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Abstract. An important step in target acquisition is to be able to label
various unconnected objects (components) in the scene. We present
new algorithms for labeling connected components in a binary image.
Eight connectivity for object and background pixels is assumed. The
sequential algorithm is described first. The computational complexity of
the algorithm is linear (optimal) in the number of object pixels in the
image. The memory requirement is also linear in the number of object
pixels. The representation of the connected components used in the
algorithm makes it easy to calculate certain properties of regions, i.e.,
area, perimeter, etc. The algorithm is then parallelized and implemented
on a shared memory computer. The computational complexity of this
parallel algorithm is O([log n]) for an image with n object pixels using n
processors, and is the best achieved yet. The implementations of the
algorithm on several distributed memory architectures, i.e., a binary tree

Austin, Texas 78712-1084 connected computer [ O(log n)], a unidirectional and bidirectional mesh
connected computer [O(n*?)], and a hypercube computer [ O(log n)]
are discussed. The computational and communicational complexities of
these implementations are computed, and are the best yet achieved.
The algorithm is easily extended for gray-level images without affecting
the complexities. Results of the implementation on the sequent balance
multiprocessor are presented. © 1998 Society of Photo-Optical Instrumentation
Engineers. [S0091-3286(98)00307-9]
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1 Introduction gorithm is the computationally expensive corner detection.
Samet and Tamminémave an algorithm applicable to hi-
erarchical data structures, such as quadtrees, octrees, and in

object to describe the complete scene. This identification Ubint Th h d " vl
involves assigning unique labels to disjoint objects. Label- 9€N€ral bintrees. 1he authors used a very small equivalence
table and the processing cost was linear in the size of the

ing the objects is a fundamental task in computer vision, . ! .
since it forms a bridge between low-level image processing Ma9€- Several other techniques to accomplish related prob-
and high-level symbolic processifg lems with varying degrees of accuracy and computation

The problem has been studied for over three decadesMme involved were present d. .
One of the first known algorithrigperformed two passes Most computer vision t‘?SkS réquire an enormous amount
over the image. In the first pass, labels were generated forOf computation, demanding high-performance computers

object pixels and stored in an equivalence table. During the for practical real—t|m_e applications. _Paralle_hsm appears 1o
l?e the only economical way to achieve this level of com-

second pass, these labels were replaced by the smalles utation. Hirschberg et dlgave one of the earlier formu-

. . _p
Qquwalent 'ab‘?'s- The memory requirement and computa lations of a parallel approach to connected component la-
tional complexity for evaluating the equivalent label were

very high for images with complex regions. Lumia etal. bellng. Given a.grap*; representation Wllhnpdes, this
reduced the size of the equivalence table by reinitializing tecnique reqU|red2n /logn processors with shared
the table for each scan line. This algorithm also required MemMory in anO(log®n) algorithm. Nassimi and Saftfli
two passes. Haraliékproposed an algorithm that did not Presented an algorithm on arxn mesh connected com-
require an equivalence table but, instead, required the re-puter that labeled the components in axn image in
peated propagation of labels in the forward and backward O(n) time. Tucket' presented a parallel divide-and-
directions. This technique improved on the memory re- conquer algorithm on a simple tree connected single in-
quirement but required a large number of passes throughstruction multiple dataSIMD) computer, which required
the image for complex objects. Mandler and Oberlander O(n*?) time for an image of siza. Cypher et at? sug-
presented a one-pass algorithm to generate border linegested an exclusive-read exclusive-write parallel random
chain codes for each component and also provided a list ofaccess machingEREW PRAM) algorithm with a complex-
adjacent regions for each region. The drawback of this al- ity of O(logn) and hypercube and shuffle-exchange algo-

To analyze a picture of a scene, we must identify each
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rithms with a complexity ofO(log? n) for an image of size

n (Refs. 13 and 14 These algorithms apply only to binary
images since the concept of boundary would otherwise be
imprecise. They also assume four connectivity for pixels.
The number of processors used for the EREW PRAM al-
gorithm is 3+ 2n*2 for an image of size, thus, putting a
very low bound on the processor efficiency. Sunwoo é? al.
also implemented a parallel algorithm on a hypercube
whose complexity was linear in the size of the image.
Agarwal and Nekludov& presented an algorithm on an
EREW PRAM with a complexity ofO(logn). This algo-
rithm is described for hex-connected images. Little €t al.
gave parallel algorithms on the connection machine, which
took O(log n) router cycles for an image of size Maresca
and Li'® presented an algorithm that labeled components in
an nXn image in O(n) time on a polymorphic torus.
Manohar and Ramapriydhgave another algorithm on a
mesh connected computer with a complexity of
O(n log n?) for annx n image. Woo and Sahificompare

very specific to the architecture, the algorithm described in
this paper applies to a very general class of architectures.

For implementation of the algorithm on distributed
memory architectures, we compute the communicational
complexity, along with the computational complexity. We
evaluate the complexities for a binary tree connected com-
puter, a unidirectional and a bidirectional mesh connected
computer, and a hypercube connected computer. Complexi-
ties obtained for these architectures are the best yet
achieved. The communication overhead for the distributed
memory computers is well illustrated by the communica-
tional and computational complexities. Because of the
dominance of the communicational complexity, the effi-
ciency of processors decreases with an increase in the num-
ber of processors.

