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USTRACT In a large system with many processing elements 
(PE), it is very expensive to equip each PE with a copy of the 
resource. It is desirable to distribute a few copies of a given 
resource to ensure that every PE is able to reach a copy of that 
resource within a certain number of hops. Previous work has been 
done on the binary hypercube as well as on the k-ary n-cube. In this 
paper we consider the problem of resource sharing among PES in 
the star interconnection network (SIN) and present three different 
placement strategies. First, we will consider the perfect 1-adjacency 
resource placement. In this placement, resources have to be 
distributed in such a way that every node without a copy of the 
resource will find exactly one node adjacent to it having a copy of 
the resource. Second, the perfect full adjacency placement will be 
considered. In this placement each node without a copy of the 
resource will find all nodes adjacent to it having a copy of the 
resource. Finally, the perfect 2-adjacency placement will be 
considered where each non resource node is adjacent to exactly two 
resource copies. We show that a perfect 2-adjacency resource 
placement does not exist for all star networks. 

I LNTRODUCTION 

The star graph is a Cayley graph which has gained prominence due 
properties as compared to the binary hypercube [l-31. 
of distributing resources in a multiprocessor system 

has been'hdidd for several interconnection networks such as the 
hypercube network [4-81 and the k-ary n-cube [9]. These resources 
can be hardware resources such as printers, disk drives, memory 
units, etc., or they can be software resources such as compilers, data 
files, library routines, etc. In large systems it is very expensive to 
provide each node with a copy of the resource It may also lead to 
poor resource utilizatiofi, since not every node in the system 
requires a copy of the resource. On the other hand, having few 
copies of the resources in the system might lead to contention with 
other access requests to the Same copy. It also reduces the reliability 
of the syst failure of some of those resource nodes 
will result ility of that resource copy to some other 
non-failure non-resource nodes. This tradeoff among cost, 
performance, and availability has to be considered when 
determining the number of resources in the network and their 
placement. 

In this work, we will distribute as few resource copies as possible 
in the star network which will satisfy the perfect j-adjacency 
placement, where j can be equal to one, two, or the degree of the 
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network. Finding a general solution for any value of j is a very 
complicated problem and does not exist for any star network. 
The rest of this paper is organized as foflo\ks. In section 11, 
necessary background and notations used in the rest of the paper are 
described. Section 111 outlines the necessary conditions for the 
existence of a perfect placement allocation in star graph. In section 
IY we study the existewo of perfect 1-adjacency placements and 
show that this placemeqtdways exists. In section V the perfect full- 
adjacency is studied. Section VI deals with the perfect 2-adjacency 
placement. Finally, sectioh'VII concludes this paper with directions 
of future research on this topic. 

I1 PRELIMINARIES 

We use the terms PE. node, vertex, and permutation; the terms 
graph and network; and the terms edge and generator 
interchangeably throughout this paper. An undirected graph 
G=(YE) is a set of vertices V connected by a set of edges ECVXV 
Two nodes v,we V are connected ipthere is an edge ( v ,w)~E.  In 
computer terminal set V cotresponds to the PES of the 

corresponds io the bi-directional 
connect the PES. The degree of a node is 

ges incident upbn that node. A graph is 
said to be regular @dl nodes have the same degree. 

Delinition I:. A set of nodes I c V  is called an independent set cflfor 
every two nodes +,wcl,  (v,w)bE. A maximal independent set is one 
which can't absorb any extra node(s) and keep the set an 
independent set. The biggest maximal independent set is normally 
called the maximum independent set. 

Definition 2: A set of nodes CcV is called a dominating set iffor 
every node Y E  (V-C), there exist a node w e C  such that (v, w) EE. 

