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Abstract 

With  cone beam CT long computation and a large 
amount of memory  is required. The  majority of the 
computation is in the backprojection step. We have 
investigated the use of parallel methods on  workstation 
clusters using MPI to  overcome both the long process- 
ing t ime  and lessen memory  requirements on individ- 
ual workstations. We used the asynchronous MPI  im-  
plementation t o  reconstruct a 25€i3 volume from 2562 
projection views with 6 workstations. Our previous 
efforts an load balancing resulted an processor utiliza- 
t ion of 81.8%. Use of asynchronous communication 
an the cone beam CT problem has improved processor 
utilization to  91.9%. 

1. Introduction 

Tomographic reconstruction from projections using 
computed tomography (CT) provides a noninvasive 
measure of structure from external measurements. 
The information obtained describes both internal and 
external shapes and material densities. This is partic- 
ularly useful when one cannot make internal measure- 
ments on the object of study for a variety of reasons. 
These reasons might be cost, no known noninvasive 
technique, or no physical means to make internal mea- 
surements. 

1.1. Cone Beam Tomography 

Cone beam tomography is a computed tomography 
method which efficiently acquires projectional data 
through a single rotation. Using a 2D detector, a 3D 
volume can be reconstructed with isotropic voxel sizes 
without the mechanical translation required for con- 

ventional CT. Our current application area involves 
3D C T  with microscopic resolution [l]. 

Cone beam microtomography systems are limited 
primarily by the CCD camera transfer rate and avail- 
able x-ray flux. Microtomography acquisitions require 
as much as 1 hour [l], whereas new diagnostic medical 
imaging systems can acquire cone beam whole body 
data as fast as 10 seconds. 

With cone beam C T  long computation and a large 
amount of memory is required. Large voxel arrays are 
used, typically 2563 to 5123. Reconstruction times of 
many hours have been required on conventional work- 
stations [l]. The goal of this work is t o  use parallel 
processing to reduce the total CT  computation time. 

1.2. Feldkamp Algorithm 

The reconstruction for the cone beam geometry has 
been investigated by numerous groups. The most ef- 
ficient algorithm in use is the one developed by Feld- 
kamp [2]. In this algorithm, the projectional da ta  is 
projected back onto an image buffer with each de- 
tected ray backprojected in it’s direction. Pixels in 
the image buffer are incremented by the amount of the 
projection pixel. The projection must be filtered prior 
to backprojection to get constructive and destructive 
cancelling of signals in an appropriate manner. 

The coordinates used in the discussion are shown 
in Figure 1. It is assumed that the projection of the 
object a t  angle 6 Po() is indexed by detector coordi- 
nates U and v. The reconstructed voxel values p are 
indexed by physical coordinates 2, y,  and z. The cen- 
ter of rotation is the z axis. The distance from the 
x-ray focal spot t o  the rotation axis is d,. By scaling 
the projection pixel sizes, the vertical axis of the de- 
tector can be moved to  the z axis. By subsequently 
scaling the geometry, the pixel sizes at  the z axis can 
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be made 1. These scalings simplify the computations 
in the reconstruction algorithm. 

The Feldkamp algorithm falls into the class of fil- 
tered backprojection algorithms. Thle Feldkamp algo- 
rithm can be summarized as follows: 

reconstructing, with better resolution. For the case of 
N = N ,  r= Ny = N ,  = N, = N,,  the number of pro- 
jections Ne should be ; N  [3], and thus the complexity 
of the problem is O ( N 4 ) .  

The majority of the computation is in the back- 
projection, Ecl. (3). We have investigated the use of 
parallel methods on workstation clusters using MPI 
to overcome both the loing processing time and lessen 
memory requirements 011 individual workstations. 