This paper is organized as follows. We first introduce
the concept of connected component labeling and the nota-
tion and definitions used in our description. This is fol-
lowed by a description of our data structure, the sequential
algorithm, the complexity of the sequential algorithm, and

the performances of the connected components algorithmthe parallel algorithm and its complexity evaluation. Next,

for various partitions and mappings of the data. Their algo-
rithms have a complexity dd(n?) for an image of size.
Alnuweiri and Kumaf! survey several parallel algorithms
and architectures for image component labeling. Bekhale
and Banerje® implement their algorithm on a hypercube
machine. They look at the problem as occurring in very
large scale integrationVLSI) circuit extraction. Hsu

et al?® present theoretical computational complexities of
various algorithms.

Most of the preceding algorithms are not practical. We
look at the algorithm from a computer vision point of view.
In most computer vision tasks, the input is either directly
from a camerdaccessible usually to one procegsmris an

we discuss parallelizing and implementing the preceding

algorithm on shared memory architectures and present a
complexity evaluation. The implementations of the algo-

rithm on various distributed memory computers and their

computational and communicational complexities are dis-

cussed next. Then we present the results of implementing
the algorithm on the sequent balance computer and con-
clude the article. Appendix A lists the sequential algorithm

in detail, and Appendix B provides evaluations of certain

communicational complexities.

2 Connected Component Labeling
This section describes the sequential and parallel algo-

image stored in a computer. In both cases, the image isrithms for connected component labeling and their com-

usually compressed in run length encodiogr input speci-

plexity evaluation. We use certain assumptions about the

fication). Since the input image is accessible to only one input image for our algorithm. First, it is a binary image
processor, it needs to be split into subimages and distrib-with object pixels represented as rurighis representation
uted to the various processors. Almost all other algorithms js very economical and often used for image compression.
assume that the initial image resides in all processors  \We assume an eight connectivity for all the pixels.

the subimages reside in the procesgoFsirthermore, in a

typical computer vision application, the image, with the 51 notation

connected components marked, is further processed to rec- . . .
ognize these components. This calls for merging the sub- Henceforth, we denote object pixels by pixels, unless they

images to one processor. This overhead is also ignored by2r® @mbiguous. A conexafaiso path in Ref. JLof length
most other work(the final connected components are dis- N from pixel P to pixel Q is a sequence of pixel points
tributed among the processbrhe output representation P=Po.P1, ... ,P,=Q such thatP; is a neighboxan eight
of the components we use is very desirable and effective connectivity of P;_;, 1<i<n. We say that pixelP is
for the next level of computation. connected to pixeQ if a conexon exists fronP to Q. This
We present a new sequential algorithm for connected is a conexohif it lies within rows 1 .. .k. A maximal set
component labeling with a worst-case computational com- of connected pixels within rowd . . .k (at least one of
plexity that is linear in the number of objectsr more  which is in rowk) forms the obje¢t The maximal set of
precisely, the number of object pixglg the image. Most  onnected pixels in rovk forms a rep. The set of rep
previous algorithms have the disadvantage that their Com'belonging to the same objédorms the paft A touct is a
plexity is a function of both the object and the background ref that connects two or more rep, at least two of

pixels. The memory requirement of our algorithm is also . . _ L
linear in the number of objects. The algorithm is then par- which are not in the same pérﬂ, These definitions are
dllustrated by an example in Fig. 1.

allelized and implemented on the sequent balance share
memory multicomputer. The computational complexity of
our new parallel algorithm on a shared memory computer is 2-2  Input/Output

O([log n)) for an image of sizen. Unlike other parallel For the sake of simplicity, we assume the input to be in the
algorithms for connected component labeling, which are run length representatibirom left to right and top to bot-
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row k-1

row k

Fig. 1 Example to illustrate the notation. The reps 3 and 4 are rep.
Reps 1, 2, 3, and 4 form an object’. Reps 3 and 4 collectively form
the part“. Rep 3 is a touchX that connects two rep*~* (reps 1 and 2),
which are not in the same part‘~?1.

tom. This does not affect the generality of the algorithm,
since it is trivial to convert image data 2-D array to the
run length representation. The format of the input to the
algorithm is as follows:

1. Ifarow has at least one rep in it, then it is a sequence
of integers(r,n,l;,rq,....1,,r,], wherer is the row
number;n is the number of reps in this row; ahdr;
for 1<i=<n are the left and right column numbers of
theith reps in rowr, respectively.

. If there are no reps in the row, then the sequence for
that row is null.

The output of the algorithm is a linked list of the various

« objnext—a pointer to the next objdcin the linked list

« touch—a Boolean set to true if a fefs found to be
connected to objeft?.

“Component” is a linked list of structures with the fol-
lowing fields:

* compe—a pointer to the first rep belonging to this
component

» compnext-a pointer to the next component in the
linked list.

2.4  Properties

1. A ref* L is connected to a rép*M if L—right

=M—left—1 AND L—left<M —right+ 1.
2. Ared is connected to a péft! if it is connected to
one of the rep ! in that parf™ 2.
A reff is connected to an objéct if it is connected
to the part™* of object™*.
If a conexon is found between objedsand B in
row k, and if A—leftmost<B—leftmost thenB
—label= A— label.
5. Two reff A andB are neighbors if no répC exists
such thatA— left<C— left<B—left.

3.

