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Abstract. An important step in target acquisition is to be able to label
various unconnected objects (components) in the scene. We present
new algorithms for labeling connected components in a binary image.
Eight connectivity for object and background pixels is assumed. The
sequential algorithm is described first. The computational complexity of
the algorithm is linear (optimal) in the number of object pixels in the
image. The memory requirement is also linear in the number of object
pixels. The representation of the connected components used in the
algorithm makes it easy to calculate certain properties of regions, i.e.,
area, perimeter, etc. The algorithm is then parallelized and implemented
on a shared memory computer. The computational complexity of this
parallel algorithm is O( d log ne) for an image with n object pixels using n
processors, and is the best achieved yet. The implementations of the
algorithm on several distributed memory architectures, i.e., a binary tree
connected computer @O(log n)#, a unidirectional and bidirectional mesh
connected computer @O(n1/2)#, and a hypercube computer @O(log n)#
are discussed. The computational and communicational complexities of
these implementations are computed, and are the best yet achieved.
The algorithm is easily extended for gray-level images without affecting
the complexities. Results of the implementation on the sequent balance
multiprocessor are presented. © 1998 Society of Photo-Optical Instrumentation
Engineers. [S0091-3286(98)00307-9]
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1 Introduction

To analyze a picture of a scene, we must identify ea
object to describe the complete scene. This identifica
involves assigning unique labels to disjoint objects. Lab
ing the objects is a fundamental task in computer visi
since it forms a bridge between low-level image process
and high-level symbolic processing.1

The problem has been studied for over three deca
One of the first known algorithms2 performed two passe
over the image. In the first pass, labels were generated
object pixels and stored in an equivalence table. During
second pass, these labels were replaced by the sm
equivalent labels. The memory requirement and comp
tional complexity for evaluating the equivalent label we
very high for images with complex regions. Lumia et a3

reduced the size of the equivalence table by reinitializ
the table for each scan line. This algorithm also requi
two passes. Haralick4 proposed an algorithm that did no
require an equivalence table but, instead, required the
peated propagation of labels in the forward and backw
directions. This technique improved on the memory
quirement but required a large number of passes thro
the image for complex objects. Mandler and Oberland5

presented a one-pass algorithm to generate border
chain codes for each component and also provided a lis
adjacent regions for each region. The drawback of this
2078 Opt. Eng. 37(7) 2078–2090 (July 1998) 0091-3286/98/$10.0
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gorithm is the computationally expensive corner detecti
Samet and Tamminen6 gave an algorithm applicable to h
erarchical data structures, such as quadtrees, octrees, a
general bintrees. The authors used a very small equivale
table and the processing cost was linear in the size of
image. Several other techniques to accomplish related p
lems with varying degrees of accuracy and computat
time involved were presented.7,8

Most computer vision tasks require an enormous amo
of computation, demanding high-performance comput
for practical real-time applications. Parallelism appears
be the only economical way to achieve this level of co
putation. Hirschberg et al.9 gave one of the earlier formu
lations of a parallel approach to connected component
beling. Given a graph representation withn nodes, this
technique required n2/log n processors with share
memory in anO(log2 n) algorithm. Nassimi and Sahni10

presented an algorithm on ann3n mesh connected com
puter that labeled the components in ann3n image in
O(n) time. Tucker11 presented a parallel divide-and
conquer algorithm on a simple tree connected single
struction multiple data~SIMD! computer, which required
O(n1/2) time for an image of sizen. Cypher et al.12 sug-
gested an exclusive-read exclusive-write parallel rand
access machine~EREW PRAM! algorithm with a complex-
ity of O(log n) and hypercube and shuffle-exchange alg
0 © 1998 Society of Photo-Optical Instrumentation Engineers
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Chaudhary and Aggarwal: Parallel image component labeling . . .
rithms with a complexity ofO(log2 n) for an image of size
n ~Refs. 13 and 14!. These algorithms apply only to binar
images since the concept of boundary would otherwise
imprecise. They also assume four connectivity for pixe
The number of processors used for the EREW PRAM
gorithm is 3n12n1/2 for an image of sizen, thus, putting a
very low bound on the processor efficiency. Sunwoo et a15

also implemented a parallel algorithm on a hypercu
whose complexity was linear in the size of the imag
Agarwal and Nekludova16 presented an algorithm on a
EREW PRAM with a complexity ofO(log n). This algo-
rithm is described for hex-connected images. Little et a17

gave parallel algorithms on the connection machine, wh
took O(log n) router cycles for an image of sizen. Maresca
and Li18 presented an algorithm that labeled component
an n3n image in O(n) time on a polymorphic torus
Manohar and Ramapriyan19 gave another algorithm on
mesh connected computer with a complexity
O(n log n2) for an n3n image. Woo and Sahni20 compare
the performances of the connected components algor
for various partitions and mappings of the data. Their al
rithms have a complexity ofO(n2) for an image of sizen.
Alnuweiri and Kumar21 survey several parallel algorithm
and architectures for image component labeling. Bekh
and Banerjee22 implement their algorithm on a hypercub
machine. They look at the problem as occurring in ve
large scale integration~VLSI! circuit extraction. Hsu
et al.23 present theoretical computational complexities
various algorithms.

