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Abstract - A set of directed permutation graphs called rotator 
graphs were proposed as an alternative to the star and pancake graphs 
for multiprocessor interconnection networks. The rotator graphs have 
a smaller diameter than star and pancake graphs for the same num- 
ber of nodes. while sharing the properties of star, pancake, and bina- 
ry hypercubes like maximal fault tolerance, partitionability, etc. In 
this paper we develop a class of algorithms for recognizing undirected 
mesh structures in n-rotator graphs. The average dilation of the em- 
beddings are very low as compared to the dilation of the embedding. 
These embeddings will he very useful for regular computations with 
bi-directional requirements, in addition to the irregular computations 
in n-rotator graphs. Most of the results presented here equally apply 
to another set of directed Cayley graphs, the cycle prefix digraphs. 

INTRODUCTION 
In recent years the symmetric Cayley graphs as possible interconnec- 
tion networks have been studied by many researchers [l ,  2,  3, 4,  51. 
Many Cayley graphs have been introduced in recent years 11, 5! 6, 71. 
These Cayley graphs are maximally fault-tolerant and have simple 
routing algorit,hms [2, 8, 9, 61. Most of the proposed Cayley inter- 
connection networks are undirected graphs. However: few directed 
Cayiey interconnection networks have also been proposed recently due 
to t,heir practical importance. Some of the advantages of the directed 
interconnections are their ease to construct and fast,er communication 
[lo, 11: 121. The comparative performance analysis of the directed 
Manhattan Street Network (MSN) and bi-directional mesh connected 
(2D-Torus) net,work by Chung and Agrawal [13] shows similarities in 
performance of MSN and mesh, while the MSN is cost-effective. Due 
to the practical importance of the directed communication links? the 
uni-directional versions of several well studied undirected interconnec- 
tion networks iike the Star graph 11 t ] .  the Hypercube [12]: and meshes 
[15] have also been proposed and analyzed. 

Real world applications present a variety of communication re- 
quirements like regular communication patterns (sorting, searching), 
irregular communication patterns [computer vision, artificial intelli- 
gence), all-to-all communication (direct n-body computation, matrix- 
vector multiplication) [l6], one way communication patterns (one-way 
cellular automata-OCA) [ l l ] :  etc. Directed graph models have been 
used for many scientific and engineering applications like neural net- 
works [17]. On the other hand, the computational requirements of 
most of t,he parallel algorithms for regular applications often lead to 
the exchange of information between adjacent processing elements and 
Communication between neighboring processors. Also, many existing 
algorithms were designed with the assumption of the availability of a 
shortest bi-directional link between the processing elements. A general 
purpose interconnection network should efficiently emulate both regu- 
lar and irregular communication patterns. Embedding algorithms for 
the star interconnection network have been studied by many authors 
[18! 19: 201. 

The n-rotator graph as an alternative to star and pancake graphs 
was introduced by Corbett [2]. The rotator graphs are a class of direct- 
ed interconnection networks. The n-rotator graph has n! nodes and 
each vertex is represented by a unique permutation of n symbols. The 
generators of the n-rotator graphs are of the form (al, a2,a3, ....., a,, 

a,+l, ... ..., ak) - (az, a3, ....., ai, a l ,  a,+l, ......, Q k )  where 1 < i 5 k. 
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The cycle prefix symmetric networks introduced by Faber, Moore, 
and Chen [21, 71 were similarly defined A simple and optimal routing 
algorithm for n-rotator graphs is given by Corbett [2]. The diameter 
and average diameter of the n-rotator graph are lower than that of 
star and pancake graphs. The star graph and the rotator graph have 
degree of (n - l ) ,  but the average diameter of n-rotator converges 
rapidly as compared to the star graph. A comparison of the diameter 
and the average diameter of star, pancake, hypercube, and n-rotator 
is given by Corbett [IO]. The hierarchical and cyclic structure of the 
n-rotator graph can be used in applications like fast Fclurier transforms 
[22], sorting [23]. load balancing. broadcasting. personalized commu- 
nication [24, 161. etc. 

Unlike the star graph which has only even cyclts, the n rotator 
graph has both odd and even cycles 1251. However not all genera- 
tors are immediately reversible in n rotator graphs. In an attempt to 
generalize the proposed n-rotator graphs and to sol\e the conflicting 
requirements of the nature of computations and the implementation 
constraints we propose embeddings of undirected nctuorks on directed 
permutation graphs. We develop a class of algorithms for embedding 
meshes on n-rotator graphs. 