A. Weight projection 

d,  

f i u w  
( 1) Pe ( U ,  P& w) = 

B. Convolve weighted projection 
1.3. Ptarallel Algorithms for Tomography 

The large computation time for reconstruction al- 
gorithms is the major factor limiting reconstruction 
size. The earliest C T  systems were limited to 2D im- 
ages with 80 x 80 pixels primarily because of the com- 
putatiorr time for the reconstruction. Clinical x-ray 
C T  scanners today can still acquire data much faster 
than they can reconstruct images. For cone beam CT, 
our previous results indicate reconstruction times of 
12 hours for a 512 x 512 x 128 volume [l]. 

Pe'(",W) = PL(U, w) * h ( U )  (2) 

C. Backproject the convolved mreighted project,iorL 

2T 
dsz dsz 

p(zl Y,') = 1 
(d, 

(3) 
where it is assumed that a modified geometry with 
the detector containing the .T axis is used ( d d  = ds) .  

Axis of Rotation V A  

Figure 1: Cone Beam Space Variables. The vari- 
ables associated with the cone beam geometry are 
shown and described in the text. 
For the discretized problem, let the reconstruc- 

tion volume p,  be N ,  x Ny x N,  voxels, in the z,y, 
and z directions. Let dB = 2 ~ / N e  and P e ( U , w )  be 
Nu x N, pixels. The complexity of the problem is 
roughly linear with the total number of voxels and lio- 
ear with the number of projection view angles. Dou- 
bling the number of voxels roughly doubles the pro- 
cessing time. Doubling the dimension in each direc- 
tion produces an 8 fold increase in the required pro- 
cessing. Doubling the number of views doubles the 
processing. As the number of voxels increases, the 
number of angular views must also increase to main- 
tain the same peripheral resolution. This is an irn- 
portant factor in reconstructing larger specimens or 

In filtered backprojection, the majority of the com- 
putation is in the backprojection step, where 98% of 
the operat.ions are involved in backprojection when re- 
constructing a 5123 volume from 800 512' projections. 
This suggests effort invested in. improving backprojec- 
tion time will be most fruitful. 

Several types of data independence exist in the 
problem. Four forms of parallelism in 2D CT were 
defined b:y Nowinski [4]: pixel parallelism, projec- 
tion parallelism, ray pairallelism, and operation par- 
allelism. :Pixel. parallelkm uses the fact that all pix- 
els are independent of others. Projection parallelism 
uses independence among projections. Ray paral- 
lelism not'es th.at rays cam be backprojected indepen- 
dently. Operation parallelism can be used when low 
level operations such as :multiplications and additions 
can be c.oi~~puted in par,allel. The filtering and back- 
projection steps can also' be performed independently 
and the filtered projection can be pipelined to the 
backprqjector [5]. However, the large data sizes war- 
rant carseful a1,gorithm selection to minimize commu- 
iiicationis and :RAM requirements. 

Dedicated hardware implementations have been 
proposed [6 ,  7, 8, 9, 10, 11, 12, 13, 14, 151. A dedi- 
cated hardware chip for backprojection has been re- 
cently developed which can backproject a 512 x 512 
image in 4 sec.onds [8]. Many of these chips can be 
used in parallel, to further reduce reconstruction times. 
It is doubtful if any of these systems are currently in 
use, either because of aewer hardware solutions, or 
the hardware is not yet fully integrated. Furthermore, 
none of these systems was developed for cone beam 
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tomography. Another drawback to a dedicated hard- 
ware system is the relatively low market demand and 
the lack of scalability of such a system. 

Another active area of research has been in the area 
of employing commercially available parallel systems 
to the reconstruction problem. Several investigators 
have evaluated the Transputer [16, 17, 18, 19, 201. 
The MasPar has been used [a l l  22, 231. One investi- 
gator used a Cray-1 [24]. The iPSC/2 has been used 
[5, 25, 26, 271. Still others have used other specialized 
multiprocessors [28, 29, 30, 311. Parallel efficiencies of 
greater than 88% have been reported [5]. These sys- 
tems require a large investment ($50,000 - $300,00) 
compared with general purpose workstations. 

