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ABSTRACT In a large system with many processing elements
(PE), it is very expensive t0 equip each PE with a copy of the
resource. It is desirable to distribute a few copies of a given
resource to ensure that every PE is able to reach a copy of that
resource within a certain number of hops. Previous work has been
done on the binary hypercube as well as on the k-ary n-cube. In this
paper we consider the problem of resource sharing among PEs in
the star interconnection network (SIN) and present three different
placement strategies. First, we will consider the perfect 1-adjacency
resource placement. In this placement, resources have to be
distributed in such a way that every node without a copy of the
resource will find exactly one node adjacent to it having a copy of
the resource. Second, the perfect full adjacency placement will be
considered. In this placement each node without a copy of the
resource will find all nodes adjacent to it having a copy of the
resource. Finally, the perfect 2-adjacency placement will be
considered where each non resource node is adjacent to exactly two
resource copies. We show that a perfect 2-adjacency resource
placement does not exist for ali star networks.

I INTRODUCTION

The star graph is a Cayley graph which has gained prominence due
to its supermr properties as compared to the bma:y hypercube [1-3].
The problem of distributing resources in a” multiprocessor system
has been'Studiéd for several interconnection networks such as the
hypercube network [4-8] and the k-ary n-cube [9]. These resources
can be hardware resources such as printers, disk drives, memory
units, etc., or they can be software resources such as compilers, data
files, library routines, etc. In large systems it is very expensive to
provide each node with a copy of the resource. It may also lead to
poor resource utilization; .since not every node in the system
requires a copy of the résource. On the other hand, having few
copies of the resources in the system might lead to contention with
other access requests to the same copy. It also reduces the reliability
of the system because the failure of some of those resource nodes
will result in the unavall‘abxllty of that resource copy to some other
non-failuré’ non-resource nodes. This tradeoff among cost,
performance, and availability has to be considered when
determining the number of resources in the network and their
placement.

In this work, we will distribute as few resource copics as possible
in the star network which will satisfy the perfect j-adjacency
placement, where j can be equal to one, two, or the degree of the

N ).

network. Finding a general solution for any value of j is a very
complicated problem and does not exist for any star network.

The rest of this. paper is organized as follows: In “section II,
necessary background and notations used in the rest of the paper are
described. Section 11l outhncs the necessary conditions for the
existence of a perfect placement allocation in star graph. In section
IV we study the existenge of ‘perfect 1-adjacency placements and
show that this placement always exists. In section: V. the perfect full-
adjacency is studied, Secnon V1 deals with the perfect 2-adjacency
placement. Finally, section' VIl concludes this paper with directions
of future research on this topic. ¢

I PRELIMINARIES

We use¢ the terms PE, node, vertex, and permutation; the terms
graph and network; and the terms edge and generator
interchangeably throughout this paper. An undirected graph
G=(V,E) is a set of vertices ¥ connected by a set of edges Ec¥VxV.
Two nodes v,we V are connected iff there is an edge (vwieE. In
computer termmology the set ¥ corresponds to the PEs of the
multiprocessor, while " E corresponds to  the bi-directional
communication ‘litlk’s' that connect the PEs. The degree of a node is
defined as the niimber of edges incident upon that node. A graph is
said to be regular iffall nodes have the same degree.

Definition 1: A set of nodes IcV is called an independent set iff for
every two nodes y,wel, (v,w)#E. A maximal independent set is one
which. .can't -absorb any extra node(s) and keep the set an
independent set. The biggest maximal independent set is normally
called the maximum independent set.

Definition 2: A set of nodes CcV is called a dominating set iff for
every node ve (V-C), there exist a node weC such that (v, w)eE,

‘Definition 3: A graph G is a bipartite graph iff’ the vertices of G can
be partitioned into two sets, ¥, and V), such that for every
(vw)eE, if veV, then we V), or vice versa. In other words every
edge joins a vertex of ¥, to a vertex of V,.

Definition 4: A cycle is a sequence of distinct nodes in V, such that
the first node in the sequence is also the last one, and any two
consecutive nodes in the sequence are directly connected by an
edge. The length of the cycle is the number of nodes in that cycle.