Most of the preceding algorithms are not practical. W
look at the algorithm from a computer vision point of view
In most computer vision tasks, the input is either direc
from a camera~accessible usually to one processor! or is an
image stored in a computer. In both cases, the imag
usually compressed in run length encoding~our input speci-
fication!. Since the input image is accessible to only o
processor, it needs to be split into subimages and dis
uted to the various processors. Almost all other algorith
assume that the initial image resides in all processors~or
the subimages reside in the processors!. Furthermore, in a
typical computer vision application, the image, with t
connected components marked, is further processed to
ognize these components. This calls for merging the s
images to one processor. This overhead is also ignore
most other work~the final connected components are d
tributed among the processors!. The output representatio
of the components we use is very desirable and effec
for the next level of computation.

We present a new sequential algorithm for connec
component labeling with a worst-case computational co
plexity that is linear in the number of objects~or more
precisely, the number of object pixels! in the image. Most
previous algorithms have the disadvantage that their c
plexity is a function of both the object and the backgrou
pixels. The memory requirement of our algorithm is al
linear in the number of objects. The algorithm is then p
allelized and implemented on the sequent balance sh
memory multicomputer. The computational complexity
our new parallel algorithm on a shared memory compute
O( d log ne) for an image of sizen. Unlike other parallel
algorithms for connected component labeling, which
-

-
-
y

-

d

very specific to the architecture, the algorithm described
this paper applies to a very general class of architectur

For implementation of the algorithm on distribute
memory architectures, we compute the communicatio
complexity, along with the computational complexity. W
evaluate the complexities for a binary tree connected co
puter, a unidirectional and a bidirectional mesh connec
computer, and a hypercube connected computer. Comp
ties obtained for these architectures are the best
achieved. The communication overhead for the distribu
memory computers is well illustrated by the communic
tional and computational complexities. Because of
dominance of the communicational complexity, the ef
ciency of processors decreases with an increase in the n
ber of processors.

This paper is organized as follows. We first introdu
the concept of connected component labeling and the n
tion and definitions used in our description. This is fo
lowed by a description of our data structure, the sequen
algorithm, the complexity of the sequential algorithm, a
the parallel algorithm and its complexity evaluation. Ne
we discuss parallelizing and implementing the preced
algorithm on shared memory architectures and prese
complexity evaluation. The implementations of the alg
rithm on various distributed memory computers and th
computational and communicational complexities are d
cussed next. Then we present the results of implemen
the algorithm on the sequent balance computer and c
clude the article. Appendix A lists the sequential algorith
in detail, and Appendix B provides evaluations of certa
communicational complexities.

2 Connected Component Labeling

This section describes the sequential and parallel a
rithms for connected component labeling and their co
plexity evaluation. We use certain assumptions about
input image for our algorithm. First, it is a binary imag
with object pixels represented as runs.1 This representation
is very economical and often used for image compress
We assume an eight connectivity for all the pixels.

2.1 Notation

Henceforth, we denote object pixels by pixels, unless th
are ambiguous. A conexon~also path in Ref. 1! of length
n from pixel P to pixel Q is a sequence of pixel point
P5P0 ,P1 , . . . ,Pn5Q such thatPi is a neighbor~an eight
connectivity! of Pi 21 , 1< i<n. We say that pixelP is
connected to pixelQ if a conexon exists fromP to Q. This
is a conexonk if it lies within rows 1 . . .k. A maximal set
of connected pixels within rows1 . . .k ~at least one of
which is in row k! forms the objectk. The maximal set of
connected pixels in rowk forms a repk. The set of repk

belonging to the same objectk forms the partk. A touchk is a
repk that connects two or more repk21, at least two of
which are not in the same partk21. These definitions are
illustrated by an example in Fig. 1.

2.2 Input/Output

For the sake of simplicity, we assume the input to be in
run length representation1 from left to right and top to bot-
2079Optical Engineering, Vol. 37 No. 7, July 1998
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Chaudhary and Aggarwal: Parallel image component labeling . . .
tom. This does not affect the generality of the algorith
since it is trivial to convert image data~a 2-D array! to the
run length representation. The format of the input to
algorithm is as follows:

1. If a row has at least one rep in it, then it is a seque
of integers~r ,n,l 1 ,r 1 ,...,l n ,r n#, wherer is the row
number;n is the number of reps in this row; andl i ,r i

for 1< i<n are the left and right column numbers
the i th reps in rowr , respectively.