However, none of this prior literature dealt specif- 
ically with large volume tomographic reconstruction 
from cone beam projections. A better understanding 
of the interplay between communications, processing 
power, and memory should be useful in predicting per- 
formance on dedicated hardware implementations and 
commercially available parallel systems. 

Filtcrcd Backprojection Reconstruction 

Images Elements 
Projection Processing Volume 

Figure 2: Voxel Driven Partitioning. T h e  voxel 
driven data partitioning associated with the cone 
beam reconstruction problem is shown. Each process- 
ing element reconstructs a disjoint slab of the total 
reconstruction volume. T h e  slab width varies propor- 
tionally to processing speed. T h e  Methods section 
describes the asynchronous communication of the f i l -  
tered projection images to  the backprojection PE’s. 

1.4. Voxel Driven Algorithm 

proaches arise from the order the mathematical inte- 
gration of the backprojection, with the angle 6 vary- 
ing in the outermost loop, and z, yI and z inside 
the 0 loop. A projection image can be independently 
weighted, filtered, and backprojected into all voxels. 

A voxel driven approach is taken where the volume 
is distributed over several processor elements (PE’s) 
and each view is sent to the voxel PE’s as shown in 
Figure 2. Each PE  sees every projection, but only a 
small subset of the reconstructed voxels. In this dis- 
cussion the processor elements are individual work- 
stations, but would correspond to  each CPU on SMP 
workstations. The total memory required for this im- 
plementation is approximately equal to the total num- 
ber of voxels. One advantage of this method is that 
the data is acquired in a serial fashion and processing 
could be done in concert with acquisition. This type 
of parallelism was found to be superior in [l6]. 

The problem has a high degree of independent op- 
erations, and should be well suited to  parallel imple- 
mentations. The major nontrivial aspects of the prob- 
lem is the data sizes needed. An acquisition can be 
as large as 800 views of 5122 16 bit integer images. 
These projectional images are used to  create a volu- 
metric data set on the order of 512 x 512 x 512 32 bit 
floating point voxels. The use of 32 bit floating point 
voxels is required to provide sufficient accuracy in the 
result. The memory requirement to store the entire 
512x512~512  32 bit volumeis 512 MB, whichis a t  the 
upper limit of available memory on most tightly cou- 
pled parallel systems currently available. However, 
dividing this memory among 16 workstations requires 
only 32 MB per workstation. 

The Feldkamp algorithm was implemented using 
the freely available MPICH [32] implementation of 
MPI. In addition to point-to-point send and receives, 
the reconstruction used asynchronous receives, collec- 
tive broadcasts, derived data types, and synchroniza- 
tion barriers. The message passing algorithm for the 
voxel drive approach is pseudocoded as: 

1.1 Initialize each P E  
1.2 
1.3 Partition memory 
1.4 Allocate memory 
1.5 Precomputation of weights 

1.6 for each Q (PI, views): 

Read and Broadcast problem specifications 

1.7 if (PE is‘ROOT) ’ 
Read Projection The forms of Nowinski [4] can be extended to  the 1.8 
Weight and Filter Projection three dimensional problem as follows. Pixel paral- 1.9 

lelism can be extended to voxel parallelism. Projec- 
tion and ray parallelism remain the same, with the 
exception of increases in the size of the projections 

1.10 Broadcast Projection P;(u, w) 
1.11 Backproject Projection 

and the number of rays. The voxel/pixel driven ap- 1.12 Gather Reconstructed Voxels on ROOT P E  
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The important features of MPI used in the impie- 
mentation are now discussed. MPI-Bcast was used 
to broadcast initial information from the root node, 
including volume allocation information. MPI-Bcast 
was used to send each filtered projection (32 bit pix- 
els) to the backprojector processes. MPI-Send was 
used to send each completely reconstructed volume to 
the root node. MPI-Irecv was used to asynchronously 
send each completely reconstructed volume to  the 
root node. The gathering of the reconstructed vol- 
ume of voxels and filtering of the projections is all 
done on the initial processor. 