Let £={x,,x,, .., X} be the sct of n different symbols. A star graph is
an undirected regular graph with degree equal to (n-1). It is
normally called by the number of n different symbols used to label
the n! different nodes. So an s-star has n! nodes labeled by the n!
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different permutations using the n different symbols in {. Two
nodes v,we ¥V are adjacent in-the star network jf the permutation of
v and w differ in the first symbol as well as in one more symbol.
The set of edges is partitioned inte (n-1) classes denoted by g,
2<i<n. An edge is labeled by a generator g, which exchanges the
first and the ith symbol in the permutations labeling the nodes it
connects. Figures la, Ib, and lc show the 2-star; 3-star, and 4-star,
respectively.

Similar to the hynercube the star network possess a hierarchical
structure. The a-star consists of smaller p-stars. It has been shown

[2] that there are as many as ("_l)v'—:—i

n-p distinct p-stars, out of

which .:_’, are disjoint p-stars.

Pgure 1¢

Definition 5: The subset Vrge V is defined as the set of
permutations where the symbol ref, is the same in the kth position,
where 15ksn. (e.g.-in 4-star, let {= {1,2,3,4) then V2, = (2134,
2143, 2314, 2341, 2413, 2431} ). 1t is clear that this set contains
(n-1)! different permutations.

I PERFECT j-ADJACENCY PLACEMENT

In this section we will develop the necessary conditions for the
existence of perfect j-adjacency placement. Throughout this paper
we will refer to a node which has a copy of the resource as a
resource node, and the set which contains all resource nodes as the
resource set. A node without a resource copy is referred to as a non-
resource node.

Definition 6: We define an allocation strategy to be perfect {f no
two resource nodes arc adjacent to each other, and all non-resource
nodes are adjacent to the same number of resource nodes.

Definition 7: An allocation strategy is called a perfect j-adjacency
iff it is perfect, and each non-resource node is adjacent to exactly J
resource nodes.

Lemma 1: Any perfect resource set is a dominhiing set and a
maximal independent set. ‘ ‘

Proof: Since each node outside the resource set is a non-resource
node which is adjacent to at least one resource node, this means that
the resource set is a dominating set. From the definition of perfect
placement, there are no two resource nodes adjacent to each other,
hence the resource set is an independent set. Adding any non-
resource node to the resource set will make the set a dependent set.
Thus, the resource set is'a maximal independent set. [}

The importance of the above theorem lics in the fact that in looking
for-a perfect resource set.im any interconnection network, we have
to look for a dominating and a maximal independent set in that
network. Such a problem is known so far to be an NP complete
problem [5,16].

Let R(nj) be the minimum number of resource copies required to
achieve the perfect j-adjacency placement in an n-star. Then R(nj)
is given by the following lemma.

Lemma 2: The minimum number of resource copies required to
achieve - a j-adjacency placement in an n.star is given by

R(n, j)= -,;’:',—";[—J- For perfect j-adjacency (if it exists) R(n,j) is an
integer number. Where obvious, we use R instead of R(nj). -

Proef: If R resources are required then there are R nodes out of the
n! nodes in the star network which have a resource, and (n/-R)
nodes are non-resource nodes. AH resource nodes can be adjacent to
exactly (n-1)R non-resource nodes. This is equal to the number of
resources required by the non-resource nodes, which is equal to
J(n!-R). By equating these two expressions and solving for R we

have (n~1)R= j(n!=R). Thus, R(n, )= L2 Note
that for a perfect j-adjacency the number of resources R must be
integral. This is a necessary condition for perfect j-adjacency to
exist in the star network. O ’ ’

From the above formula we can See that it is not always possible to
achieve a perfect j-adjacency for any arbitrary values of » and ;.
However, this condition is not sufficient to guarantce that a perfi
J-adjacency exists in the star network. -

Lemma 3: For any value of n and J there are no two non-resource
nodes connected to more than one common resource copy.