2. If there are no reps in the row, then the sequence
that row is null.

The output of the algorithm is a linked list of the variou
connected components in the input image. Each conne
component is, in turn, a linked list of the reps it compris

2.3 Data Structure

There are two basic structures in this algorithm, nam
reps and objects. Linked lists are used to represent b
these concepts. A third linked list, component, is used
represent the output—the list of connected component
the image. The reps in a row are assumed to be in o
from left to right, i.e., the leftmost rep occurs first and t
rightmost rep occurs last. Each repk is represented as
structure consisting of the following fields:

• left—the starting column number of repk

• right—the column number where repk ends

• row—the row number of this repk

• repnext—a pointer to the neighboring repk

• repcomp—a pointer to the neighboring repk ~to be
used in the parallel algorithm!

• object—a pointer to the objectk connected to this repk.

Each objectk is also a linked list of structures having th
following fields:

• leftmost—a pointer to the leftmost repk associated
with this objectk

• end—a pointer to the end of the linked list of rep
from previous rows that are connected to this objek

• start—a pointer to the start of the linked list of reps
previous rows that are connected to this objectk

• label—a positive integer assigned to this objectk

Fig. 1 Example to illustrate the notation. The reps 3 and 4 are repk.
Reps 1, 2, 3, and 4 form an objectk. Reps 3 and 4 collectively form
the partk. Rep 3 is a touchk that connects two repk21 (reps 1 and 2),
which are not in the same partk21.
2080 Optical Engineering, Vol. 37 No. 7, July 1998
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• objnext—a pointer to the next objectk in the linked list

• touch—a Boolean set to true if a repk is found to be
connected to objectk21.

‘‘Component’’ is a linked list of structures with the fol
lowing fields:

• compo—a pointer to the first rep belonging to th
component

• compnext—a pointer to the next component in th
linked list.

2.4 Properties

1. A repk L is connected to a repk21M if L→right
>M→ left21 AND L→ left<M→right11.

2. A repk is connected to a partk21 if it is connected to
one of the repk21 in that partk21.

3. A repk is connected to an objectk21 if it is connected
to the partk21 of objectk21.

4. If a conexon is found between objectsA and B in
row k, and if A→ leftmost,B→ leftmost then B
→ label5A→ label.

5. Two repk A andB are neighbors if no repk C exists
such thatA→ left,C→ left,B→ left.

2.5 Sequential Algorithm

The sequential algorithm is conceptually very simple. E
ery rep is associated with an object. If two reps are c
nected, they both point to the same object, i.e., the ob
with the smaller label. All the reps pointing to the sam
object form a component. We now describe the major p
cedures of the algorithm. For the detailed algorithm, s
Appendix A.

procedure COMPONENT~!
begin

INITIALIZE ~!;
while not~EOF! do

MAKELISTS~!;
CONNECTIONS~!;
REGIONS~!;
CHANGELABEL~!;
JOIN~!;

od
PRINTOUT~comps!;

end COMPONENT;

The procedure COMPONENT is the main routine of th
algorithm and invokes all other procedures, directly or
directly. The procedure MAKELISTS reads the sequen
of integers in each rep and forms a linked list of structu
which make up the repk. The left and right ends of column
numbers of the rep and the row number are inserted into
corresponding fields. The repk in the input are ordered ac
cording to their position in the row, with the leftmost ap
pearing first and the rightmost appearing last. The repn
field points to the next rep~structure!. The objectk21 are
stored in a separate linked list and the objnext field poi
to the next object.
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Chaudhary and Aggarwal: Parallel image component labeling . . .
The conexons between repk and repk21 are found by the
procedure CONNECTIONS. When a conexon is found,
repk21 has the objectk21 marked as current and the repk is
said (touch5true) to be connected to the objectk21 of
repk21. The procedure CONNECTED takes two reps
input parameters and checks to see if they are conne
When a repk is found to be connected to two neighborin
repk21, these neighboring objectk21 must be joined. Their
labels are updated by the procedure LABELLING.

Procedure LABELLING takes two labels as input p
rameters and assigns them the label of the objectk21 that is
leftmost and connected to this objectk21 by a conexonk.

The procedure REGIONS, as the name suggests, lo
for regions in the input image. It traverses the objectk21

linked list, looking for any objectk21 that were not found to
be connected to any repk. Every objectk21 satisfying the
preceding forms a connected component. The linked lis
components compos points to this connected compone

Procedure CHANGELABEL computes the label for th
objectk21. Then, it traverses the linked list repk, assigning
new label to all the repk that are not connected t
objectk21, and putting label to the repk that are connected
to objectk21. The leftmost field of each object is assign
the leftmost repk that touches the objectk.