2. Methods 

Because of the large amounts of data involved in 
this problem, it was our interest t o  use an explicit 
message passing library for the implementation to  
achieve maximum performance. Our earlier results 
showed 81.8% processor utilization on a heteroge- 
neous cluster of 6 Sun workstations [33]. This high 
degree of utilization was achieved by load balancing 
in the backprojection and in the filtering steps. In 
this work, we demonstrate improved performance us- 
ing asynchronous communications to broadcast the 
projection. 

2.1. Cluster of Workstations 

A parallel implementation on a workstation cluster 
has several positive implementation aspects. Work- 
station clusters are common in industry, research, and 
universities and have been found useful in solving 
large problems [34, 351. They are more cost effec- 
tive than supercomputers both in terms of initial cost 
and maintenance [34]. The availability of networked 
systems is generally high throughout, the day and the 
availability and throughput on such a system can be 
accurately predicted [36]. Since recoiistruction is very 
deterministic, it is therefore ai very good candidate for 
job scheduling. Some hardware aspects of worksta- 
tion clusters are better suited for the large tomogra- 
phy problem than dedicated parallel processors, such 
as higher cache/RAM and performance/cost ratios. 
It is interesting that a proposal was made 10 years 
ago for using off the shelf computers with inexpensive 
memory for use in the reconstructioii problem [37]. 

2.2. MPI Implementation 

The reconstruction problem is very suitable for 
asynchronous communication because of the repeated 
deterministic nature of the views in the problem. By 

using asynchronous communication to send projec- 
tional d.ata while backprojecting the previous projec- 
tion. the communications overhead can be eliminated 
on the receiving processors as long as the backprojec- 
tion time is greater than or equal to the communica- 
tion ti.me. 

We replaced the synchronous 
broadcast (MPIJcas t )  with repeated asynchronous 
send/receiive pairs (MP I ..I s end/MP I-Ir e cv) and with 
double buffering of the projection to assure correct- 
ness. For the large prabjection sizes, the MPI-Isend 
became non-asynchronous. To achieve asynchronous 
communic.atioin, a repeated MPI-Test during backpro- 
jection on the iieceiving processors was needed to  com- 
plete the send.. The new pseudocode is a follows: 
2.1 Initialize each P E  
2.2 
2.3 Partition memory 
2.4 Allocate memory 
2.5 Precomputation of weights 

2.7 if (]?E is ROOT) 
2.8 Read Projection 
2.9 Weight and Filter Projection 
2.10 Send Projection (:MPI-Isend) 
2.11 else 
2.12 Receive Projection (MPI -1recv) 
2.13for each 6 > 0 (Ne views): 
2.14 if (PE is ROOT) 
2.15 Read Projection 
2.16 Weig.ht and Filter Projection 
2.17 Send Projection (MP1:-Isend) 
2.18 ellse 
2.19 Receive Projection (MPI-Irecv) 
2.20 Blackproject Projection 
2.21 
2.22 with periodic (:MPI-Test) 
2.23 Gather Reconstructed Voxels on ROOT P E  

Rkad and Broadcast problem specifications 

2.6 e = o 

(Loop over all voxels in slab 

Information on the workstations used in the follow- 
ing experiments are detailed in Table 1. The back- 
projection speeds and projection filtering time was 
determined a pr ior i  and stored in a file. The back- 
projection speed was used to  define the voxel memory 
assigned to  eac:h workstamtion in such a way to balance 
the load amon,g the proc:essors. 