4.

connected components in the input image. Each connected?.5 Sequential Algorithm

component is, in turn, a linked list of the reps it comprises. ¢ sequential algorithm is conceptually very simple. Ev-
ery rep is associated with an object. If two reps are con-
2.3 Data Structure nected, they both point to the same object, i.e., the object
There are two basic structures in this algorithm, namely with the smaller label. All the reps pointing to the same
reps and objects. Linked lists are used to represent bothobject form a component. We now describe the major pro-
these concepts. A third linked list, component, is used to cedures of the algorithm. For the detailed algorithm, see
represent the output—the list of connected components inAppendix A.
the image. The reps in a row are assumed to be in order

from left to right, i.e., the leftmost rep occurs first and the ~Procedure COMPONENT)
rightmost rep occurs last. Each fejs represented as a  Pegin _
structure consisting of the following fields: INITIALIZE ();
while not(EOP do
« left—the starting column number of rep MAKELISTS();
+ ohtthe col ber where feBnd CONNECTIONS):
right—the column number where répends REGIONS):
« row—the row number of this rép CHANGELABEL();
* repnext—a pointer to the neighboring rép od JOIN(;

repcomp—a pointer to the neighboring refto be
used in the parallel algorithm

object—a pointer to the objetonnected to this rép

Each objectis also a linked list of structures having the
following fields:

« leftmost—a pointer to the leftmost répassociated
with this object

e end—a pointer to the end of the linked list of reps
from previous rows that are connected to this object

« start—a pointer to the start of the linked list of reps in
previous rows that are connected to this object

« label—a positive integer assigned to this obfect

2080 Optical Engineering, Vol. 37 No. 7, July 1998

PRINTOUT(comps;
end COMPONENT;

The procedure COMPONENT is the main routine of this
algorithm and invokes all other procedures, directly or in-
directly. The procedure MAKELISTS reads the sequence
of integers in each rep and forms a linked list of structures
which make up the rép The left and right ends of column
numbers of the rep and the row number are inserted into the
corresponding fields. The réjn the input are ordered ac-
cording to their position in the row, with the leftmost ap-
pearing first and the rightmost appearing last. The repnext
field points to the next regstructure. The object ! are
stored in a separate linked list and the objnext field points
to the next object.
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The conexons between feand re—* are found by the ~ Hence, the number of executions of statements in CON-
procedure CONNECTIONS. When a conexon is found, the NECTIONS is bound by reép *+ rep.
reg"! has the obje&t* marked as current and the fep The while loop in REGIONS is executed object
said (touch-true) to be connected to the objéect of times. Since the number of objéct is at most rep %, the
reg" 1. The procedure CONNECTED takes two reps as executions are bound by rep.
input parameters and checks to see if they are connected. There are two loops in CHANGELABEL. The variable
When a rep is found to be connected to two neighboring joint is incremented each time f&pt and its right neighbor
reg”1, these neighboring objéct' must be joined. Their  are found to be connected to the same* i@pCONNEC-

labels are updated by the procedure LABELLING. TIONS. Hence, the value of joint is at most fep. This
Procedure LABELLING takes two labels as input pa- sets a bound on the execution of the for loop. The while

rameters and assigns them the label of the objédhat is loop is executed réptimes and, hence, the bound on the

leftmost and connected to this objéct by a conexoh number of executions in this procedure is the maximum of

The procedure REGIONS, as the name suggests, Iooksre& and refs L.

for regions in the input image. 'lt traverses the offjett The while loop in JOIN is executed once for each

linked list, looking for any obje¢t that were notfound o gpiack—1 and object Hence, the number of executions are

be connected to any repEvery object satisfying the  yound by the sum of régand refs .

preceding forms a connepted cohmponent. Thde linked list of The statements in LABELLING and CONNECTED are

" Procedure CHANGELABEL computes the label for the ©*ecuted only once. Thus, we have an upper bound on the
number of executions of statements in the algorithm on the

object™ 1. Then, it traverses the linked list fgpassigning AR ’
new label to all the rép that are not connected to kthltleratlo_n Of.COMPONENT’ that is, the sum of fepnd
reg" 1. This gives us an upper bound on the number of

object™?, and putting label to the réghat are connected .
] . . . . executions for COMPONENT: r2-1. Hence, by Lemma
to object ™. The leftmost field of each object is assigned 1, the complexity of COMPONENT i)(t).

the leftmost rep that touches the objéct
JOIN traverses through the linked list of objects looking 2.7 Parallel Algorithm

for object™* to be joined with other objett*. The linked  Tpe parallel algorithm is conceptually very simple. The

lists of refS are then combined. procedure PARALLEL LABEL is the main routine of this
) ) ) ] algorithm and invokes all other procedures, directly or in-
2.6 Complexity Analysis of the Sequential Algorithm directly. The input image is split into subimages, one for
Let t be the total number of reps of object pixels ante each processor. This division of the image is done statically
the number of rows in the image. such that the subimages are approximately the same size.
The subimages are then distributed to the various proces-
Lemma 1. Vt, r<t. sors. Then, each processor labels the components of its cor-

responding subimage using the sequential image compo-
Proof.  In the worst case, there will be, at most, one rep nent labeling proceduréi.e., COMPONENT. Next, the
in any row. In our representation, if there are no reps in a components of the subimages are merged to obtain the
row, then that row does not exist. Thus, the total number of components of the entire image.
rows cannot exceed the number of reps of object pixels in procedure PARALLEL _LABEL ()

the image. begin
) ) SPLIT_IMAGE();
Theorem 1. The time complexity of the procedure DISTRIBUTE_IMAGE();
COMPONENT isO(t). do in parallel for all processors
) ) ) COMPONENT);
Proof.  The while loop in COMPONENT is executed od
once for each row-times andr <t. For every row, most MERGE_COMPONENTS);

procedures are executed once. We find a bound on the end PARALLEL _LABEL:

number of times each statement is executed in each of these

procedures. The input image is divided into approximately equal size
The procedure INITIALIZE is executed once and it in- subimages by the procedure SPLIMAGE. Then, these

vokes procedures CREATOBJ and CREATREP a constantsubimages are distributed to various processors by the pro-

number of times. Thus, the number of executions in this cedure DISTRIBUTEIMAGE. The subimage distribution

procedure is constant. scheme depends on the interconnection between the proces-

Consider the k'th iteration of COMPONENT. In  SO'S.