JOIN traverses through the linked list of objects looki
for objectk21 to be joined with other objectk21. The linked
lists of repk are then combined.

2.6 Complexity Analysis of the Sequential Algorithm

Let t be the total number of reps of object pixels andr be
the number of rows in the image.

Lemma 1. ;t, r<t.

Proof. In the worst case, there will be, at most, one r
in any row. In our representation, if there are no reps i
row, then that row does not exist. Thus, the total numbe
rows cannot exceed the number of reps of object pixel
the image.

Theorem 1. The time complexity of the procedur
COMPONENT isO(t).

Proof. The while loop in COMPONENT is execute
once for each row—r times andr<t. For every row, most
procedures are executed once. We find a bound on
number of times each statement is executed in each of t
procedures.

The procedure INITIALIZE is executed once and it i
vokes procedures CREATOBJ and CREATREP a cons
number of times. Thus, the number of executions in t
procedure is constant.

Consider the k’th iteration of COMPONENT. In
MAKELISTS, the iterations due to the for loop equal th
number of repk.

In CONNECTIONS, the outer while loop is execute
repk21 times. So, all the instructions, except those with
the inner while loop, are executed repk21 times. The vari-
able nrep is set before the outer while loop and the con
tion of the inner while loop is satisfied at most repk times.
.

s

e
e

t

Hence, the number of executions of statements in CO
NECTIONS is bound by repk211repk.

The while loop in REGIONS is executed objectk21

times. Since the number of objectk21 is at most repk21, the
executions are bound by repk21.

There are two loops in CHANGELABEL. The variabl
joint is incremented each time repk21 and its right neighbor
are found to be connected to the same repk in CONNEC-
TIONS. Hence, the value of joint is at most repk21. This
sets a bound on the execution of the for loop. The wh
loop is executed repk times and, hence, the bound on th
number of executions in this procedure is the maximum
repk and repk21.

The while loop in JOIN is executed once for ea
objectk21 and objectk. Hence, the number of executions a
bound by the sum of repk and repk21.

The statements in LABELLING and CONNECTED ar
executed only once. Thus, we have an upper bound on
number of executions of statements in the algorithm on
k’th iteration of COMPONENT, that is, the sum of repk and
repk21. This gives us an upper bound on the number
executions for COMPONENT: 2r 21. Hence, by Lemma
1, the complexity of COMPONENT isO(t).

2.7 Parallel Algorithm

The parallel algorithm is conceptually very simple. Th
procedure PARALLEL–LABEL is the main routine of this
algorithm and invokes all other procedures, directly or
directly. The input image is split into subimages, one
each processor. This division of the image is done static
such that the subimages are approximately the same
The subimages are then distributed to the various pro
sors. Then, each processor labels the components of its
responding subimage using the sequential image com
nent labeling procedure~i.e., COMPONENT!. Next, the
components of the subimages are merged to obtain
components of the entire image.
procedure PARALLEL–LABEL ~!
begin

SPLIT–IMAGE~!;
DISTRIBUTE–IMAGE~!;
do in parallel for all processors

COMPONENT~!;
od
MERGE–COMPONENTS~!;

end PARALLEL–LABEL;

The input image is divided into approximately equal si
subimages by the procedure SPLIT–IMAGE. Then, these
subimages are distributed to various processors by the
cedure DISTRIBUTE–IMAGE. The subimage distribution
scheme depends on the interconnection between the pro
sors.

After labeling the components in each subimage us
the sequential labeling procedure COMPONENT, the p
cedure MERGE–COMPONENTS is invoked. This proce
dure involves merging components that reside in sepa
subimages. An efficient merging scheme depends on
interconnection between the processors. In most cases
communication pattern among the processors during
distribution of subimages is the inverse of the communi
2081Optical Engineering, Vol. 37 No. 7, July 1998
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Chaudhary and Aggarwal: Parallel image component labeling . . .
tion pattern during the merging of subimages. The diff
ence lies in the computation involved within these pro
dures.

Consider two adjacent subimagesS1 andS2 . Without a
loss of generality, we further assume thatS1 extends from
rows i to k21 and thatS2 extends from rowsk to j . The
merger of these subimages involves only rowsk21 andk.
If repk21 is connected to repk, then the objects correspond
ing to these reps are assigned the same label—the sm
one. Also, if a touchk is found, then the labels of th
partk21 and repk are given the same label—the one asso
ated with partk21.

If repk21 A is connected to repk B, then the following
condition holds:

~A→ left<B→right11!∧~A→right>B→ left21!.

