshes on n-rotator graphs.

The rest of the paper is organized as follows. In section two we
present the definitions to be used in the paper. Section three gives
the embedding algorithms for mapping two dimensional meshes on n-
rotator graphs. Section four concludes the paper with directives of
future research.

DEFINITIONS

Definition 1 A set of interconnected processors with directed edges is
denoted as R, and o set of processors with undirected edges is denoled
as G. The vertices and edges in G are denoted by V(G) and E;,(G)
respectively, where g ,(G) is the undirected edge between z and y. The
vertices and edges of R are denoted by V(R) and {Ezy(R), By x(R)}
respectively, where éz,,,(R) denotes the directed edge from the wvertez
T to the vertez y.

Definition 2 The directed path from vertez z to vertez y is denoted by
Ef:u(R), where the path P may contain one or more than one directed
edges, and an undirected path form vertez z to y can be denoted by
EP (R).

=,y

Definition 3 The n-rotator graph has n! vertices and each vertez is
represented by o unigue permutation of n distinct symbols 1,2,3,...n.
The generators are of  the form (a1,a2,a3, ....., a;
2 @it 1y ey @) = (32,83, .00, 4,81, Gig1y ey ak) where 1 < & < k.
An n-rotator graph has n disjoint (n -1)-rotator graphs, i.e., the (n
-1)-rotator graphs are the subgraphs of the n-rotator graph.

Figure 1 illustrates the 4-rotator graph. It consists of four 3-
rotators. The undirected edges are denoted by bold lines and the
directed links are denoted by lines with arrows. The undirccted edges
are due to the reversible generators. In Fig. 1, the 24 nodes are
represented by permutations of four symbols 1, 2, 3, and 4. The
alphabets are used to denote the directed links which connect the
subrotators. Each one of the 24 nodes is associated with an alphabet
in addition to the permutations. For example, the alphabet associated
with the vertex 1234 is a, where a(0) denotes the directed link which
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originates from the node represented by a, i.e., 1234. The symbol
j(i) denotes that the input node to the vertex 1234 is from the vertex
which is represented by the alphabet j, i.e., 4123.

x(0) w(o)

Figure 1: {-rotator Graph

Definition 4 The action of the generaiors in the n-rotator graph is a
rotation of length £, where 2 < £ < n. The permutation azaaay......aza1
agy1...-Gn 38 obtained from the node aiaaas....... agayyy.....an after ap-
plying a rotation of length £ or equivalenily, the generator g;_,.

In Fig. 1, the node 4123 is obtained after a rotation of length 4
(g3) applied to the node 3412. Similarly, a rotation of length 3 applied
to node 4123 would result in 1243. Clearly all the generators are not
reversible, i.e., a rotation of length four applied to 4123 would not
result in 3412, though a rotation of length four applied to 3412 would
result in 4123.

Definition 5 An embedding e of an undirecied graph G in a directed
graph R is the mapping of the vertices V(G) into the vertices V(R)
and of edges E 4 (G) into the directed path E":z’)_g(")(R). An embedding
always ezisis when R is connected and |R| > |G|. The embedding is
said to have a dilation j, where

. BP
i= 2o (B )

Definition 8 Two nodes z and y are said to be ot bi-distance I, where

op  ap
l= T#(Eiw Eye)-

For example, the bi-distance between the nodes 4321 and 3241 in Fig.
1 is two. Here |E{521,3,41| =1and |E£41,4321| = 2. The bi-distance

between the nodes 4321 and 3421 is one as |E£21,M2,| = |E‘:f421,4321| =
1. Similarly, the bi-distance between the nodes 4321 and 2314 is three
as |E£421,2314| =2 and IE'fau,Aan‘ =3

Definition 7 A directed graph is said to have o bi-diameter d;, if the
mazimum shoriest bi-distance between any pair of vertices in the graph

is dy.