; ; After labeling the components in each subimage using
rhflfn}ftil;f:z’bthe iterations due to the for loop equal the the sequential labeling procedure COMPONENT, the pro-

. . cedure MERGECOMPONENTS is invoked. This proce-
IrllCQNNECﬂONS' the outer while loop is executed e involves merging components that reside in separate
reg”! times. So, all the instructions, except those within subimages. An efficient merging scheme depends on the

the inner while loop, are executed Fféﬁ times. The vari- interconnection between the processors. In most cases, the
able nrep is set before the outer while loop and the condi- communication pattern among the processors during the
tion of the inner while loop is satisfied at most fejmes. distribution of subimages is the inverse of the communica-
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tion pattern during the merging of subimages. The differ-
ence lies in the computation involved within these proce-
dures.

Consider two adjacent subimagsandsS,. Without a
loss of generality, we further assume tisatextends from
rowsi to k—1 and thatS, extends from row to j. The
merger of these subimages involves only rdwsl andk.

If rep*~* is connected to rép then the objects correspond-

ing to these reps are assigned the same label—the smaller

one. Also, if a touch is found, then the labels of the
part~! and rep are given the same label—the one associ-
ated with paft ™.

If rep*"! A is connected to répB, then the following
condition holds:

(A—left=B—right+ 1) O0(A—right=B—left—1).

The preceding condition is the same as that used in
joining two reps in the sequential algorithm. To combine
two components corresponding to fep A and ref B,
we only need to make the following changes:

B— object—leftmost—object—-end— repnext
= A— object—leftmost—object—start,

A— object—leftmost—object —start

= B— object—leftmost—object-start,

A— object —leftmost= B— object-leftmost.

Fig. 2 Merger of components in subimages is done in a binary tree
fashion.

3 Implementation on Shared Memory

Architectures

Having described the sequential algorithm for labeling con-
nected components, we now present a strategy to imple-
ment the algorithm on a shared memory computer.

The image is partitioned horizontally into a set of sub-
images, preferably into as many as the number of proces-
sors. Each of these subimages has its connected compo-
nents labeled concurrently by multiple processors. These
subimages are then merged at several levels, as are their
labels. Next we discuss the hierarchical merging process, as
shown in Fig. 2.

The subimages are numbered as consecutive integers
from O upward. Subimages with consecutive numbers are
adjacent. Note that the binary representation of the subim-
age numbers for adjacent subimages differs at the least sig-
nificant digit. At the first level, adjacent subimag@and

Thus, combining two components requires a constant1,2,3...) are merged to form new subimages. The subim-

amount of computation.

2.8 Complexity Analysis of the Parallel Algorithm
The parallel algorithm involves computation and commu-

age obtained by merging two subimages inherits the lower
subimage number. For cases with an odd number of sub-
images, the last subimage is merged with an empty subim-
age(or, passed on as is to the next levalhus, the adja-

cent images at the second level differ at the second most

nication of data between the processors. Since the relation-significant digit in their binary representation. This proce-

ship between these operations vary with the parallel com-

dure of merging is continued until all the subimages are

puters, we choose to evaluate the computational andmerged into a single image. In the above discussion, we

communicational complexity separately.

Consider the labeling of components of an image of size
n usingp processors. The splitting of the image takes con-
stant time. The distribution of the image involves constant

computation at each processor. But, the number of times

assume that a subimage is comprised of one or more rows
of reps. However, this technique can easily be extended to
include cases where the subimages are comprised of a part
of the row(as described in the previous secdion

these computations are performed depends on the distribug 1 complexity

tion scheme. We assume that to be Since the merging
process is inverse of the distribution process with an addi-
tional constant computatiofi.e., 3, the complexity of the
merging process i©(L). Thus, the computational com-
plexity of the parallel algorithm isO(n/p+L), where
O(n/p) is the complexity of labeling components of each
subimage.

The evaluation of the communicational complexity is
much more involved since it depends entirely on the distri-
bution scheme used for the particular multicomputer. We
evaluate the communicational complexities of the parallel
algorithm for several multicomputers in the following sec-
tion.

2082 Optical Engineering, Vol. 37 No. 7, July 1998

Consider an image with object pixels labeled by pro-
cessors. On an average, each subimage[ings object
pixels. Thus, labeling components for all the subimages
takesO([n/p]) time. The maximum number of components
that need to be merged at each levelO§n/p]). Since
merging two components requires a constant amount of
computation, the components can be merged in constant
time at each level. The number of levels of merging is
[log p]. Hence, the computational complexity of the entire
labeling process i©([n/p]+k’'[log p]), wherek’ is a con-
stant. If we haven processors, then the complexity is

O([log ni).
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We now evaluate the theoretical speedups and efficien- Leaf Nodes
cies achievable. We follow the notation of Lakshmivarahan
and Dhal”* Here T,(n) denotes the time required by a
parallel algorithm using processors for problem sizg
and S,(n) denotes the speedup, and is definedSg&)
=T4(n)/Ty(n). The efficiencyE,(n) is defined ak,(n)
=S,(n)/p.