The preceding condition is the same as that used
joining two reps in the sequential algorithm. To combi
two components corresponding to repk21 A and repk B,
we only need to make the following changes:

B→object→leftmost→object→end→ repnext

5A→object→leftmost→object→start,

A→object→leftmost→object →start

5B→object→leftmost→object→start,

A→object→leftmost5B→object→leftmost.

Thus, combining two components requires a const
amount of computation.

2.8 Complexity Analysis of the Parallel Algorithm

The parallel algorithm involves computation and comm
nication of data between the processors. Since the rela
ship between these operations vary with the parallel co
puters, we choose to evaluate the computational
communicational complexity separately.

Consider the labeling of components of an image of s
n usingp processors. The splitting of the image takes co
stant time. The distribution of the image involves const
computation at each processor. But, the number of tim
these computations are performed depends on the dist
tion scheme. We assume that to beL. Since the merging
process is inverse of the distribution process with an ad
tional constant computation~i.e., 3!, the complexity of the
merging process isO(L). Thus, the computational com
plexity of the parallel algorithm isO(n/p1L), where
O(n/p) is the complexity of labeling components of ea
subimage.

The evaluation of the communicational complexity
much more involved since it depends entirely on the dis
bution scheme used for the particular multicomputer. W
evaluate the communicational complexities of the para
algorithm for several multicomputers in the following se
tion.
2082 Optical Engineering, Vol. 37 No. 7, July 1998
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3 Implementation on Shared Memory
Architectures

Having described the sequential algorithm for labeling co
nected components, we now present a strategy to im
ment the algorithm on a shared memory computer.

The image is partitioned horizontally into a set of su
images, preferably into as many as the number of proc
sors. Each of these subimages has its connected com
nents labeled concurrently by multiple processors. Th
subimages are then merged at several levels, as are
labels. Next we discuss the hierarchical merging process
shown in Fig. 2.

The subimages are numbered as consecutive inte
from 0 upward. Subimages with consecutive numbers
adjacent. Note that the binary representation of the sub
age numbers for adjacent subimages differs at the least
nificant digit. At the first level, adjacent subimages~0 and
1,2,3, . . . ! are merged to form new subimages. The subi
age obtained by merging two subimages inherits the lo
subimage number. For cases with an odd number of s
images, the last subimage is merged with an empty sub
age~or, passed on as is to the next level!. Thus, the adja-
cent images at the second level differ at the second m
significant digit in their binary representation. This proc
dure of merging is continued until all the subimages a
merged into a single image. In the above discussion,
assume that a subimage is comprised of one or more r
of reps. However, this technique can easily be extende
include cases where the subimages are comprised of a
of the row ~as described in the previous section!.

3.1 Complexity

Consider an image withn object pixels labeled byp pro-
cessors. On an average, each subimage hasdn/pe object
pixels. Thus, labeling components for all the subimag
takesO( dn/pe) time. The maximum number of componen
that need to be merged at each level isO( dn/pe). Since
merging two components requires a constant amoun
computation, the components can be merged in cons
time at each level. The number of levels of merging
d log pe. Hence, the computational complexity of the ent
labeling process isO( dn/pe1k8d log pe ), wherek8 is a con-
stant. If we haven processors, then the complexity
O( d log ne ).

Fig. 2 Merger of components in subimages is done in a binary tree
fashion.
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Chaudhary and Aggarwal: Parallel image component labeling . . .
We now evaluate the theoretical speedups and effic
cies achievable. We follow the notation of Lakshmivarah
and Dhall.24 Here Tp(n) denotes the time required by
parallel algorithm usingp processors for problem sizen,
and Sp(n) denotes the speedup, and is defined asSp(n)
5T1(n)/Tp(n). The efficiencyEp(n) is defined asEp(n)
5Sp(n)/p.

Clearly T1(n)5kn, where k is a constant;Tp(n)
5kdn/pe1k8d log pe. Thus,

Sp~n!5T1~n!/Tp~n!5kn/~kdn/pe1k8d log pe !,

Ep~n!5Sp~n!/p5@kn/~kdn/pe1k8d log pe !#/p.

Thus, Ep(N)→0 as n→`. In this case, we do not ge
linear speedup and the efficiency of the processors is v
low.

The algorithm is said to have optimal speedup if t
speedup is linear and the efficiency is unity. In our case,
get very poor speedup and efficiency. The key to increas
the speedup and efficiency is to require that the prob
size be much larger than the processor size.

Let n5Lp log p, whereL is a large constant. Thus,

Sp~n!5kLp log p/~kdL log pe1k8d log pe !
5pkL/~kL1k8!→p as L→`,

Ep~n!→1 as L→`.

Thus, if we have a large image and few processors, then
must get near linear speedups and unit efficiency.

Obviously the communicational complexity of the alg
rithm is zero for shared memory architectures.