Definitiont 8 An n-rotator is represenied by the permutations of 1,2,.
weeeret symbols. The n-rotator kas n (n — 1)-rotators, and each (n
- 1)-rotator has (n - 1)! nodes of permutations with a symbol k =
1,2,c0uunenn ,n fized at the last position. The (n - 1)-rotator with o fized
k is called the k-fized-rotator. It is obvious that all (n — 1) k-fized-
rotators for k' =1 to n, are isomorphic to the (n — 1)-rotator.

In Fig. 1, all the permutations end with the symbol 4 in the
last position, i.e., 1234, 2134, 2314, 3214, 3124, and 1324 form the 4-
fixed-rotator. Similarly, all the nodes with 3 in the last position form
3-fixed-rotator, etc.

Corollary 1 The bi-distance between two nodes A = a;0,........ Qi1
vieeeniGy 00d B = bibs........ Dl g1 vennes a,, 8 al most k - 1, where
A102.eeenns ak and bi1by

veeree.G) G7€ the permutations of a group of k numbers, where 0 < k < n
and the tails of the permutations i.e. agyy,...... an, where0 < n—k < n,
are the same in both the permutations A and B.

Proof: The tails of the permutations A and B are the same. Thus,
by definition, A and B are the vertices of a k subrotator. It is known
that the diameter of an n-rotator is (n —1). Therefore, the diameter
of the k-subrotator is k — 1. The k-subrotator is isomorphic to the
n-rotator.

Theorem 1 The minimum bi-distance from any node of a (n-1) sub-
rotaior to a node from the other (n-1), (n-1) subrotators of an n-
rotator graph is [n/2].

Proof: The n-rotator graph with the permutation aja;........ an has n
subrotator graphs of size n — 1, each of them have (n - 1)! nodes with
fixed a, = k, where k = 1,2,........... ,n. The nodes with a fixed a,,
i.e., the nodes within an (n-1) subrotator can have bi-distances from
1 to (n-2). However, the minimum number of rotations required to
reach a node with a different fixed (ax) and come back to the original
node is exactly n. For example, if a rotation of length n is applied
initially, to come back to the original vertex it requires (n—1) rotations,
which makes the bi-distance (n —1). However, to find the optimal bi-
distance between the nodes of two different subrotators we first apply
n/2 rotations if n is even, or [n/2] or |n/2] rotations if n is odd.
Obviously we need n—n/2 (= n/2) or n—[n/2] (= [n/2]) or n—|n/2]
(= [n/2]) rotations to come back to the original vertex. This makes
the shortest bi-distance between any node of an (n-1) subrotator and
a set of nodes of other subrotators to be [n/2].

EMBEDDING ALGORITHMS

Theorem 2 The optimal embedding of a mesh in an n-rotator has a
dilation [n/2].

Proof: This theorem is proved by showing that none of the nodes out-
side an (n-1) subrotator can be reached in [n/2] bi-distance {Theorem
1]. For a j — dilation embedding to exist, at least one node in any
of the (n —1) (n — 1)-subrotators should be at a bi-distance within
j from any node of a (n-1)-subrotator. By theorem 1, the minimum
bi-distance between any nodes of an (n — 1)-subrotator and the rest
of the n-rotator graph is [n/2]. Therefore, the optimal embedding
of a mesh or any other undirected graph on an n-rotator will have a
dilation of [n/2].

Corollary 2 It is not possible to get a constant dilation embedding of
meshs in n-rotaior graphs.

Proof: By constant dilation embedding, we mean that an embedding
with dilation k, where & is independent of the size of the n-rotator
n. The proof of this corollary follows the proof of theorems 1 and
2. It has been shown clearly that the dilation of the enibeddings is
dependent on n.

Corollary 3 There iz no dilation 1 embedding of a mesh in an n-
rotator graph forn > 2.