Definition 3. A graph G is a bipartite graph JY the vertices of G can 
be partitioned into two sets, J', and V2, such that for every 
(v,w)EE, if veV, then WE V2, or vice versa. In other words every 
edge joins a vertex of V, to a vertex of V2. 
Definitron 4: A cycle is a sequence of distinct nodes in V,  such that 
the first node in the sequence is also the last one, and any two 
consecutive nodes in the sequence are directly connected by an 
edge. The length of the cycle is the number of nodes in that cycle. 
Let <={x,,%, .., xn} be the set of n different symbols. A star graph is 
an undirected regular graph with degree equal to (n-I).  lt is 
normally called by the number of n different symbols used to label 
the n! different nodes. So ah n-star has n! nodes labeled by the n! 
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different permutations wing the n different symbols in <. Two 
nodes v,weVare adjacent in the star network iFthe permutation of 
v and w differ in the first symbol as well as in one more symbol. 
The set of edges is partitioned into (n-1) classes denoted by &, 
2 ~ 3 9 .  An edge is labeled by a generator g, which exchanges the 
first and the ith symbol in the permutations labeling the nodes it 
connects. Figures la, Ib, and I C  show the 2-star, 3-star, and 4-star, 
respectively. 
Similar to the hynercube the star network possess a hierarchical 
structure. The n-star consists of smaller p-stars. It has been shown 

[2] that there are as many as (:::)*: distinct pstars, out of 

which $ are disjointpstars. 
r .  

wu* IC 

Dejnition 5. The subset Vr,c Y is defined as the set of 
permutations where the symbol re& is the same in the kth position, 
where I&&. (e.g. in 4-star, let <- {1,2,3,4} then V2, = 12134, 
2143,2314,2341,2413, 2431) ). It is clear that this set contains 
(n-I)! different permutations. 

XU PERFECTj-ADJACENCY PLACEMENT 

In this section we will develop the necessary conditions for the 
existence of perfect j-adjacency placement. Throughout this paper 
we will refer to a node which has a copy of the resource as a 
resource node, and the set which contains all resource nodes as the 
resource set. A node without a resource copy is referred to as a non- 
resource node. 

Definirion 6: We define an allocation strategy to be perfect @no 
two resource nodes are adjacent to each other, and all non-resource 
nodes are adjacent to the same number of resource nodes. 

Definition 7: An allocation strategy is called a perfect j-adjacency 
if it is perfect, and each non-resource node is adjacent to exactly j 
resource nodes. 

Lemma 1: Any perfect resource set is a dominating set and a 
maximal independent set. 

Proof: Since each node outside the resource set is a non-resource 
node which is adjacent to at least one resource node, this means that 
the resource set is a dominating set. From the definition of perfect 
placement, there are no two resource nodes adjacent to each other, 
hence the resource set is an independent set. Adding any non- 
resource node to the resource set will make the set a dependent set. 
Thus, the resource set is a maximal independent set. 0 

The importance of the above theorem lies in the fact that in looking 
for a perfect resource set in any interconnection network, we have 
to look for a dominating and a maximal independent set in that 
network Such a problem is known so far to be an NP complete 
problem [5,16]. 

Let Rfn,,) be the minimum number of resource copies required to 
achieve the perfect j-adjacency placement in an n-star. Then R(nj) 
is given by the following lemma 

Lemma 2: The minimum number of resource copies required to 
achieve a j-adjacency placement in an n-star is given by 
R(n, j )  = &$. For perfectj-adjacency (if it exists) R ( Q )  is an 
integer number. Where obvious, we use R instead of R(nj). 

Proof: If R resources are required then there are R nodes out of the 
n! nodes in the ster network which have a resource, and (n!-R) 
nodes are non-resource nodes. All resource nodes can be adjacent to 
exactly (n-1)R non-resource nodes. This is equal to the number of 
resources required by the non-resource nodes, which is equal to 
j(n!-R). By equating these two expressions and solving for R we 
have ( n  - l )R = j(n!- R ) .  Thus, R(n,  j )  = &. Note 
that for a perfectj-adjacency the number of resources R must be 
integral. This is a neceSSBIy condition for perfectj-adjacency to 
exist in the star network. 0 
From the above formula we can see that it is not always possible to 
achieve a perfect j-adjacency for any arbitrary values of n andj. 
However, this condition is not sufficient to guarantee that a perfect 
j-adjacency exists in the star network. 