4 Implementation on Distributed Memory
Architectures

This section discusses the parallel implementation of
connected component labeling algorithm on various dist
uted memory architectures. Unlike shared memory comp
ers, distributed memory computers have a communica
overhead. We present the computational and commun
tional complexity of implementing the algorithm on variou
distributed memory architectures. Most previous algorith
for distributed memory architectures did not consider
communicational complexity. As we show, communic
tional complexity dominates.

For the complexity evaluation, we assume the size of
image to ben pixels and the number of processors to bep.
The unit of communication is a pixel and it takes unit tim
for unit distance. We shall assume that the distance
tween two processors directly connected to each othe
unity. All the complexity evaluations are worst case eva
ations. Note that the complexities hold for both SIMD a
multiple-item, multiple-data~MIMD ! distributed memory
architectures.

4.1 Binary Tree Connected Computer

We are given a binary tree connected computer withp
52q21 processors. Thus, we haveq leaf processors. We
first split the image equally such that each leaf proces
-

e

-

-

r

has a subimage of sizen/q. For now, we assume that eac
leaf processor has its own subimage associated with it.
describe the distribution of the subimages later.

The algorithm is implemented as follows. During th
first phase, each of the leaf processors computes the
nected components of its associated subimage. These
nected components are then merged in a binary tree fa
ion, as in shared memory architectures. The difference
the two is that in the case of a tree connected binary co
puter, the entire subimage is communicated between p
cessors, along with the connected component informat
Finally, the connected components of the entire image
in the root processor.

4.1.1 Computational complexity

The connected component labeling process in the leaf p
cessors takesO(n/q) time. After this, there are logq merg-
ing steps, each of which takes a constant amount of co
putation. Thus, the total computation time isO(n/q
1 log q)5O@2n/(p11)1log (p11)/2#. If we have a binary
tree connected computer with 2n21 processors, then the
computational complexity of the algorithm isO(log n).

4.1.2 Communicational complexity

The merging process occurs in phases in a binary tree fa
ion, as Fig. 3 shows. The total communicational time
quired is O(n/q12n/q1...1n/2)5O@n(q21)/q#
5O@n(p21)/(p11)#. Thus, if we have a binary tree con
nected computer with 2n21 processors, then the commu
nicational complexity of the algorithm isO(n).

The distribution of the subimages is the inverse proc
of merging performed at different levels of the binary tre
connected computer. Thus, the distribution process has
same communicational complexity as merging, i.e.,O(n).
Hence, the communicational complexity of the algorithm
O(n).

4.2 Mesh Connected Computer

The interconnections between the processors in the m
connected computer can either be unidirectional or bidir
tional. For example, the AT&T Pixel Machine has unid

Fig. 3 Merging process proceeds from the leaf processors to the
root. The arrows indicate the direction of data movement and the
superscript on the arrow indicates the communication cost.
2083Optical Engineering, Vol. 37 No. 7, July 1998
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rectional interconnection links, i.e., at any instance all
links can transmit data in only one direction. The comp
tational complexities and the communicational comple
ties for both these types of mesh connected computers
dealt with separately. For the sake of simplicity, we co
sider a mesh connected computer withp5q2 processors.
We first split the image equally such that each proces
has a subimage of sizen/q2. The distribution of the sub-
images is done as an inverse process of merging the
image connected components.

The algorithm for both unidirectional and bidirection
mesh connected computers is implemented as follows. D
ing the first phase, each of the processors computes
connected components of its associated subimage. T
connected components are then merged in a binary
fashion as in the binary tree connected computer. The e
merging scheme can be split into two operations: row a
column merging. We first merge the subimage connec
components of all the rows. The resulting merged sub
ages of row merging are then merged as a column me
Note that each of these mergings is similar to the mergi
of the binary tree connected computer. The difference
that the distances between subsequent merges do no
main equal.

4.2.1 Unidirectional mesh

For a unidirectional mesh connected computer, it can
easily shown by induction that the number of mergin
required is 2(q21), i.e.,q21 for row merging andq21
for column merging. Figure 4 presents an example o
merging process with four processors. The arrows indic
the direction of data movement and the terms by the arr
indicate the relative amounts of data transfer.

Computational complexity. The connected componen
labeling process in the processors takesO(n/p) time. After
this process, there are 2(q21) merging steps, each o
which takes a constant amount of computation. Thus,
total computation time isO(n/p12p1/222). If we have a
mesh connected computer withn processors, then the com
putational complexity of the algorithm isO(n1/2).

Communicational complexity. We denote the commu
nication time for row merging byUr ~see Appendix B for
detailed derivation! and the communication time for co
umn merging byUc :

Ur5O$n/p@1111~212!1~4141414!