The rest of the paper is organized as follows In section two n e  
present the definitions to he used in the paper. Section three gives 
the embedding algorithms for mapping two dimensional meshes on n- 
rotator graphs. Section four concludes the paper with directives of 
future research. 

DEFINITIONS 
Definition 1 A se t  of interconnected processors w i t h  directed edges zs 
denoted M R, and a se t  of processors w i t h  undirected edges i s  denoted 
as G.  T h e  vertices and  edges in G are denoted by VIG) and E,,y(G) 
respectively, where  E,,,(G) i s  the  undirected edge between z and y .  T h e  
vertices and edges of R are denoted by ?(R)  and {gr,y(R),f?y,r(R)} 
respectively, where  J ! ? ~ , ~ ( R )  denotes the  directed edge from t h e  ver tez  
x t o  t h e  ver tez  y. 

Definition 2 T h e  directed path  from ver tez  z t o  ver tez  y as denoted by 
l?&,(R), where t h e  path  P m a y  conta in  one or m o r e  t h a n  one directed 
edges, and a n  undarected path f o r m  ver tez  z t o  y can be denoted by 
EZq,(R). 

Definition 3 T h e  n-ro ta tor  graph haJ n! vertices and each ver tez  as 

represented by a unique  permuta t ion  of n distinct s y m b o b  1,2,3,  .... n. 
T h e  generators are of the  fo rm (al,az,a3, ....., a, 

,a,+l, ......, ak) --t (a*, a3, ....., a,,al, a,+l! ......, ah) where 1 < i 5 k. 
An n-ro ta tor  graph h a s  n disjoint (n -1)-rotator graphs, i.e., the  ( n  
-1)-rotator graphs are t h e  subgraphs of the  n-rotator graph. 

Figure 1 illustrates the 4-rotator graph. It consists of four 3- 
rotators. The undirected edges are denoted by hold lines and the 
directed links are denoted by lines with arrows. The undirected edges 
are due to  the reversible generators. 1: the 24 nodes are 
represented by permutations of four symbols 1, 2, 3, and 4. The 
alphabets are used to  denote the directed links which connect the 
subrotators. Each one of the 24 nodes is associated with an alphabet 
in addition to  the permutations. For example, the alphabet associated 
with the vertex 1234 is a, where a(.) denotes the directed link which 

In Fig. 
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originates f r o m  the node represented by a ,  i.e., 1234. The symbol 
j(i) denotes that the input node to the vertex 1234 is f rum the vertex 
which is represented by the alphabet j ,  i.e., 4123. 

Figure 1: 4-rotator  Graph 

Definition 4 T h e  ac t ion  of the  generators  in the  n-rotator  graph w 4 

ro ta t ion  o f  length L, where 2 I L I n. T h e  permuta t ion  aza3a4 ...... afal 

af+1 .... a,, w obtained fiom t h e  node alaaa3 ....... afat+1 ..... a,, a f f e r  ap- 
plying 4 ro ta t ion  o f  length L or equivalently, the  generator  gl-1. 

In Fig. 1, the node 4123 is obtained after a rotation of length 4 
(g3) applied to the node 3412. Similarly, a rotation of length 3 applied 
to node 4123 would result in 1243. Clearly all the generators are not 
reversible, i.e., a rotation of length four applied to 4123 would not 
result in 3412, though a rotation of length four applied to 3412 would 
result in 4123. 

Definition 5 An embedding e o f  an undirected graph G in 4 d iTc ted  
graph R w t h e  mapp ing  o f  t h e  vertices V(G) i n t o  the  vertices V (R)  
and of edges EZIu(G) i n t o  t h e  directed pa th  l?<,),e(u)(R). An embedding 
always ezists w h e n  R i n  connected and IRI 2 IGJ. T h e  embedding w 
said t o  have 4 dilat ion j ,  where 

Definition 6 T w o  nodes z and y are said t o  be at  bi-distance I ,  where 

For example, the bi-distance between the nodes 4321 and 3241 in Fig. 
1 is two. Here Ig&31411 = 1 and Il?&41,43211 = 2. The bi-distance 

between the nodes 4321 and 3421 is one as 1&,,,,,1 = IZ&21,43z11 = 
1. Similarly, the bi-distance between the nodes 4321 and 2314 is three 

as 1-%m,m41= 2 and 1@L,mai1= 3- 

In Fig. 1, all the permutations end with the symbol 4 in the 
last position, i.e., 1234, 2134, 2314, 3214, 3124, and 1324 form the 4- 
fixed-rotator. Similarly, all the nodes with 3 in the last position form 
3-fixed-rotator, etc. 