Lcmma 3: For any value of n and j then are no two non-resource 
nodes connected to more than one common resource copy. 

Proof: Let us assume that there are two non-resoum nodes 
connected to the same two or more resource copies. This means that 
there should exist a cycle of length four. However, the smallest 
cycle that can be embedded onto the star network is of length six 
[IS]. This means that no two nodes can be connected to more than 
one common node. 0 
We will limit our approach for constructing the j-adjacency 
placement to three different cases. In the next three sections we 
study the existence of j-adjacency placements for various values of 
j, namely, I ,  n- I, and 2. 

1v PERFECT 1-ADJACENCY PLACEMENT 

In this section we study the existence of perfect 1-adjacency 
placement and show that these placement always exists for all star 
networks. 

Lemma 4: A perfect I-adjacency placement exists in any star. 
Proof: (Necessity) From lemma 2, substituting j by 1, we get 
R(n, l)=(n-l)! which is integral. This expression shows that there are 
(n- I ) !  nodes, equipped with a copy of the resource in order for each 
node in the star to have a resource or to be adjacent to a resource 
COPY * 
(Sugicency) We can choose the subset Vr, to be the resource set 
and all other nodes in (7’-VrJ to be the non-resource nodes. Note 
that Vr, contains exactly (n-l)! nodes. 

In order to prove that Vr, is the resource set, we have to prove that 
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1 Vr, is an independent set, and 

ry node vtz(V-Vr,) there existsanedge e&, such that e IS 
the only edge which connects the node v to one and only one node 
in Vr, In other words each non-resource node IS adjacent to exactly 
one resource node. 

To prove the first assertion, let w=rx$, x,.,x~,+, xn€Vr,. Applying 
any generator g, will generate a new permutation Y = X , J $ ~  xi-,rx,+, 
xn It is clear that vdVr, s incexp  
To prove the second assertion let us assume that ve(V-Vrl). Since 
vdVr,, the symbol r should not appear in the first position. Let v= 
x,xz x,*lr xn. Then there exists only one generator g, which will take 
the index r (in the ith position) to the first position This will result 
in a new node w=- xl~ix,..x,,~r,. U 

Since r can be any symbol from 4, this means that there are n 
different independent sets and we can chose any one of these sets to 
be the, resource set. 

Figure 2 shows the I-adjacency placement for the 2-star, 3-star, and 
&star where VA, is chosen to be the resource set. In the figure, the 
nodes with' the filled circle are the resource nodes. 

L .  . A  - 
Rpur. 2. 

Fiw. 2E 

V PERFECT FULLADJACENCY PLACEMENT 

A perfect full adjacency resource placement is an allocation strategy 
that does not have a copy of the resource will find 
t to it having a copy of the resource. Since the star 

network is a rbgular network with degree (n-l), this means thatj is 
equal to (n-I). 

Lemma 5: A perfect full-adjacency resource placement exists in 
any star network. 

Proof: (Necessily) From lemma 2, it is clear that R(n,n-I) is 
integral. 

(Suficiency) We can prove that an allocation always exists for any 
star by noting that the star network is a bipartite graph [l I]. If a 
graph is bipartite. then we can divide the set of nodes V into two 
independent sets, T and its neighbors NP)=V-T, such that for every 

' node ao?' the rteighhrs of U. N(a)c'N(T,), and for every node 
beN@, "&en we can choose one of these two sets to be 
the res0 Algorithm "partition into two independent sets" 
(F'TIS) outlines a scheme to partition V into two independent sets, 

ALGORITHM PTIS 

< 

naineiy !U 
I 

Begin I /  

Input The set of nodes V. 

1. Initially, T=N(T)=0. Chose a node from Yand put that node 
in T 

Find all neighbors for each node in T from V-Ng). Put them 
in N(T) 

Find all neighbors for each node in N f l )  from V-T. Put them 
in T 

2, 

3. 

4. 

Ouipur: Two Independent sets T, and Nfl) .  

If V#WN(7J then go to 2. 

End. 