1¯~q21!terms#%

5O~n/32n/2p1/212n/3p!,

Uc5O$n/q@1111~212!1~4141414!

1¯~q21!terms#%

5O~np1/2/32n/212n/3p1/2!.

Thus, the total communicational complexityU is given
as follows:

U5Ur1Uc
2084 Optical Engineering, Vol. 37 No. 7, July 1998
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5O~n/32n/2p1/212n/3p1np1/2/32n/212n/3p1/2!

5O@1/3~np1/22n/21n/2p1/212n/p!#.

If we have a mesh connected computer withn processors,
then the communicational complexity of the algorithm
O@1/3@n3/22n/21n1/2/212)#5O(n3/2).

4.2.2 Bidirectional mesh

For a bidirectional mesh connected computer, it can be e
ily shown by induction that the number of mergings r
quired isq, i.e., q/2 for row merging andq/2 for column
merging. Figure 5 gives an example of a merging proc
with four processors. The arrows indicate the direction
data movement and the terms by the arrows indicate
relative amounts of data transfer.

Computational complexity. The connected componen
labeling process in the processors takesO(n/p) time. After
this process, there areq merging steps, each of which take
a constant amount of computation. Thus, the total com
tation time isO(n/p1p1/2). If we have a mesh connecte
computer withn processors, then the computational com
plexity of the algorithm isO(n1/2).

Fig. 4 Phases illustrating the merging process for a unidirectional
mesh with 16 processors. The arrows indicate the direction of data
movement and the terms by the arrows indicate the communica-
tional costs.
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Communicational complexity. We denote the commu
nication time for row merging byBr ~see Appendix B for
detailed derivation! and the communication time for co
umn merging byBc :

Br5O$n/p@1121~414!1~8181818!

1...q/2terms#%5O~n/312n/3p!,

Bc5O$n/q@1121~414!1~8181818!

1...q/2terms#%5O~np1/2/312n/3p1/2!.

Thus, the total communicational complexityB is given
as follows:

B5Br1Bc5O~n/312n/3p1np1/2/312n/3p1/2!

5O@1/3~np1/21n12n/p1/212n/p!#.

If we have a mesh connected computer withn processors,
then the communicational complexity of the algorithm
O@1/3(n3/21n12n1/212)#5O(n3/2).

4.3 Hypercubes

A hypercube of degreed has 2d nodes and each node ha
exactlyd neighbors. The distance between any two no
is less than or equal tod. We first discuss the embedding o
binary trees in hypercubes. Wu25 presents three results th
we use in our implementation of the algorithm on the h
percube.

Proposition 1. A complete binary tree of heightd.2
cannot be embedded in a hypercube of degree<d such that

Fig. 5 Phases illustrating the merging process for a bidirectional
mesh with 16 processors. The arrows indicate the direction of data
movement and the terms by the arrows indicate the communica-
tional costs.
adjacency is preserved. In other words, a complete bin
tree cannot be embedded in a hypercube with a dilation
of 1 and an expansion cost of less than 2.

Proposition 2. A complete binary tree of heightd.0
can be embedded in a hypercube of degreed11 in such a
way that the adjacencies of nodes of the binary tree
preserved.

Proposition 3. A complete binary tree of heightd.0
can be embedded in a hypercube of degreed with cost
52; i.e., neighbors in the binary tree are mapped in
nodes of, at most, distance 2 away in the hypercube.

A complete binary tree of heightd has 2d21 nodes.
The smallest hypercube large enough to house a binary
of height d is of degreed. The algorithm is implemented
on the hypercube as follows. For the sake of simplicity,
consider a hypercube withp52d processors. We first spli
the image equally such that each processor has a subim
of sizen/p. During the first phase, each of the process
computes the connected components of its associated
image. These connected components are then merged
binary tree fashion, as in the binary tree connected co
puter. The distribution of the subimages is an inverse p
cess of merging the subimage connected components.

By proposition 1, it is clear that we cannot embed
complete binary tree~to be used in our merging process! in
a hypercube with a dilation cost of 1 and an expansion c
of less than 2. Propositions 2 and 3 give us two solutions
embed the complete binary tree in a hypercube. In the fi
we can use a hypercube with twice the number of proc
sors. In the second, the neighboring nodes in the binary
will have a distance of 2 between them. Using twice t
number of processors is undesirable, since it reduces
efficiency of processors. In addition, being unable to p
serve the adjacency of the tree nodes increases our com
nicational cost. These two drawbacks are alleviated usin
pseudobinary tree.