Clearly T,(n)=kn, where k is a constant;T,(n)
=k[n/p]+k'[log p]. Thus,

Sp(N)=T1(n)/Ty(n)=kn/(k[n/p]+k'[log p]),

Ep(n)=S,(n)/p=[kn/(k[n/p]+k'[log p])]/p.

Root

Thus, E,(N)—0 asn—o. In this case, we do not get Fig. 3 Merging process proceeds from the leaf processors to the
linear speedup and the efficiency of the processors is veryroot. The arrows indicate the direction of data movement and the
low. superscript on the arrow indicates the communication cost.

The algorithm is said to have optimal speedup if the
speedup is linear and the efficiency is unity. In our case, we ) )
get very poor speedup and efficiency. The key to increasing Nas a subimage of siz€q. For now, we assume that each
the speedup and efficiency is to require that the problem leaf processor has its own subimage associated with it. We

size be much larger than the processor size. describe the .distriput.ion of the subimages later. .
first phase, each of the leaf processors computes the con-
S,(n)=KkLp log p/(K[L log p]+k'[log p]) nected components of its associated subimage. These con-
P nected components are then merged in a binary tree fash-
=pkL/(kL+k')—p as L—e, ion, as in shared memory architectures. The difference in
the two is that in the case of a tree connected binary com-
Ep(n)—1 asL—o. puter, the entire subimage is communicated between pro-

cessors, along with the connected component information.
Thus, if we have a large image and few processors, then weFinally, the connected components of the entire image are

must get near linear speedups and unit efficiency. in the root processor.
Obviously the communicational complexity of the algo-
rithm is zero for shared memory architectures. 4.1.1 Computational complexity

, o The connected component labeling process in the leaf pro-
4 Implementation on Distributed Memory cessors take®(n/q) time. After this, there are log merg-
Architectures ing steps, each of which takes a constant amount of com-
This section discusses the parallel implementation of the putation. Thus, the total computation time ©®(n/q
connected component labeling algorithm on various distrib- log g)=0[2n/(p+1)+log (p+1)/2]. If we have a binary
uted memory architectures. Unlike shared memory comput- yree connected computer witm2 1 processors, then the

ers, distributed memory computers have a communication . . ;
! X .~ _'computational complexity of the algorithm @&(log n).
overhead. We present the computational and communica- P plexity 9 (logn)

ti_one_ll complexity of implgmenting the algorit_hm on var_ious 4.1.2 Communicational complexity
distributed memory architectures. Most previous algorithms . ) . ]

for distributed memory architectures did not consider the The merging process occurs in phases in a binary tree fash-
communicational Comp|exity_ As we show, communica- on, as Flg 3 shows. The total communicational time re-
tional complexity dominates. quired is  O(n/g+2n/g+...+n/2)=0[n(q—-1)/q]

For the complexity evaluation, we assume the size of the =O[n(p—1)/(p+1)]. Thus, if we have a binary tree con-
image to ben pixels and the number of processors tophe nected computer withr?—1 processors, then the commu-
The unit of communication is a pixel and it takes unit time nicational complexity of the algorithm ©(n).
for unit distance. We shall assume that the distance be- The distribution of the subimages is the inverse process
tween two processors directly connected to each other isof merging performed at different levels of the binary tree
unity. All the complexity evaluations are worst case evalu- connected computer. Thus, the distribution process has the
ations. Note that the complexities hold for both SIMD and same communicational complexity as merging, i@&(n).

multiple-item, multiple-dataMIMD) distributed memory  Hence, the communicational complexity of the algorithm is
architectures. o(n).

4.1 Binary Tree Connected Computer 4.2 Mesh Connected Computer

We are given a binary tree connected computer vith  The interconnections between the processors in the mesh
=2q—1 processors. Thus, we haydeaf processors. We  connected computer can either be unidirectional or bidirec-
first split the image equally such that each leaf processortional. For example, the AT&T Pixel Machine has unidi-

Optical Engineering, Vol. 37 No. 7, July 1998 2083



Chaudhary and Aggarwal: Parallel image component labeling . . .

rectional interconnection links, i.e., at any instance all the s
links can transmit data in only one direction. The compu- 2
tational complexities and the communicational complexi- )
ties for both these types of mesh connected computers are \&
dealt with separately. For the sake of simplicity, we con-
sider a mesh connected computer witk g> processors.
We first split the image equally such that each processor \y8¢,
has a subimage of siz®q®. The distribution of the sub-

images is done as an inverse process of merging the sub- {
image connected components.

The algorithm for both unidirectional and bidirectional
mesh connected computers is implemented as follows. Dur- \@
ing the first phase, each of the processors computes th
connected components of its associated subimage. Thes\¢
connected components are then merged in a binary tree
fashion as in the binary tree connected computer. The exact
merging scheme can be split into two operations: row and §
column merging. We first merge the subimage connected
components of all the rows. The resulting merged subim-
ages of row merging are then merged as a column merge.
Note that each of these mergings is similar to the mergings
of the binary tree connected computer. The difference is
that the distances between subsequent merges do not re
main equal.
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4.2.1 Unidirectional mesh

For a unidirectional mesh connected computer, it can be @

easily shown by induction that the number of mergings

required is 2¢—1), i.e.,q—1 for row merging andj—1

for column merging. Figure 4 presents an example of a Fig. 4 Phases illustrating the merging process for a unidirectional

merging process with four processors. The arrows indicate mesh with 16 processors. The arrows indicate the direction of data
. . ) movement and the terms by the arrows indicate the communica-

jthe_dlrectlon of data movement and the terms by the arrows ;' o

indicate the relative amounts of data transfer.