Algorithm PTIS is a generic algorithm to divide any bipartite graph 
into two independent sets. It is always possible to Fmd a perfect 
full-adjacency resource allocation for any bipartite interconnection 
network Note that if the graph is connpcted and bipartite then all 
cycles in the graph havefeven length. In full-adjacency 'the 
neighbors of each resource riode are non-resource nodds'and w e  
versa. This means that aiong any path in the network we will have 
an alternate resoume and non-resource nodes. An easy algorithm to 
find the nodes where a copy of the resource should be PI*$ is to 
place the first copy of the resource in an arbitrary node v and pen  
placing a copy of the resource in every node that is at even distance 
from v. Figure 3 shows the full-adjacency placement for the, +tar, 
3 - W ,  and &star. 

FW,.* , 

Fqu. 3s 

Corollary 1: The number of resource copies required to achieve a 
perfect full-adjacency in any regular interconnection network which 
is bipartite is equal to half the total number of nodes. 

Proof: If the graph is a bipartite graph, then we can divide the 
nodes into two independent sets. Since $e network is regular then 
the number of nodes in one set is equd to the numbers of nodes in 
the other set, which is equal to half the total number of nodes in the 
network. 0 

VI PERFECT 2-ADJACENCY PLACEMENT 

This placement is more complicated than the previous two qws. In 
this section we will see that a perfect 2-adjacmq &e not PKist for 
every star (e.g. 4-star where R(4,2) is not an 
will see that this placement always exists for 
number. 

Let us start by the set of n different syrnbols G=(x,,x+ ..., G}, where 
n is an odd number. We want to divide 5,intQ two disjoiqt v., y 
such that a contains (n-1)/2 symbols (act;), and .y co#aans the 

I 
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other (n+t)Q symbols (y==-a). There is m different ways to 

partition & into a and y, where fP? = (L 1 , Let us distinguish 

between these different partitions by using a &&rent subscript that 
accompany each partition (i.e., at, ax, ..., a,,,; ylr y2, ..., y,) where 
&=aiuyi, for i =1,2,..,m, and ai&., yi#yi , for i#j. For each y, we 
want to divide this set into two disjoint sets, 6i which contains only 
one symbol, and pi which contains the remaining (nn-1)/2 symbols 
(i.e., yidiupi ,  for i=l,Z,..,m). The question now is whether it is 
possible to partition each yi into 6, and Pi such that pi+ P. , for i#j? 
The following lemma states that such a partition is possibje. 

Lemma 6: Let Q={x,,$, ..., xn) be the set of n different symbols, 
where n is an odd number. Let each yi , i=1,2,..m, represent one of 
the m different combinations of (n+l)/2 symbols from 5. Then we 
can construct a new set pi of (n-1)/2 symbols from yi such that &cyi 
and P i e j ,  for i+j, IS@. 

Pro& See appendix A for a proof of this 1e“a.U 

The next problem is to choose the symbols in Pi from yi under the 
condition that pi#pj , for i#j? Algorithm “partition into disjoint sets“ 
(PIDS) outlines E scheme that generates all different partitioning of 
5 into disjoint sets 4, ai. and pi, where ai+Qj, and p,+pj. for 
i==1,2..,m. Note that 

ALCORFTHM PIDS 

TL 

I 

= Siva,upi. for i=1,2..,m. 

Begin 

1. 

2, 

3. 

4. 

5. 

6. 

7. 

Let t;‘c{xI,x2. ..., xn}. Let aIc< (lSi4n) be them different 
sea, each containing (n-1)/2 different symbols, such that 
a,mJ for i#j. 

For i =1 to m do 

vi<-ai, P 1 4 ,  and 6,=0. 

Pick (n-1)/2 symbols from the set y,, and put them in 0,. 
Build 6, as 6 , q , - & .  Note that there is only one symbol in 
the set 6, 

i= 1 

Forjml tom do 

if j t i  and P,c 7, then P,=fl,u(y,-P,). 