Proof: This can be proved by showing that none of the nodes in an
n-rotator graph have more than one node which are at bi-distance 1
for n > 3. Only the 2-rotator graph has a neighbor at bi-distance 1 as
the generator is reversible.
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[n/2] Dilation Embeddings

Since the lowest possible dilation embedding of a mesh on an n-rotator
is [»/2], we give algorithms for dilation [n/2] embeddings. The con-
cept of the embedding is that in n-rotator graphs some nodes can
be arranged as parallel paths with a ladder like structure. The two
columns of the ladder belongs to two different subrotators and the
bi-directional distance between the nodes of the ladder is [n/2]. It
is possible to maintain the condition that the [n/2] embeddings re-
sulting in nodes which need {n/2] steps in one direction and very few
steps i.e., one in the other direction, i.e., the average dilation of the
embeddings are low as compared to the dilation of the embedding.
The higher dilation is due to the directed nature of the n-rotator and
the action of the generators.

Theorem 3 Two dimensional meshes of size 2 x % can be embedded
in an n-rolator with ezpansion 1 and optimal dilation 5 for even values

of n.

Proof: It is clear from theorem 1 that every node from a (% +1)-
subrotator will have exactly one node at bi-distance % in other 3 +1
subrotators of the same n-rotator graph. Therefore, there are (3 +1)!
nodes, which could be reached at bi-distance 3 from this subrotator.
It should be noted that exactly two nodes out of (% +1)! nodes belong
to the same (% 4 1)-subrotator. In an (3 +1)-subrotator the last § —1
symbols are already sorted. Therefore, the same symbols should also
be in sorted order in the source nodes, i.e., in the source node the
symbols a(342)---0n and a...az should be in sorted order. Then,
the two symbols left are a1 and a(z41), which could only form two
different combinations. By embedding all the nodes of various (3 +1)-

subrotators, it is possible to achieve dilation 3.

Table 1 shows the embedding of a 2 x 12 mesh on the 4-rotator
graph with dilation 2.

TaBLE 1
DILATION 2 EMBEDDING OF 2 x 12 MESH
IN AN 4-ROTATOR GRAPH

mesh | rotator | mesh | rotator
(A1) | 3124 | (7,1) | 1342
(2,1) | 1234 | (8,1) | 3412
(3,1) | 2314 | (9,1) | 4132
(1,2) | 2134 | (7,2) | 4312
(2,2) | 3214 | (8,2) 1432
(3,2) | 1324 | (9,2) | 4123
(4,1) | 1423 | (10,1) | 3241
(5,1) | 2143 | (11,1) | 4321
(6,1) | 4213 | (12,1) | 2431
(4,2) | 2413 | (10,2) | 4231
(5,2) | 4123 | (11,2) | 2341
(6,2) | 1243 | (12,2) | 3421

Theorem 4 A mesh of size | x m can be embedded in an n-rotator
with optimal dilation [n/2], where | < 3(n — 1) and m > [M],
for odd values of n.

Proof: It is known that the minimum bi-distance between a set of
nodes of a ([n/2]+1)-subrotator and a set of nodes of another ([n/2]+
1)-subrotator is [n/2]. Tt can be observed from the definitions and
the directed nature of the n-rotator graph that the mesh structure
can be realized only by identifying the parallel set of nodes between
subrotators of different sizes. Therefore, in order to find a mapping of a
two dimensional mesh on an n-rotator, it is required to find the number
of nodes at bi-distance [n/2] from a set of nodes of one subrotator.
Once this set of nodes are found, it is required to find the group of
nodes from this set, which are at bi-distance [n/2] and belong to

25341 25431 o) 45321 24531 43521 34521 23541

33421 154321 ¥5231 R2541 152341 4351 142351

52431 154231 42531 {53241 43251 134251 132451 135241

192 hsgp sz bsisn

4512 145312 135412 114532 115430 113542 153142 M3152

31452 134152 2 141532

53412 54312 151342 {15342 |14352 113452 1352 _KM3512

12453 12543 la2s13 42153 Is2143 45213 115243 51043

24513 |25413 J41523 145123 121543 143 41253

54213 2413 51423 123 114253 121453 15423 has23

13254 113524 R3514 123154 B3214 153124 b2314 125314

51324 152134 125134 151234 112354 P1354 B1254 J32154

35214 B2514 B1s24 35124 115234 P1534 112534 115324

14235 114325 124315 P4135 LEJ_M_BE.LLBMS

2315 W3215 31425 13425 112435 112345 131245 [13245

41325 W3125 2135 132145 J23145 1435 21345 {41235

Figure 2: Dilation 3 embedding of an 8 x 15 mesh in 5-rotator

another [n/2] subrotator. It is obvious that all the nodes within the
[n/2] subrotator satisfy the condition, i.e., the nodes can be arranged
in two rows of nodes with @éﬂ)—! nodes each (with dilation [n/2]).