Proof: Let us assume that there are two non-resource nodes
connected to the same two or more resource copies. This means that
there should exist a cycle of length four. However, the smallest
cycle that can be embedded onto the star network is of length six
[15]. This means that no two nodes can be connected to more than
one common node. J

We will limit our approach for constructing the j-adjacency
placement to three different cases. In the next three scctions we
study the existence of j-adjacency placements for various values of
Jj, namely, 1, n-1, and 2,

IV PERFECT 1-ADJACENCY PLACEMENT

In this section we study the existence of perfect l-adjacency
placement and show that these placement always exists for all star
networks.

Lemma 4: A perfect 1-adjacency placement exists in any star.

Proof: (Necessity) From lemma 2, substituting j by 1, we get
R(n,1)=(n-1)! which is integral. This expression shows that there are
(n-1)! nodes, equipped with a copy of the resource in order for each
node in the star to have a resource or to be adjacent to a resource
copy. .
(Sufficiency) We can choose the subset Vr, to be the resource set |
and all other nodes in (¥-Vr,) to be the non-resource nodes. Note
that Vr, contains exactly (n-1)! nodes.

In order to prove that Vr, is the resource set, we have to prove that
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L. Vr, 1s an mdcpendcnt set, and

2. For every node ve (V- Vrl) there exists an edge ee £, such that ¢ i
the only edge which connects the node v to one and only oriec node
in Vr,. In other words each non-resource node is adjacent to exactly
one resource node.

To prove the first assertion, let w=rxx;.x, xx, ..x, € V. Applying
any generator g, will generate a new permutation v=xx,x..x_rx, .
X, . It is clear that ve Vr, since xr.

To prove the second assertion let us assume that ve(V-Vr,). Since
veVr,, the symbol r should not appear in the first position. Let v=
XXy X P X Then there exists only one generator g; which will take
the! mdex r(m thie ith' position) to the first position. This will result
in 2 new node w=r,.x, x.x.&t. O

Since 7 can be any symbol! from &, this means that there are n
different independent sets and we can chose any one of these sets to

be the resource set.

Flgure 2 shows the 1-adjacency placement for the 2-star, 3-star; and
4-star’ wherc VA1 is chosen to be the resource set. In the figure, the
nodes w1th ‘the filled circle arc the resource nodes.

& V PERFECT FULL-ADJACENCY PLACEMENT

A perfect full adjacency resource placement is an allocation strategy
where each node that does not have a copy of the resource will find
all'nbdes ‘adjicent to it having a copy of the resource. Since the star
network is a régular network with degree (n-1), this means that j is
equal to (n-1).

Lemma §: A perfect full-adjacency resource placement exists in
any star network..

Proof: (Necessity) From lemma 2, it is clear that Rfnn-1) is
integral.

(Sufficiency) We can prove that an allocation always exists for any
star by noting that the star network is a bipartite graph [11]. If a
graph is bipartite, then we can divide the set of nodes V into two

- independent sets, T and its neighbors N(Tj=V-T, such that for every
‘node ael the rieighbors: of ‘@, N(@<!N(T), and for every node

beN(Ty; N(b)c: " Theeti we can choose one of these two sets to be
the ‘Fesoutcé set: ‘Algorithm “partition into two independent sets"
(PTIS) outlines a scheme to pamtnon V into two mdepcndent sets,
naimél'y’ T and N(’I) E! ‘

ALGORITHM PTIS
Begin

-:Let us start by the set of n different sy,mbols Q?{xl,xi;
n.is an odd number. We want to divide:{ into. two disjoint sets @, v
-such that a contains (n-1)/2 symbols (ac(), and y contains the

Input: The set of nodes V.
1. Initially, 7=N(T)=. Chose a node from ¥ and put that node

nT

2 Find all neighbors for each node in T from V-N(T). Put them
in N(T).

3. Find all neighbors for each node in N(T) from V-T. Put them
inT.

4. Af VeTUN(T) then go to 2,
Output: Two Independent sets 7, and N(T).

‘End.