Select a new value for i in such a way that S,=0 and for all 
j*i, ISjC?jsm, and the number OF symbols in P, is greater than 
or equal to that in 

If p, does not have (n-1)/2 symbols then add more symbols 
from 7, to p, until PI has (n-1)/2 symbols. Then build 6, as 8, 
= yi-& If any 6, set is still empty then go to 5. 

p,=0, &=0, p,=0, &=0, &=0, p,,=@, 6,=0, S,=0, s,=er, 
6,=0,6,=0*8,-fz, 6,-;0,6,=0,6,=0,6,,=0. 

From step3 we get P,=(C,D}, and 6,={E}, Using step-4 and 5 we 
have P,={B), and &={A). Using step-6 we find that value of i is 4. 
Now using step7 we can build p,=(B,C), and 6,={D). Since there 
are many empty 6’s we must go back to step5 with 14. 

Now using step5 again we get &=(E) and pl0=( A} Using step-6 
we find that the value of i is equal to 3. From step-7 we can build 
P,=(B,E) and 63={C}. At this point the values of different p and 6 
sets are l3,+C9D), P,=0, P,={B.E), P,={BCA P , 4 ,  P6=0, 
Pp{A), Pa=@, P9=0, Plo={A), &,={E), 6 , 4 ,  S,={C), 6,={D), 
6,&, S p 0 ,  6,4, S,&, S9-0, 8,,,==0. Since all the deltas except 
61,63, and 6, are empty we must go to step5 with i-3. 

Now using step4 again we get p,={D) and &={A). Using step-6 
we find that the value of  i is equal to 2. From step7 we can make 
P,=(B,D) and 6,=(E). At this point the values of different j3 and 6 
sets are P1={C,D), P,=~B,DL P3=U3,E), P,=(B,C), P,*, P6=0, 

6,={D}, 6,=0, S,*, S,=0, Se=@, &,=er, 6 s a 4 .  Since there are 
more empty deltas, then we have to go to step5 with i=Z. 

If we continue the above process of building the different sets, then 
after few iterations we will get the following p and 6 sets: 

PTs(A), Pa=IA), P9-9 Plo”(A1, 8,={E), 82=.(E), 4={C), 

Pl=(C,D). P,=(B,DIt P,-(W). P,s{BX2, P,W‘,EI, PGm(C,E), 
P,={&C), $=(AE), Pg={ADl, P,O=={kB), 61={E)* 62={E), 
S,={C), S,-{D), Ss-fAIt S,={A), 6T={D), 6,-{B), 6q={B}, 
6,gIC).  
Let us represent each partition of 5 into its disjoint sets by a 3-tuple 
n&, ai, pi). Let lT=(n,. n2. .., n,) be the set which contains all 
different 3-tuples. From the prcvious example, IY={((E), (A,B}, 
(CD)), ((E), {Arc), {BD)), ((C), {AD),{J%E)), ({DIP {A$}, 
{B,C)), ((AI, {B,C}, {D,E))a ({A). (BJ’), (C,E})x ({D), {B,E), 
(A,C)), ((B), (CD), (A,EJ), IC,E). (GD)), ((C), {DxE), 
{ A m i .  
For each 3-tuple we want to generate the permutations 
~ I ~ . , . ~ o + l y 2 ~ n + 3 y 2 . . x ~ ,  which satisf) the following three 
conditions : 

1. X,E S if i-1; 

2. x, ea if %iS(n+lyZ; 

3. xiep if (n+3)/2< is n; 

For example, from the 3-tuple ({E),(A,B},{C,D)) we can generate 
the following four permutations {EABCD, EABDC, EBACD, 
EBADC). 
For each 3-tuple nen there exist A different permutations in V that 
satisfy the above three conditions, where 