Corollary 1 T h e  bi-distance between two  nodes A = ala2 ........ aEak+l 

........a,, and B = bib2 ........ bkak+l ........ a,,, w at m o s t  k - 1, where 
a1 a2 ....... .ah and bi bz 
....... ak are t h e  permuta t ions  o f  4 group of k numbers,  where 0 < k < n 
and t h e  t a i b  o f  t h e  p e m u t a t i o n s  i.e. ak+l, ......a,,, where 0 < n-k < n, 
are t h e  s a m e  in both t h e  permuta t ions  A and B.  

Proof: The tails of the permutations A and B are the same. Thus, 
by definition, A and B are the vertices of a k subrotator. It is known 
that the diameter of an n-rotator is (n - 1). Therefore, the diameter 
of the k-subrotator is k - 1. The k-subrotator is isomorphic to the 
n-rotator. 

Theorem 1 T h e  minimum bi-distance from any  node of 4 (n-1) sab- 
rotator  t o  4 node f r o m  the  other  (n- I ) ,  (n-1) subrotators of a n  n- 
rotator  graph w [n/21. 

ProoE The n-rotator graph with the permutation ala2 ........a,, has n 
subrotator graphs of size n - 1, each of them have (n - l ) !  nodes with 
fixed a,, = k, where k = 1,2,  ..........., n. The nodes with a fixed a,,, 
i.e., the nodes within an (n-1) subrotator can have bi-distances from 
1 to (n-2). However, the minimum number of rotations required to 
reach a node with a different fixed ( a k )  and come back to the original 
node is exactly n. For example, if a rotation of length n is applied 
initially, to come back to the original vertex it requires (n-1) rotations, 
which makes the bi-distance (n - 1). However, to find the optimal bi- 
distance between the nodes of two different subrotators we first apply 
n/2 rotations if n is even, or [n/21 or Ln/2] rotations if n is odd. 
Obviously we need n-n/2 (= n/2) or n- rn/21 (= Ln/21) or n -  Ln/2] 
(= [n/21) rotations to come back to the original vertex. This makes 
the shortest bi-distance between any node of an (n-1) subrotator and 
a set of nodes of other subrotators to be rn/21. 

EMBEDDING ALGORITHMS 

Theorem 2 T h e  opt imal  embedding of 4 m e s h  in a n  n-rotator  haa 4 

dilation [n/2]. 

Proof: This theorem is proved by showing that none of the nodes out- 
side an (n-1) subrotator can be reached in [n/2] bi-distance [Theorem 
11. For a j - dilation embedding to exist, at least one node in any 
of the (n - 1) (n - 1)-subrotators should be at  a bi-distance within 
j from any node of a (n-1)-subrotator. By theorem 1, the minimum 
bi-distance between any nodes of an (n - 1)-subrotator and the rest 
of the n-rotator graph is 1421.  Therefore, the optimal embedding 
of a mesh or any other undirected graph on an n-rotator will have a 
dilation of [n/21. 

Corollary 2 It i s  n o t  possible t o  get 4 constant  dilation embedding of 
m e s h s  in n-rotator  graphs. 

Proof: By constant dilation embedding, we mean that an embedding 
with dilation k ,  where k is independent of the size of the n-rotator 

Definition A directed to &, if n. The proof of this corollary follows the proof of theorems 1 and 
2. It has been shown clearly that the dilation of the embeddings is 
dependent on n. w 4. 

bi-dist4nce between 4 n ~  of  vertices in the 

Corollary 3 There  w n o  dilation 1 embedding of 4 m e s h  in a n  n- 
Definitioa 8 An n-rotator  i s  represented by the  permuta t ions  of 1,2,. for  > 2.  ....... n s y m b o b .  T h e  n-rotator  haa n (n - l h ~ t a t o r s ,  and each f n  . ,  

Proof: This can be proved by showing that none of the nodes in an 
n-rotator graph have more than one node which are at  bi-distance 1 

the generator is reversible. 