Algorithm PTIS is a generic algorithm to divide any bipartite graph
into'two independent sets. It is always possible to find a perfect
full-adjacency resource allocation for any bipartite interconnection
network. Note that if the graph is conngcted and bipartite then all
cycles in the graph havereven length. In full-adyacency sthe
neighbors of each resourcé node are non-resource nodés ‘id vice
versa. This means that-along any path in the network we will have
an alternate resourse and non-resource nodes. An easy algorithm to
find the nodes where a copy of the resource should be: placed is to
place the.first’ copy of the resource in an arbitrary node v and" then
placing a copy/of the resource in every node that is at even distance
from v. Figure'3 shows the full-adjacency placement for the, 2-star,
3-star, and 4-star. e

Figure 3¢

Corollary 1: The number of resource copiesy required to achieve a
perfect full-adjacency in any regular interconnection network which
is bipartite is equal to half the total number of nodes.

Proof: - If the graph is a bipartite graph, then we can divide the
nodes into two mdependent sets. Since, the network is regular then
the number of nodes in one set is equai to the numbers of nodes in

. the other set, which is equal to half the total number of nodes in the

network. [1

VI PERFECT 2-ADJACENCY PLACEMENT

This placement is more complicated than the previous:two cases. In
this section we will see that a perfect 2-adjacency. daes:not exist for
every star (e.g. 4-star where R(4,2) is not-an mtegral) However we

. will see that this placement always cxxsts for an risstar if'n lé‘é.n odd
,_’:_number :

e

s x,r}, where
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other (n+1)/2 symbols (y=C~-a). There is m different ways to

partition £ into a and y, where M= {;J Let us distinguish
2

between these different partitions by using a different subscript that
accompany each partition (i.e., a,, oy, ..., A5 ¥, Yy -oor Y, > Where
L=y, for i =1,2,.,m, and oL, VY for i#j. For each y, we
want to divide this set into two disjoint sets, 5, which contains only
one symbol, and B, which contains the remaining (n-1)/2 symbols
(i.e, Y=8,B, for i=1,2,..,m). The question now is whether it is
possible to partition each v, into & and B; such that P,# B, , for j=j?
The following lemma states that such a partition is possible.

Lemma 6: Let {={x,,x,, ..., x,} be the set of » different symbols,
where 7 is an odd number. Let each v, , i=1,2,..m, represent one of
the m different combinations of (n+1)/2 symbols from . Then we
can construct a new set §, of (#-1)/2 symbols from v, such that $,cy,
and B, , for isj, 1<ij<m.

Proof: See appendix A for a proof of this lemma.]

The next problem is to choose the symbols in B, from v; under the
condition that BB, , for i#j? Algorithm “partition into disjoint sets"
(PIDS) outlines & scheme that generates all different partitioning of
¢ into disjoint sets 8, o, and P, where axa, and BB, for
i=1,2..,m. Note that § = §ua, U, fori=1,2..m.

ALGORITHM PIDS

Begin

1. Let §={x,%,, .., X, }. Let el (15i€m) be the m different
sets, each containing (n-1)/2 different symbols, such that
a o, for iwj.

2. Fori=ltomdo
Y=, =3, and §=.

3 Pick (n-1¥2 symbols from the set v, and put them in f,.
Build 8, as 8,=v,-B,. Note that there is only one symbol in
the set &,

4. =1
Forj=1tom do
if j#i and B,cy; then [3,.=Bju(yj-ﬁi).
6. Select a new value for i in such a way that =& and for all

j#i, 15iSm, and the number of symbols in B, is greater than
or cqual to that in (3.

7. If B, does not have (n-1)/2 symbois then add more symbols
from ¥; to B, until B, has (n-1)/2 symbels. Then build §, as &,
=y, If any &, set is still empty then goto 5.

End,

Example; To illustrate the above algorithm let’s assume that
=(AB,C,D,E}. Then we can build the sets a; (Igi<m) as
a,={A,B}, a,={A,C}, a,={A,D}, a~{AE}, a =(B,C}, o =(B,D},
o,={B,E}, a;={C,D}, a,={C.E}, a,~{(D,E}. Now the above
algarithm can be used to determine the scts B;, and 8; (1sism).