However, it is not possible to obtain another set of ﬂﬁzm-)—' nodes from
the rest of the subrotators which are at bi-distance [n/2] from these
nodes and among themselves.

Consider a vertex represented by a3a383....8[n/2][n/2]+1-+-Gn- Ac
cording to our definitions, all the nodes within bi-distance [n/2] +1,
also belong to the n-fixed-rotator. It is required to identify the set
of nodes satisfying the above conditions. We define a ladder as t-
wo sets of nodes from two different ([n/2] + 1)-subrotators that can
be arranged like a ladder with [n/2] bi-distance. The ladders are
of the type p1g:1P2G2......gz, Where ¢;piy1 form the ladder(i + 1) and
{g; Npit1} = 0. Here the symbols p and ¢ represcnt different sets of
nodes belong to different subrotators. The maximum possible length
of these ladders is one important factor in deciding the size of the mesh
that could be embedded on an n-rotator. Since the last /2] —1 sym-
bols of all the nodes in any [n/2]+1 subrotator are the same, and they
form one side of the ladder the nodes in the next side of the ladder
must have these /2] —1 symbols from the previous subrotator in the
same order, in addition to the [n/2] — 1 last symbols of the next sub-
rotator. Therefore, there are only three symbols left after subtracting
2x (|n/2| — 1) from n for odd values of n. These three symbols along
with the |n/2| symbols can form 6]n/2] possible combinations. Since
6|n/2] is the same as 3(n — 1) for odd values of n the size of the mesh
which could be embedded with this dilation is 3(n — 1) x 5('%—1-5

The value of z = T’V%l[ﬁ is the number of distinct ([n/2] + 1)-

subrotators. The subrotators can be arranged in the order of ([n/;J!A )
non-repetitive permutations first and so on. All the permutations be-
tween a p side of the ladder and the adjacent g side of the ladder belong
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to the same ([n/2] + 1)-subrotator and hence the bi-distance between
any of the nodes is always [n/2], which is the same as 23 for odd
values of n. The selection of the adjacent ([n/2] + 1)-subrotator is
also important for this embedding. It is required to arrange the sub-
rotators so that the last /2] —1 symbols in two adjacent subrotators

are distinct.

The ladder(i) as defined above can be arranged at positions 0, k, 2k,
3k.....zk, for a mapping of an ! x m mesh on an n-rotator, where

()
k2 3(nz— 1)

,zk=m,z= I:Lx!ﬁ and n! should be a multiple of k.

A mapping of 8 x 15 mesh on a 5-rotator with dilation three using
the above algorithm is given in Fig. 2.

The following embeddings are trivial. A 2-dilation embedding of a
mesh on an n-rotator is trivial because the value of [n/2] is the same
as the bi-diameter n — 1. Same is the case in [n/2] + 1 (4) dilation
embedding of a mesh on a 4 and 5-rotators.

Similar algorithms can be used for even values of n with dilation
n/2+1, and for odd values of n with higher dilations for various related
networks. The average dilation of the embeddings can be kept very
low.

CONCLUSION

In this paper the embedding characteristics of the recently proposed
directed n-rotator graph have been analyzed. Optimal embedding al-
gorithms for both odd and even values of n are given. Since the dila-
tion of the embedding is dependent on the parameter n, the dilation
increases with the value of n. However, the work preserving properties
and the communication cost of these embeddings remain to be inves-
tigated. The extension of this algorithm for multi-dimensional meshes
and higher expansion embeddings can also be investigated. Future
work include the extension of this embedding techniques to multidi-
mensional meshes and evaluating the complexity of mesh algorithms
like meshsort, etc.
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