- 1)-rotator  haa (n - l)! nodes o f  permuta t ions  w i t h  4 aymbol k = 
1,2 ,.... .... .,n fized a t  t h e  laat posi t ion.  T h e  ( n  . 1)-rotator  w i t h  4 fized 
w the k-fized-rot4t0r. It ' ObviOw - ') ' ;Ezed-  for 2 3. Only the 2-rotator graph has a neighbor at bi.distance 1 as rotators  f o r k  = 1 to n, are i somorph ic  t o  t h e  (n - 1)-rotator.  
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[n/Zl Dila t ion  Embeddings 

Since the lowest possible dilation embedding of a mesh on an n-rotator 
is [n/21, we give algorithms for dilation [n/21 embeddings. The con- 
cept of the embedding is that in n-rotator graphs some nodes can 
be arranged as parallel paths with a ladder like structure. The two 
columns of the ladder belongs to two different subrotators and the 
bi-directional distance between the nodes of the ladder is [n/21. It 
is possible to  maintain the condition that the [n/21 embeddings re- 
sulting in nodes which need [n/21 steps in one direction and very few 
steps i.e., one in the other direction, i.e., the average dilation of the 
embeddings are low as compared to the dilation of the embedding. 
The higher dilation is due to  the directed nature of the n-rotator and 
the action of the generators. 

Theorem 3 Two dimens ional  m e s h e s  of size 2 x % can be embedded 
in 4n n-ro ta tor  w i t h  ezpans ion  1 and optam41 dilation f f o r  even  values 
of n. 

Proof: I t  is clear from theorem 1 that every node from a (f + 1)- 
subrotator will have exactly one node at  bi-distance f in other f + 1 
subrotators of the same n-rotator graph. Therefore, there are (f + l ) !  
nodes, which could be reached at  bi-distance f from this subrotator. 
It should be noted that exactly two nodes out of (f + l)! nodes belong 
to the same (f + 1)-subrotator. In an (f + 1)-subrotator the last f - 1 
symbols are already sorted. Therefore, the same symbols should also 
be in sorted order in the source nodes, i.e., in the source node the 
symbols a ( ~ + ~ )  .... a, and a2 .... a3 should be in sorted order. Then, 
the two syhbols left are a1 and which could only form two 
different combinations. By embedding all the nodes of various (5 + 1)- 
subrotators, it is possible to  achieve dilation f. 

Table I shows the embedding of a 2 x 12  mesh on the 4-rotator 
graph with dilation 2 .  

Figure 2: Di la t ion  3 embedding o f  a n  8 x 15 m e s h  in 5-rotator 
TABLE I 

DILATION 2 EMBEDDING O F  2 X 12  MESH 

IN AN &ROTATOR GRAPH 

rotator 
3124 
1234 
2314 
2134 
3214 
1324 
1423 
2143 
4213 
2413 
4123 
1243 

rotator 

4231 

Theorem 4 A m e s h  o f  size 1 x m can be embedded in a n  n-rotator 
w i t h  optimal dilation [n/21, where 1 5 3(n - 1) 4nd m 2 [-I, 
for odd values of n. 

Proof: It is known that the minimum bi-distance between a set of 
nodes of a ([n/21 +l)-subrotator and a set of nodes of another ( [n/21+ 
1)-subrotator is [n/21. It can be observed from the definitions and 
the directed nature of the n-rotator graph that the mesh structure 
can be realized only by identifying the parallel set of nodes between 
subrotators of different sizes. Therefore, in order to find a mapping of a 
two dimensional mesh on an n-rotator, it is required to fmd the number 
of nodes at bi-distance [n/21 from a set of nodes of one subrotator. 
Once this set of nodes are found, it, is required to find the group of 
nodes from this set, which are at  bi-distance [n/21 and belong to 

another [n/21 subrotator. It is obvious that all the nodes within the 
[n/21 subrotator satisfy the condition, i.e., the nodes can be arranged 
in two rows of nodes with nodes each (with dilation [n/21). 
However, it is not possible to obtain another set of nodes from 
the rest of the subrotators which are at  bi-distance In/Zl from these 
nodes and among themselves. 