From step-2 of the algorithm we get y={A,C,D}, v,={C,D,E},

1,={B,D,E}, 7,~(B,C,E}, vs~{A.D,E}, vs~{A.C,E}, v,~{A,C,D},
¥={A.B.E}. v ~{A,B,D}, 1,={A,B,C}, 8,0, B,~0, B,~0, B,~3,

B2, B0, B,=0, =0, B0, B,=0, 5=0, 5,~0, §,=0,
3,0, 8,~B, B, 8,=0, 3,=0, 5,0, 3,5=2.

From step-3 we get B,={C,D}, and §,={E}; Using step-4 and § we
have B,={B}, and B,={A}. Using step-6 we find that value of i is 4.
Now using step-7 we can build $,={B,C}, and §,={D}. Since there
are many empty &'s we must go back to step-5 with =4,

Now using step-5 again we get §,={E} and p,,~{A}. Using step-6
we find that the value of i is equal to 3. From step-7 we can build
B,={B,E} and 5,={C}. At this point the values of different B and &
sets are B[s(C’D}’ Bz-;e, B;={B'E}’ B4={B,C}, Bsggu 65=g,

7=(A}! Bg‘—'@v BQSQ! B[O’{A}v 5,=(E), 52303 53={C}’ 54={D}3
8D, 8=, 8,40, 80, 8=, §,,~D. Since all the deltas except
3,,8,, and §, arc empty we must go to step-5 with i=3.

Now using step-5 again we get B,={D} and B,={A}. Using step-6
we find that the value of i is equal to 2. From step~-7 we can make

,={B,D} and 8,={E}. At this point the values of different § and §
sets are B,={C,D}, B,~{B,D}, B,~{B.E}, B,~(B,C}, B,~%, B,~2.
B~(A), B={A), By=0, B,~{A}, 8=(E), 8,=~(E}, 8,~(C},
8,=(D}, 8=0, 30, 5,0, 8~D, 8,0, 8,,~. Since there are
more empty deltas, then we have to go to step-5 with i=2,

If we continue the above process of building the different sets, then
after few iterations we will get the following B and 5 sets:
B,={C,D}, B,~(B.D}, B,={B,E}, B={B,C}, B;={D,E}, B;={C.E},
B=(A.C}, By={AE}, B={AD}, B,~{AB}, 5={E}, 5=(E},
§3={{Cg; 54={D}5 55=‘A}, 5§={A}9 57“{D}9 583{3}, 89={B}:
10 .

Let us represent each partition of { into its disjoint sets by a 3-tuple
=8, o, B). Let [F={xn,, n,,.., x_} be the set which contains all
different 3-tuples. From the previous example, I1={({E}, {A.B},
{C.D}), ({E}, {AC}, (B.D]), ({C}. {A.DL{B.E}), ({D}, {AE},
{B,.CH, ({A}, {B.C}, (D.E})), ({A}, {B,D}, {C,E}), ({D}, {B,E},
%Agg} ({B}, {C.D}, {AE}), ({B}, {CE}, {A.D}), ({C}, {D.E},
A, .

For each 3-tuple we want to generate the permutations
P=Xy Xy Xy yaXppenyz X Which  satisfy the following  three
conditions :

Lxed if i=1;
2. x €0 if 2<is(r+1y2;
3.xep if (5t3)2<5isw;

For example, from the 3-tuple ({E},{A,B},{C,D}) we can generate
the following four permutations {EABCD, EABDC, EBACD,
EBADC}.