contains all the different pennutation that are generated from every 
nen. Since we have m diffemt 3-tuples in JI, the total number of 
different pennutations in B are equal to r = k * m = 3. From 
the previous example, lT contains ten 3-tuples and from each 3- 
tuple we cm generate 4 different permutations, a total of 40 
permutations. By using the 3-tuples in Il  BS id the previous 
example, S2 contains the following permutations, ZP{EABCD, 
EABDC, EBACD, EBADC, EACBD, EACDB, ECABD, ECADB, 
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CADBE, CADEB, CDABE, CDAEB, DAEBC, DAECB, DEABC, 
DEACB, ABCDE, ABCEB, AC€kLI& ACBEI$”BDCE, ABDEC, 
ADBCEy ADBE‘’ DBEAC7 DBECA’ Dm’ mBCA’ BCDA” 
BCDEA, BDCAE, BDCEA, BCEAD, BCEDA, BECAR BECDA, 
CDEAB, CDEBA, CEDAB, CEDBA) 

corresponding to a di&rent communication link which connects 
that non-resource node to a different resource node. 

The previous statement have several useful information which can 
be in the following 

Lemma 7, A perfect 2 4 j a a n c y  resource af]opation exists in an n- We group the generators into groups: Group A which 
have the generators that switch the first symbol in thetpermutation 
with another “bo1 in a Dosition between 2 tot(WIY2: and PJOUD 

star network if n is an odd number 

proof: ( ~ ~ ~ ~ ~ ~ j ~ )  From lemma 2, R(n ,2 )  t i$& = $ since 

n is an odd number then $ is integral and it is less than n for 

B which havk the generators that switch the first symbol thk 
permutation with another symbol in a position between (W3)/2 to 
n. 

e l ,  This 
which will cancel with the dendminator. Hence, R(n,2) is integral. 

that there is It  factor in n! which is equal to 2. There iS no non-resource node which iS COI’IneCted to WO 
different resource nodes by links labeled by generators that belang 
to the same group defined in 1. - -  

(Suflciency) By choosing C2 to be the resource set, we need to 
prove that 3. There exist xql! disjoint +-stars where each star satisfies 

1. C$ is an independent set. 

2. Each non-resource node is exactly adjacent to two resource 
nodes. 

The first statement can be proved by noting: that any two 
permutations P and Q in R are generated either ftom the same 3- 
tuple, or from two different 3-hiples’in n. In the first case, the two 
permutations have the same symbol in the first dosition since they 
have the same 6, hence they am hot adjacent. In the second caw, P 
and Q are generated from two different 3-tuples, namely np and nQ. 
In this case gw, and pp#p which means that there are at least 
WO symbols in P different %om; those in Q in certain positions 
between 2 to n. For the two permutations to be adjacent they should 
differ in one symbol only f K q  position 2 to n. Hence these two 
permutations are not adjacent. Thus, R is an independent set. 

To prove the second statement, let sume that PdR is a non- 
resource node. This means that P is generated from a 3-tuple %+?IT. 
However, there are two 3-tuples x x , d I ,  such that %=a, but 
pptpQ; and pP=& but +fa,. Note %at these conditions imply that 
S,# Sp and &,,+ 6,. In the first case where %=aQ but pp#pQ, there 
exists one and only one permutation Q that is generated from zQ 
which is different from P in only one symbol other than the one in 
the first position. This symbol is in a position between (n+3)/2 to n. 
Hence P is adjacent to Q. In the second case where pp=& but 
apfa~ there exists one and one permutation R that is generated 
from nR which is different from P in one symbol other than the one 

le position between 2 to 
lies that P is adj3cent to 
utations Q and R. U 

The 5-star is vety complicated to draw, so we represent the 5-star 
by the table in figure 4, e columns correspond to one 
independent set and the ro spond to the other independent 
set. Such a representation is possible since the star graph is a 
bipartite graph. The number, entry (ij) in the table represents 

dtle v.” If’tisere is no number then 
e two nodes. Note that each row, or 

coluimn‘has four’different numbers in four different entries. The 
resouzce nodes are rep,resented by bold letters which occupy the last 
twenty columns and the last twenty rows. 