LTS
&i@é

SPADNRY
OLotolo,

3

(e)

Computational complexity.  The connected component
labeling process in the processors tak€s/p) time. After
this process, there are @{1) merging steps, each of  =0(n/3—n/2p2+ 2n/3p+np 43— n/2+2n/3p*?)
which takes a constant amount of computation. Thus, the 2 2

total computation time i©(n/p+2pY?—2). If we have a =O[Y/3(np™*—n/2+n/2p™*+2n/p)].
mesh connected computer withprocessors, then the com-

putational complexity of the algorithm ©(n*?). If we have a mesh connected computer witlprocessors,

then the communicational complexity of the algorithm is

Communicational complexity. We denote the commu- O[ /3 n*?=n/2+n*?2+2)]=0(n*?).
nication time for row merging by, (see Appendix B for

detailed derivationand the communication time for col-

umn merging byJ,: 4.2.2 Bidirectional mesh

For a bidirectional mesh connected computer, it can be eas-

Ur=0{n/p[1+1+(2+2)+(4+4+4+4) ily shown by induction that the number of mergings re-

+-++(q—1)termg} quired isq, i.e.,g/2 for row merging andy/2 for column
_ A merging. Figure 5 gives an example of a merging process
=0(n/3—n/2p¥?+2n/3p), with four processors. The arrows indicate the direction of
data movement and the terms by the arrows indicate the
Uc=0{n/q[1+1+(2+2)+(4+4+4+4) relative amounts of data transfer.

+--+(g-Dtermd} Computational complexity. ~The connected component
=0(npY43—n/2+2n/3p*?). labeling process in the processors takgs/p) time. After
this process, there atemerging steps, each of which takes
Thus, the total communicational complexity is given a constant amount of computation. Thus, the total compu-

as follows: tation time isO(n/p+p*?d. If we have a mesh connected
computer withn processors, then the computational com-
U=U,+U, plexity of the algorithm isO(n*?).
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Fig. 5 Phases illustrating the merging process for a bidirectional
mesh with 16 processors. The arrows indicate the direction of data
movement and the terms by the arrows indicate the communica-
tional costs.
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Communicational complexity. We denote the commu-
nication time for row merging b, (see Appendix B for

detailed derivationand the communication time for col-
umn merging byB,:

B, =O{n/p[1+2+(4+4)+(8+8+8+8)
+...g/2termg} = O(n/3+2n/3p),

B.=O{n/q[1+2+(4+4)+(8+8+8+8)
+...q/2termg} = O(npY43+ 2n/3p*?).

Thus, the total communicational complexiByis given
as follows:

B=B, + B.=0(n/3+ 2n/3p+ np*%3+2n/3p*?)
=0[1/3(npY?+n+2n/p¥2+ 2n/p)].

If we have a mesh connected computer witlprocessors,
then the communicational complexity of the algorithm is
O[1/3(n%?+ n+2n'?+2)]=0(n%?).

4.3 Hypercubes

A hypercube of degred has 2' nodes and each node has
exactlyd neighbors. The distance between any two nodes
is less than or equal . We first discuss the embedding of
binary trees in hypercubes. WApresents three results that
we use in our implementation of the algorithm on the hy-
percube.

Proposition 1. A complete binary tree of height>2
cannot be embedded in a hypercube of degteesuch that

adjacency is preserved. In other words, a complete binary
tree cannot be embedded in a hypercube with a dilation cost
of 1 and an expansion cost of less than 2.

Proposition 2. A complete binary tree of heigld>0

can be embedded in a hypercube of degte€l in such a
way that the adjacencies of nodes of the binary tree are
preserved.

Proposition 3. A complete binary tree of heigld>0
can be embedded in a hypercube of degiewith cost
=2; i.e., neighbors in the binary tree are mapped into
nodes of, at most, distance 2 away in the hypercube.

A complete binary tree of heighd has 2'—1 nodes.

The smallest hypercube large enough to house a binary tree
of heightd is of degreed. The algorithm is implemented

on the hypercube as follows. For the sake of simplicity, we
consider a hypercube with= 29 processors. We first split

the image equally such that each processor has a subimage
of sizen/p. During the first phase, each of the processors
computes the connected components of its associated sub-
image. These connected components are then merged in a
binary tree fashion, as in the binary tree connected com-
puter. The distribution of the subimages is an inverse pro-
cess of merging the subimage connected components.

By proposition 1, it is clear that we cannot embed a
complete binary treéo be used in our merging process
a hypercube with a dilation cost of 1 and an expansion cost
of less than 2. Propositions 2 and 3 give us two solutions to
embed the complete binary tree in a hypercube. In the first,
we can use a hypercube with twice the number of proces-
sors. In the second, the neighboring nodes in the binary tree
will have a distance of 2 between them. Using twice the
number of processors is undesirable, since it reduces the
efficiency of processors. In addition, being unable to pre-
serve the adjacency of the tree nodes increases our commu-
nicational cost. These two drawbacks are alleviated using a
pseudobinary tree.

A pseudobinary tree is a binary tree structure that can
easily be embedded into the hypercube topology such that a
node in the hypercube can represent more than one node in
the corresponding pseudobinary tf8e\ pseudobinary tree
is an efficient topology for distributing and merging subim-
ages. The modified singlecast schéfria which the con-
troller (one of the processing elementfistributes a set of
images is used to distribute the subimages. The merging
process is exactly the inverse. Figure 6 illustrates a pseudo-
binary tree of a hypercube of degree 3. Figure 7 shows the
phases of merging in the hypercube.