For each 3-tuple neTl there exist £ different permutations in ¥ that
satisfy the above three conditions, where

k= 11%(22)1* (252) ! = ((252)1)°. et Q¥ be the set which

contains all the different permutation that are generated from every
nsIl Since we have m different 3-tuples in I1, the total number of

different permutations in €2 are equal to ¥ =k * m = 3":}1*'- From
the previous example, I contains ten 3-tuples and from each 3-
tuple we can generate 4 different permutations, a total of 40
permutations. By using the 3<tuples in Il as in the previous
example, 2 contains the following permutations, Q={EABCD,
EABDC, EBACD, EBADC, EACBD, EACDB, ECABD, ECADB,
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CADBE, CADEB, CDABE, CDAEB, DAEBC, DAECB, DEABC,
DEACB, ABCDE, ABCED, ACBRE, ACBED;"ABDCE, ABDEC,
ADBCE, ADBEC, DBEAC, DBECA, DEBAC, DEBCA, BCDAE,
BCDEA, BDCAE, BDCEA, BCEAD, BCEDA, BECAD, BECDA,
CDEAB, CDEBA, CEDAB, CEDBA}

Lemma 7: A perfect 2-adjacency resource allocation exists in an n-
star network if » is an odd number

Proof: (Necessity) From lemma 2, R(n,2) =Kok = -,11% Since
n is an odd number then f;'— is integral and it is less than a'for

n>1. This means that there.is a-factor.in a! which is equal to f;l
which will cancel with the déndminator, Hence, R(n, 2) is integral.

(Sufficiency) By choosmg Q to be the resource set, we need to
prove’ that :

1. Qi 1s an mdependent set.

2. Each non-resource node is exactly adjacem {0 two resource
nodes.

The first statement can be proved by noting that any two
permutations P and Qin Q are “generated either from the same 3-
tuple, or from. two- different 3-hiples'in I1. Tn the fifst case, the two
permutations have the same symbol in the first ﬁosmon since’ they
have thie same 8; hence they are fiot adjacent In the second case; P
and Q are generated from two different 3-tuples, namely np and
In this case a,#0,, and B,#B, which means that there are at least
two symbols in P different from;.those in Q.in certain positions
between 2 to n. For the two pennutatnons to-be adjacent they should
differ in one symbol only fromi position 2 to.n..Hence these two
permutauons are:not. adjacent Thus, Q4s an independent set,

To prove the second statement, let s dssume that P¢Q is a non-
resource node. This means that P is generated from a 3-tuple eIl
However, there are two 3-tuples m,, my&ll, such that o=, but
B,y and B=P, but axa,. Note ?hat these conditions xmply that
8# 8y and 8= 8;. In the first case where 00y but BB, there
exlsts one and only one permutation Q that is generated from
which is different from P in only one symbol other than the one in
the first position. This symbol is in a position between (r+3)/2 to n.
Hence P is adjacent to Q. In the second case where =B, but
ap#ay there exists one and one permutation R that is generated
from 7, which is different from P in one symbol other than the one
in the first posmon This symbol is in 12 single position between 2 to
(n+1 )2; Hente P is adjacent o R, Thls lmphes that P is adjacent to
two and only two nodes labeled by the permutations Q and R.. 0.

The S-star is very comphcated to draw, so we represent the 5-star
'by the table in figure 4, where the éolumns correspond to one
indépendent set and the rows correspond to the other independent
set, .Such. a representation xs ‘possible ‘since the star graph is a
bxparme graph The number in the entry (u) in the table represents
the géneratdr that lifks node v, to node v "H{ there is no number then
therd“is 'nd’ link ‘between thé two ‘niodes” Note' that each row, or
column® has four” different numbers in four- different entries. The
resource nedes are represented by beld letters which occupy the last
twenty:golumns and:the last twenty rows.

1t should be clear at thxs pomt that for any non-resource node, there
are two generators g, ‘anid 3 gJ where 221<{n+1)/2, (n+3)/25_]5n each

corresponding to' & different communication link which connects
that non-resource node.to a differeat resource node.

The previous statement have several useful information which can
be summarized in the fonowmg pomts

l We can group the generators into two groups: Group A whnch
have the generators that switch the first:symbol.in the permutation

- with another symbol in a position between 2 to(#+1)/2; and group

B which have the generators that switch the first symbol in the
permutation with another symbol in a position between (#+3)/2-t0
. ’

2. There is no non-resource node which is connected to two
different resource nodes by links labeled by generators that belong
to the same group defined in 1, .. -

3. There exist "‘( m): digjoint 4k-stars where each star satisfies
1))

the perfect 1-adjacency placement.considered earlier. One possible
way to see this is by fixing the symbols in positions from (n+3)/2 to
n and permuting the symbols in posmons lto (n+1)/2 to obtam the

2L _star. Remember that there are dlSJOu'lt p-stars. Note that for

any non-resource node in this %—L-star there is one and only one
generator which belongs to group A :that connects a non-resource
node to a resource node in this substar. Another possible way is by
fixing the symbols in positions from 2 to (n+1)/2 and permuting the
symbols (n+3)/2 to n in addition to the first symbol. In this case the
generators belong to groyp B.