It should be clear at this’point that for any non-resource node, there 

J‘ I 

are two generators g, arid g,, where 2<fl(&1)/2, (&3)/2~j5&1, each 

the perfect I-adjacency placement considered earlier. One possible 
way to see this is by futing the symbols in positions from (n+3)/2 to 
n and permuting the symbols in positions I to (n+1)/2 to obtain the 
+-star. Remember that there are 3 disjoint pstars. Note that for 

any non-resource node in this q=star  there is one and only one 
generator which belongs to group A that connects a non-resource 
node to a resource node in this substar. Ano+er possible way i s  by 
fixing the symbols in positions from 2 to (n+1)/2 and permuting the 
symbols (rrt3Y2 to n in addition to the first symbol. In this case the 
generators belong to groqp B. 
4. It is not necessary that group A has the first 2 to (n+1)/2 
generators and group B has the other (&3)/2 to n generators. We 
can generalize this by choosing any of the (n-1)/2 generators to 
belong to group A and the other (n-l)/2 generators to belong to 
group B. In this case, when we build the R set, for each 3-tuple 
(&a,p)dl, a should be permuted in positions corresponding to the 
generators in group A, and p should be permuted in positions 
corresponding to the generators in group B. It is clear that we have t;) different possibilities to chose group A (group B is then 

implied). 

VI1 CONCLUSION 

In this paper we have investigated the distribution of resources in 
the star network. First, we found necessary conditions for the 
perfect j-adjacency to exist. A perfect 1-adjacency and full- 
adjacency placement solution was found and we show that these 
placement always exist,for any star. We find that a perfect 2- 
adjacency placement exists in an n-star if n is an odd number, and 
we give an algorithm to find the resource nodes. The problem of 
finding a general solution for perfectj-adjacency for any value o f j  
is still an open problem. Also, finding a general solution for 
resource placement which distribute as fey resource copies as 
possible in the star netwprk,such that each node will reach a given 
number of resources within a certain number of hops is still an open 
problem. 

65 

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 18:06 from IEEE Xplore.  Restrictions apply.



Figure 4 

APPENDIX A 
Theorem of Matching 112-141 

If G=(V,,E) is a bipartite graph with parts V,,V,cV, then there exists 
a complete matching from V, to V2, I$/AJSIN(A)I for all subsets A of 
Vi, where N(A) denotes the set of vertices in V, that are adjacent to 
vertices in A 

"'V' 

F w e  6. F W  6t. 

Think of this problem as a set of men represented by Vi and a set of 
women represented by V,, with a set of acceptable pairs E, such that 
an edge from v in V, to w in V, means that the man v knows the 
woman w. The problem now is to determine if it is possible to 

match each man with a woman he knows such that every man is 
happy and no man is married twice. A necessary and sufficient 
condition for the matching problem to have a solution i s  that for 
every set of k men must, together, know at least k women, for every 
k, l a .  For example, there is a complete matching from V, to Vz 
in figure 54 but not in figure Sb, since 

We want to extend this theorem so that every woman i s  happy too. 
A necessluy and sufficient condition to match each man with a 
woman so that every one is happy, and no man or woman is married 
twice is that there should exist a completc matching from V, to V, 
and from Vz to V,. 

I {y, 1 l=~~v(~v2P,Hl=l (w,)l=l. 
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b E  

Theorem 2: If G is a regular bipartite graph with parts Vi and v,, 
then there exists a complete matching from VI to V, and from Vz to 
Vl 
Proof: Since G IS regular with degree m, then for each subset A of 
VI, there are lAlm edges incident with the nodes in A. Since the 
nodes In VI have the Same degree those in vz which 1s equal to m, 

I then those edges from A must be incident with lAl or inore nodes in 
V, Thus, there is a complete matching from VI to Vz With similar 
argument we can prove that there is a complete matching from V, to 
Vi, hence the theorem. 0 

Proof of lemma 6 Let each p, represents a node in VI and each y, 
represents a node in V,,, I$ilm Draw an edge from p, to all y,'s if 
P , q ,  An example is given in figure 6 for n=5. It should be clear 
that the resulting graph is a regular bipartite graph with degree r$1 
( r k 1  is the smallest integer greater than'or equal to k) Thus there 
exists a complete matching from Vi to V,, and from Vz to Vi.  These 
matching are represented by heavy the lines in figure 6. 0 

' 
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