4.3.1 Computational complexity

The connected component labeling process in the proces-
sors takeO(n/p) time. After this process there are lpg
merging steps, each of which takes a constant amount of
computation. Thus, the total computation timeQgn/p
+log p). If we have a mesh connected computer with
processors, then the computational complexity of the algo-
rithm is O(log n).
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Fig. 7 Phases illustrating the merging process for a hypercube of
degree 3 using the pseudobinary tree. The arrows indicate the di-

F'g Gt Ptieuéj_obn:_ary tfr%e tOf a hyperc‘:be (;)Ihdetgree 35 'I'tlae arrows rection of data movement and the terms by the arrows indicate the
indicate the direction of data movement and the terms by the arrows communicational costs.

indicate the communicational costs.

4.3.2 Communicational complexity

A5 Fig.  shaws,the mergng proces accurs nprases n o122 " he e of vt pcie e e Bel e
binary tree fashion. The total communicational time re- 9 b 9 b

. . - per were tested on several images with all sorts of complex
quired is  O(n/p+2n/p+---+n/2)=0[n(p—1)/p]. regions. The images contain convex, concave, simply con-
Thus, if we have a hypercube with processors, the com-  pected, and multiply connected regions with holes. For a
municational complexity of the algorithm 8(n). 256X 256 image with 172 components, the sequential algo-

The cj|str|but|on of the syblmages is the inverse Process yithm takes 351 ms. Figures 8 and 9, respectively, give the
of merging performed at different levels of the pseudobin- gpeedups obtained by the parallel algorithm for two images.
ary tree. Thus, the distribution process has the same cOMfficiency (which is the ratio of the speedup to the number
municational complexity as merging, i.€@(n). Hence, the  of processors usgdor the two images is also shown. We

communicational complexity of the algorithm @&(n). obtain a maximum speedup of 10.53 using 12 processors
i for the 256x 256 binary image, and the efficiency varies
5 Implementation Results around 0.75 on the sequent balance multiprocessor. The

The sequential algorithm presented is optimal, since accessmaximum speedup obtained for the binary text image is
ing and storing the input itself has a complexity that is 8.07 using 12 processors.

11 l T T T T 1 3\31 I T | I
”Speedup” §— ”Efficiency” 3—
10 L
0.95
oI 0.9
8 -
E 0.85 -
s T f
P f _
o i 0.8
e 6 c
d e 075
p 5 n
y 0.7 -

4 {_

3L 0.65 |-

9 0.6

1 3 I | | | | 0.55 | | | | L

0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of processors Number of processors

Fig. 8 Speedup and efficiency of a 256X 256 binary image with 172 components.
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Fig. 9 Speedup and efficiency of a 512X 512 binary text image with 793 components.

The variation in speedups and efficiencies is because ofsequent balance multiprocessor. The speedup graphs show
load imbalance among the processors. This imbalance re-an almost linear speedup. The computational and commu-
sults from statically splitting the input image into subim- nicational complexities of the algorithm implemented on
ages with approximately the same number of object pixels. various distributed memory architectures, i.e., a binary tree
The execution time of labeling an object varies with the connected computer, a unidirectional and bidirectional
type of the objects. But the major overhead appears to bemesh connected computer, and a hypercube computer are
the spread of an object over several subimages. This wascomputed. It is trivial to see that the algorithm can be
verified by experimentation. We split an image into subim- implemented on the polymorphic torus architecture with
ages (approximately equal in sizein several different complexities no worse than those of the mesh connected
ways. The execution time of the parallel algorithm was computers. These complexities are the best yet achieved.
consistently higher when an object was spread over severalThe communicational complexities are greater than the
subimages. computational complexities for all the distributed memory
architectures. This explains the decrease in the efficiency of
processors with the increase in the number of proced3ors.
The theoretical formulation of these complexities gives a
better idea as to which architecture will have a better effi-
ciency. In other words, we have an analytic expression for
the communication overhead. We also verified that the
speedup and efficiency obtained are nearly linear and unity,

6 Conclusion

We present an optimal and practical sequential algorithm
for labeling connected components whose memory require-
ment and computational complexity is linear in the number
of object pixels in the binary image. Since no assumptions
have been made on the type of input, the algorithm works respectively, when the image sitas we have chosgfis

for all types of binary images. The representation of the much larger than the number of processors used.
connected components as a linked list of reps makes it easy

to calculate certain features of regions, i.e., area, perimeter, .
etc. The input and output representations of the image make! Appendix A: The Pseudo Code for the
it possible for the algorithm to be used in real computer Sequential Algorithm
vision applications. The algorithm is easily extended to This appendix describes the sequential algorithm for con-
gray-level images by including another field indicating the nected component labeling. We use an easy to understand,
gray level in the rep. The only other change is an addition pseudo PASCAL/C for representation.
to the connectivity check for two reps. Two reps are con-
nected only if they have the same gray levels. Global Declarations
The new parallel algorithm implemented on a shared integer labelnum=0;
memory computer presented in this paper has a computa- integer joint=0;
tional complexity ofO([log n]) for an image of siz&. We rep *newrep, *oldrep, *end;
discuss the results of implementing the algorithm on the objects *oldobj, *stacKint][int];
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component *compos;
end Global Declarations
procedure COMPONENT)
begin
INITIALIZE ();
while not(EOP do
MAKELISTS();
CONNECTIONS);
REGIONS);
CHANGELABEL();
JOIN();