4. It is not necessary that group A has the first 2 to: (n+l)12
generators and group B has the other (#+3)/2 to n generators. We
can generalize this by choosing any of the n-1)2 generators to
belong to group A and the other (n-1)/2 generators to belong to
group B. In this case, when we build the :Q set, for each 3-tuple
(8,a,B)ell, a should be permuted in positions corresponding to the
generators in group A, and j§ should be permutcd in' positions
corresponding to the generators in group B. It is clear that we have

(',',_;1) different possibilities to chose group A (group B is then
H
implied).

~ VII CONCLUSION

In this paper we have investigated the distribution of resources in
the ‘star network. First:’ we found necessary conditions for the
perfect j-adjacency to exist. A perfect “1-adjacency and full-
adjacency placement solution was found and, we show that these
placement always exist for any, star. 'We find that a perfect 2-
adjacency placement exists in an.z-star if » is an odd number, and
we give an algorithm to find the resource nodes. The problem of
finding a general solution for perfect j-adjacency for any value of j
is still an open problem. Also, finding a general solution for
resource placement which, distribute as few resource copies as
possible in the star netwprk‘such that each node will reach a given
number of resources within a certain number of hops is still an open
problem
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Figure 4

match each man with a woman he knows such that every man is

APPENDIX A happy and no man is married twice. A necessary and sufficient

. condition for the matching problem to have a solution is that for

Theorem of Matching [12-14] every set of & men must, together, know at least k¥ women, for every
If G=(V,E) is a bipartite graph with parts V,,F,cV, then there exists k, 1sk<n. For example, there is a complete matching from ¥, to ¥,

a complete matching from ¥, to ¥, if |4|SIN(4)] for all subsets 4 of in figure 52, but not in figure Sb, since
,» where N(4) denotes the set of vertices in ¥, that are adjacent to A =22IN{ v, v DSl ws ) =1

vertices in 4 We want to extend this theorem so that every woman is happy too.

i . v A necessary and sufficient condition to match each man with a
woman so that every one is happy, and no man or woman i3 married

. 2 " twice is that there should exist a complete matching from ¥, to ¥,
and from ¥, to V.

v 3 v T :

Figura 5» Figure 5b

Think of this problem as a set of men represented by V| and a set of
women represented by V), with a set of acceptable pairs E, such that
an edge from v in V| to w in ¥, means that the man v knows the
woman w. The problem now is te determine if it is possible to

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 18:06 from IEEE Xplore. Restrictions apply.
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Theorem 2: If G is a regular bipartite graph with parts ¥, and V.

then there exists a complete matching from ¥, to ¥, and from ¥, to
I. .

Proof: Since G is regular with degree m, then for each subset 4 of

V., there are |4m edges incident. with the nodes in 4. Since the
! nodes in ¥, have the same degree as those in V, which is equal to m,

then those edges from A must be incident w1th |4] or more nodes in

+ V.- Thus, there is a complete matching from V| to ¥,. With similar

i argument we can prove that there is a complete matching from ¥, to
. ¥}, hence the theorem. [

"Proof of lemma 6: Let each B, represents a node in ¥ and each v,

represents a node in V,, 1<i<m. Draw an edge from B, to all v's if
By, An example is given in figure 6 for n=5. It should be clear
that the resulting graph is a regular bipartite graph with degree 3]
(['k7 : is the smallest integer greater thax'fb_rjequ‘_al to k). Thus there
exists a complete matching from ¥, to V, and‘from ¥, to ¥,. These
matching are represented by heavy the lines in figure 6. O
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