Consider a vertex represented by alaza3 .... ain/21ai,/21+'....a,. Ac- 
cording to our definitions, all the nodes within bi-distance [n/21 + 1, 
also belong to the n-fixed-rotator. It is required to identify the set 
of nodes satisfying the above conditions. We define a ladder as t- 
wo sets of nodes from two different ([n/21 + 1)-subrotators that can 
be arranged like a ladder with [n/2] bi-distance. The ladders are 
of the type p lq lpzq  z......q,, where ~ ; p , + ~  form the ladder(i + 1) and 
{q, n ~ ; + ~ )  = 0. Here the symbols p and q represent. different sets of 
nodes belong to different subrotators. The maximum possible length 
of these ladders is one important factor in deciding thr size of the mesh 
that could be embedded on an n-rotator. Since the last Ln/2] - 1 sym- 
bols of all the nodes in any [n/21 +I subrotator are the same, and they 
form one side of the ladder the nodes in the next, side of the ladder 
must have these Ln/2j - 1 symbols from the previous subrotator in the 
same order,  in addition to the Ln/2] - 1 last symbols of the next sub- 
rotator. Therefore, there are only three symbols left after subtracting 
2 x (Ln/2] - 1) from n for odd values of R.  These three symbols along 
with the Ln/Z] symbols can form qn/Zj  possible combinations. Since 
Sln/Z] is the same as 3(n ~ 1) for odd values of n thr. size of the mesh 
which could be embedded with this dilation is 3(n - 1) x 6. 

The value of I = 6 is the number of distinct ([n/21 + 1 ) ~  

non-repetitive permutations first and so on. All the permutations be 
tween a p side of the ladder and the adjacent q side of the ladder belong 

subrotators. The subrotators can be arranged in the order of ( ,n,$-l 1 
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to the same ( [n /2]  + 1)-subrotator and hence the bi-distance between 
any of the nodes is always [n/21, which is the same as 9 for odd 
values of n.  The selection of the adjacent ([n/21 + 1)-subrotator is 
also important for this embedding. It is required to arrange the sub- 
rotators so that the last Ln/2]- 1 symbols in two adjacent subrotators 
are distinct. 

The hfd”f&) as defined above can be arranged at positions 0, k, 2k, 
3k ..... zk, for a mapping of an 1 x m mesh on an n-rotator, where 

(F)! 
k2- 

3(n - 1) 

, zk = m, 2 = &, and n! should be a multiple of k. 

A mapping of 8 x 15 mesh on a 5-rotator with dilation three using 
the above algorithm is given in Fig. 2. 

The following embeddings are trivial. A 2-dilation embedding of a 
mesh on an n-rotator is trivial because the value of [n/21 is the same 
as the bi-diameter n - 1. Same is the case in [n/21 + 1 (4) dilation 
embedding of a mesh on a 4 and 5-rotators. 

Similar algorithms can be used for even values of n with dilation 
n/2+1, and for odd values of n with higher dilations for various related 
networks. The average dilation of the embeddings caa be kept very 
low. 

CONCLUSION 
In this paper the embedding characteristics of the recently proposed 
directed n-rotator graph have been analyzed. Optimal embedding al- 
gorithms for both odd and even values of n are given. Since the dila- 
tion of the embedding is dependent on the parameter n, the dilation 
increases with the value of n. However, the work preserving properties 
and the communication cost of these embeddings remain to be inves- 
tigated. The extension of this algorithm for multidimensional meshes 
and higher expansion embeddings can also be investigated. Future 
work include the extension of this embedding techniques to multidi- 
mensional meshes and evaluating the complexity of mesh algorithms 
like meshsort, etc. 

REFERENCES 

[l] S. B. Akers and B. Krishnamurthy, “The star graph: An attrac- 
tive alternative to the n-cube,” in Proceedings of the International 
Conference on Parallel Processing, pp. 393-400, 1987. 

[2] P. F. Corbett, “Rotator graphs: An efficient topology for point-to- 
point multiprocessor networks,” IEEE lbanaactiona on Parallel 
and Distributed Systems, vol. 3, pp. 622-626, Sep 1992. 

[3] S .  Lakshmivarahan, J . 3  Jwo, and S. K. Dhall, “Symmetry in in- 
terconnection networks based on Cayley graphs of permutation 
groups: A survey,” Parallel Computing, vol. 19, pp. 361-407, 
April 1993. 

[4] S .  T. Schibell and R. M. Stafford, ”Processor interconnection 
networks from Cayley-graphs,” Discrete Applied Mathematics, 
vol. 40, pp. 333-357, Dec 1992. 

[5] K. Day and A. Tripathi, “Arrangement graphs- a class of gen- 
eralized star graphs,” Information Processing Letters, vol. 42, p 
p. 235-241, July 1992. 