oldrep—repnextnewrep-repnext;

newrep—repnextend,;
od
PRINTOUT(comps;
end COMPONENT;
procedure INITIALIZE ()
begin
CREATOBJoldobj);
CREATRERoIdrep);
CREATRERenO);
end—left=end—right=MAXCOLS+2;
oldrep—repnextend;
CREATRERnewrep);
newrep—repnextend,;
end INITIALIZE;
procedure CREATRERtemp
begin
temp—object=NULL;
temp—repnext=NULL;
end CREATREP;
procedure CREATOBJtemp
begin
temp—start=temp—end=NULL;
temp—label=++labelnum;
temp—touch~=false
temp—objnext=NULL,;
end CREATOBJ;
procedure MAKELISTS()
begin
readrow, numrep;
nrep=newrep;
for(i=1; i<numrep; #+) do
CREATRERtemp);
nrep—repnexttemp;
nrep=temp;
readleft, right);
nrep—left=left;
nrep—right=right;
nrep—row=row;
od
nrep—repnextend,;
end MAKELISTS;
procedure CONNECTIONS)
begin
joint=0;
nrep=newrep-repnext;
while(oldrep—repnexttend) do
orep=oldrep—repnext;
while(nrep—right<orep—right) do
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od

if CONNECTEDnrep, orep
then
orep—object-touch=true;
nrep—object—label
=orep—object—label;
nrep=nrep—repnext;
od
if CONNECTEDrep, orep then
orep—object-touch=true;
nrep—object-label~
orep—object—label;
if
CONNECTEDNrep, orep-repnexj
then
stack+ +joint][1]=
orep—object—label;
stackjoint][2]=
orep—repnext-object-label;
LABELLING (orep—object,
orep—repnext-objecy;
oldrep—repnextorep—repnext;
orep—repnextorep—object—end,;
orep—object—end=orep;
if (orep—object—star==NULL) then
orep—object—start=orep;

end CONNECTIONS;
procedure REGIONS)

begin

pobj=oldobj;
while(pobj—objnext~sNULL) do

obj=pobj—objnext;

if (obj—touch)then
pobj=obj;
obj—touch=false

else
dummy=compos;
while(dummy—compnex¢#NULL) do

dummy=dummy—compnext;

od

new—comp=obj—end,;
dummy—compnextnew;
pobj—objnext=obj—objnext;
od
end REGIONS;

procedure CHANGELABEL()

begin

for(p=joint; p=1; joint——) do

od

LABELLING (stackp][1], stackp][2]);

nrep=newrep-repnext,
while(nrep#end) do

if (nrep—objec&=NULL) then
CREATOBJobj);
nrep—object=obj;
obj—leftmost=nrep;
obj—objnext=oldobj—objnext;
oldobj—objnext=obj;
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else
nrep—object=
nrep—object—leftmost—object
if (nrep—object—leftmost==NULL)
then nrep—leftmost=nrep;
nrep=nrep—repnext
od
end CHANGELABEL;
procedure JOIN()
begin
obj=oldobj—objnext;
pobj=oldobj;
while (obj#NULL) do
obj—touch=false
if (obj==o0bj—leftmost—object) then
pobj=obj;
else
obj—start—repnextobj—leftmost
—object—end;
obj—leftmost—object—end=obj—end;
pobj—objnext=obj—objnext;
obj=pobj—objnext;
od
end JOIN;
procedure LABELLING (p, 0
begin
if (p—leftmost—object—label
< g—leftmost-object-label)
then
g—leftmost=p—leftmost;
g—label=p—leftmost-object—label;
else
p—leftmost=q—leftmost;
p—label=g—leftmost-object—label;
end LABELLING;
procedure CONNECTEDp, 0
begin
if ((p—left=q—right+1)AND
(p—right=g—left—1))
then
returntrue);
else
returr(false);
end CONNECTED;

8 Appendix B: Evaluating Communicational
Complexities

8.1 Unidirectional Mesh
For the sake of simplicity, we assume tlogt 2%, for some

Xe N.
U,=0{n/p[1+1+(2+2)+(4+4+4+4)
+---(q—1)termg}
=0{n/q’[1+2°.20+21.21+22.22
+- 422" D)1}

From these two expressions we can evaluate the value of
since

142422423+ +2'—1=q—1—1=r=log(q/2).

Thus,

U, =0{n/gq¥1+(1+2%+2%+---422) -2}
=0{n/q[1+(2%*2-1)/3-2"]}
=0{n/q 1+ (gq>—1)/3—q/2]}
=0{n/p[1+(p—1)/3—pY2]}
=0(n/3—n/2p*?+2n/3p).

It is easy to see tha .= p*2U, .

8.2 Bidirectional Mesh

For the sake of simplicity, we assume tlogt 2%, for some
Xe N.

B,=0{n/p[1+2+(4+4)+(8+8+8+8)
+---g/2termg}
=O[n/q2(l+21-20+ 22,914 23.22+...+2r,2r71)]_

From these two expressions we can evaluate the value of
since

14+2+224 2344+ 2" 1=q/2— 1=r =log(q/2).

Thus,

B,=O[Nn/q3(1+ 21+ 23+ 25+-.. 4+ 22 1)]
=0{n/q*[1+(2**?-1)/3]}
=0{n/g’[1+(g*~1)/3]}
=0{n/p[(p+2)/3]}
=0(n/3+2n/3p).

It is easy to see tha@,=p*?B, .
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