3. Results 

We used the asynchronous MPI implementation to 
reconstr-uct a 2563 volume from 10 2562 projection 
views. VVhile the number of views is significantly less 
than what. would be typically used, the computation 
of several view allows a good understanding of what 
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Table 1 
Workstation Operating RAM Processor Backprojection Speed 
Name System (MB) Architecture (1000 Voxels/Second) 

mulberry SunOS 4 80 
tomons Solaris 64 
ludy SunOS 4 32 
entropy SunOS 4 160 
grady SunOS 4 64 
toshiba SunOS 4 64 

Sun 41330 168 
Sun 41470 160 
Sun 41330 156 

SPARC 2 308 
SPARC 2 311 

Sun 41490 222 

is required in actual problems due to the its determin- 
istic and repetitive nature. 32 bit floating point data 
types were used to for both voxels and filtered pro- 
jection pixels. For this problem, the total amount of 
voxel memory was 64 MB, and each projection was .25 
MB in size. On a 10 Mb ethernet, one would expect 
no less than .2 seconds of transfer time per projection 
per workstation used. 

Because of the varying processor speeds used, pro- 
cessor utilization rather than speedup was used to 
evaluate the quality of the parallel implementation. 
The utilization was computed as follows. The total 
time for filtering F was measured using a only a sin- 
gle PE. For the i th PE,  the elapsed time T, for runs 
using multiple processors as well as individual back- 
projection time Bi was then measured. Utilization U ,  
was then computed as 

(4) 

where Pb is the number of processors used. 
The reconstructions were repeated using only 6 

workstations and 100 projection views. To demon- 
strate improved utilization, the execution timelines 
for this example are shown in Figure 4. Use of asyn- 
chronous broadcast in the cone beam C T  problem 
has improved utilization from 81.8% to 91.9% for this 
case. 

4. Discussion 

Asynchronous communication was very useful for 
this problem. However, the large message sizes used 
in this problem caused unexpected synchronous be- 
havior from asynchronous communication calls. Syn- 
chronous behavior was restored by completing the re- 
ceive with MPI-Test. 

Utilization as a function of the number of worksta- 
tions shows the point where the communication time 
dominates. This correlates well with the speed of the 
ethernet. One would expect to send a 2562 projection 

(.25 MB) in around .2 second. With this communi- 
cation time and the total number of voxels per sec- 
ond which can be backprojected, an estimate of the 
number of processors which will optimally solve the 
problem can be computed. This simple model does 
not account for message overhead, and further effort 
is needed for a more complete model addressing the 
interplay between workstation performances and com- 
munication speeds in a heterogeneous environment. 

In addition to asynchronous communication, an- 
other possibility is a multiphase broadcast. Since 
many networks now isolate traffic into physical 
subnetworks with bridges and routers a broadcast 
method using forwarding can be employed. In this 
method, the master processes broadcast to a head 
slave in each subnet which then forwards to each 
workstation on the subnet. This can be easily im- 
plemented using communicator groups. A disadvan- 
tage of this method requires apriori knowledge of the 
network topology. However, this topology is likely to 
change slowly and could be maintained in a configura- 
tion file with processor speed and availability. A mul- 
tiphase broadcast could be done both synchronously 
and asynchronously. 

The use of an ethernet network has advantages in 
broadcasting a filtered projection to many backpro- 
jectors simultaneously. Many of the previous imple- 
mentations were hampered by communications speed. 
However, none took advantage of the broadcast mech- 
anism of a bus architecture, such as in ethernet. Use 
of a broadcast bus for transmission of the projectional 
da ta  could significantly reduce the communications 
time when many workstations are used. 

The issues involving large memory and large 
amounts of communication are inherent to other prob- 
lems involving discretized representations of physical 
space. Examples include volumetric imaging applica- 
tions (rendering, processing, etc.) and finite element 
analysis of 3D structures. MPI seems a good parallel 
platform on which to  build these types of applications 
both from the ease of implementation and portability. 
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Figure 3: Execution Timelines. Execution timelines 
for 6 workstations with broadcast (top) and encor- 
porating asynchronous communicatilm (bottom) is 
shown. Backprojection into a 2563 volume from 
256' projections is performed for shown for the first 
5 views. 
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