[6] P. F. Corbett and I. D. Scherson, “Sorting in mesh-connected 
multiprocessors,” IEEE ~ n a a c t i o n s  on Parallel and Distributed 
Systems, vol. 3, pp. 626-632, Sep 1992. 

[7] V. Faber and J. Moore, “High-degree low-diameter interconnec- 
tion networks with vertex symmetry: The directed case,” Tech. 
Rep. LA-UR-88-1051, Los Alamos National Laboratory, 1988. 

(81 S. B. Akers and B. Krishnamurthy, “On group graphs and their 
fault-tolerance,” IEEE tnsact ions on Computers, vol. 36, p 
p. 885-888, 1987. 

191 S. B. Akers and B. Krishnamurthy, “The fault tolerance of star 
graphs,” in Proceedings of the 2d International Conference on 
Supercompuiing, pp. 31-42, 1987. 

[lo] P. F. Corbett, Network structures and 41gorithms for large multi- 
processors. PhD thesis, Princeton University, October 1990. 

[Ill Z. Roka, “One-way cellular automata on Cayley graphs,” Tech. 
Rep. RR-93-07, Ecole Normale Superieure de Lyon, France, 
March 1993. 

[12] C.-H. Chou and D. H. C. Du, “Uni-directional hypercube,” in 
Proceedings of Supercomputing ’90, pp. 254-263, 1990. 

[13] T. Y. Chung and D. P. Agrawal, “Cost-performance trade-offs in 
manhattan street network versus 2-D torus,” in Proceedings of 
the International Conference on parallel Processing, pp. 16!3-172, 
1990. 

[14] K. Day and A. Tripathi, “Unidirectional star graphs,” Infoma- 
tion Processing Letters, vol. 45, pp. 123-129, March 1993. 

[15] S. Bhattacharya, D. H. C. Du, A. Pavan, S.-R. Tong, R. Vetter, 
and K. Williams, “A network architecture for distributed high 
performance heterogeneous computing,” Tech. Rep. ., University 
of Minnesota, Computer Science Department, Feb 1993. 

[l6] J.-P. Brunet and S. L. Johnson, “All-teal1 broadcast and appli- 
cations on the connection machine,” The International Journal 
of Supercomputer Applicationa, vol. 6, no. 3, pp. 5-40, Fall 1992. 

[17] K. Kim and V. K. Prasanna, “An efficient mapping of directed 
graph based computations onto star graphs,” Tech. Rep. IRIS- 
276, Institute for Robotics and Intelligent Systems, University of 
Southern California, Los Angeles, 1991. 

[18] J.3. Jwo, S .  Lakshmivarahan, and S .  K. Dhall, “Embedding of 
cycles and grids in star graphs,” Journal of Circuitn, Systems, 
and Computers, vol. 1, no. 1, pp. 43-74, 1991. 

[19] S .  Ranka, J.-C. Wang, and N. Yeh, “Embedding meshes on the 
star graph,” Tech. Rep. ., Syracuse University, Dec 1992. 

(201 M. Nigam, S .  Sahni, and B. Krishnamurthy, “Embedding Hamil- 
tonians and hypercubes in star interconnection graphs,” in Pro- 
ceedings of the International Conference on Parallel Processing, 
vol. 111, pp. 340-342, 1990. 

[21] V. Faber, J. W. Moore, and W. Y. C. Chen, “Cycle prefix di- 
graphs for symmetric interconnection networks,” To appear in 
Networks, 1994. 

[22] P. Fragopoulou and S .  G. Akl, “A parallel algorithm for comput- 
ing Fourier transforms on the star graph,” in Proceedings of the 
International Conference on Parallel Processing, vol. 111, pp. 100- 
106, 1991. 

[23] A. Menn and A. K. Somani, “An efficient sorting algorithm for 
the star graph interconnection network,” in Proceedings of the 
International Conference on Parallel Processing, pp. 1-8, 1990. 

[24] K. Day and A. Tripathi, “A comparative study of topological 
properties of hypercubes and star graphs,” To Appear in IEEE 
Ilf.c”4Cti07U on Parallel and Distributed Systems, 1993. 

[25] S .  POMUSWXIIY and V. Chaudhary, “Topological properties of 
rotator graphs and their applications,” Tech. Rep. PDCL-93-02- 
02, Parallel and Distributed Computing Laboratory, Wayne State 
University, 1993. 

8 

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 16:02 from IEEE Xplore.  Restrictions apply.