A pseudobinary tree is a binary tree structure that c
easily be embedded into the hypercube topology such th
node in the hypercube can represent more than one nod
the corresponding pseudobinary tree.26 A pseudobinary tree
is an efficient topology for distributing and merging subim
ages. The modified singlecast scheme26 in which the con-
troller ~one of the processing elements! distributes a set of
images is used to distribute the subimages. The merg
process is exactly the inverse. Figure 6 illustrates a pseu
binary tree of a hypercube of degree 3. Figure 7 shows
phases of merging in the hypercube.

4.3.1 Computational complexity

The connected component labeling process in the pro
sors takesO(n/p) time. After this process there are logp
merging steps, each of which takes a constant amoun
computation. Thus, the total computation time isO(n/p
1 log p). If we have a mesh connected computer withn
processors, then the computational complexity of the al
rithm is O(log n).
2085Optical Engineering, Vol. 37 No. 7, July 1998
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4.3.2 Communicational complexity

As Fig. 6 shows, the merging process occurs in phases
binary tree fashion. The total communicational time r
quired is O(n/p12n/p1•••1n/2)5O@n(p21)/p#.
Thus, if we have a hypercube withn processors, the com
municational complexity of the algorithm isO(n).

The distribution of the subimages is the inverse proc
of merging performed at different levels of the pseudob
ary tree. Thus, the distribution process has the same c
municational complexity as merging, i.e.,O(n). Hence, the
communicational complexity of the algorithm isO(n).

5 Implementation Results

The sequential algorithm presented is optimal, since acc
ing and storing the input itself has a complexity that

Fig. 6 Pseudobinary tree of a hypercube of degree 3. The arrows
indicate the direction of data movement and the terms by the arrows
indicate the communicational costs.
2086 Optical Engineering, Vol. 37 No. 7, July 1998
a

-

-

linear in the number of object pixels in the image. Both t
sequential and the parallel algorithms described in this
per were tested on several images with all sorts of comp
regions. The images contain convex, concave, simply c
nected, and multiply connected regions with holes. Fo
2563256 image with 172 components, the sequential al
rithm takes 351 ms. Figures 8 and 9, respectively, give
speedups obtained by the parallel algorithm for two imag
Efficiency ~which is the ratio of the speedup to the numb
of processors used! for the two images is also shown. W
obtain a maximum speedup of 10.53 using 12 process
for the 2563256 binary image, and the efficiency varie
around 0.75 on the sequent balance multiprocessor.
maximum speedup obtained for the binary text image
8.07 using 12 processors.

Fig. 7 Phases illustrating the merging process for a hypercube of
degree 3 using the pseudobinary tree. The arrows indicate the di-
rection of data movement and the terms by the arrows indicate the
communicational costs.
Fig. 8 Speedup and efficiency of a 2563256 binary image with 172 components.
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Fig. 9 Speedup and efficiency of a 5123512 binary text image with 793 components.
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The variation in speedups and efficiencies is becaus
load imbalance among the processors. This imbalance
sults from statically splitting the input image into subim
ages with approximately the same number of object pix
The execution time of labeling an object varies with t
type of the objects. But the major overhead appears to
the spread of an object over several subimages. This
verified by experimentation. We split an image into subi
ages ~approximately equal in size! in several different
ways. The execution time of the parallel algorithm w
consistently higher when an object was spread over sev
subimages.

6 Conclusion

We present an optimal and practical sequential algorit
for labeling connected components whose memory requ
ment and computational complexity is linear in the numb
of object pixels in the binary image. Since no assumptio
have been made on the type of input, the algorithm wo
for all types of binary images. The representation of
connected components as a linked list of reps makes it e
to calculate certain features of regions, i.e., area, perime
etc. The input and output representations of the image m
it possible for the algorithm to be used in real compu
vision applications. The algorithm is easily extended
gray-level images by including another field indicating t
gray level in the rep. The only other change is an addit
to the connectivity check for two reps. Two reps are co
nected only if they have the same gray levels.

The new parallel algorithm implemented on a sha
memory computer presented in this paper has a comp
tional complexity ofO( d log ne ) for an image of sizen. We
discuss the results of implementing the algorithm on
f
-

s

l

-

y
,
e

-

sequent balance multiprocessor. The speedup graphs s
an almost linear speedup. The computational and com
nicational complexities of the algorithm implemented
various distributed memory architectures, i.e., a binary t
connected computer, a unidirectional and bidirectio
mesh connected computer, and a hypercube compute
computed. It is trivial to see that the algorithm can
implemented on the polymorphic torus architecture w
complexities no worse than those of the mesh connec
computers. These complexities are the best yet achie
The communicational complexities are greater than
computational complexities for all the distributed memo
architectures. This explains the decrease in the efficienc
processors with the increase in the number of processo15

The theoretical formulation of these complexities gives
better idea as to which architecture will have a better e
ciency. In other words, we have an analytic expression
the communication overhead. We also verified that
speedup and efficiency obtained are nearly linear and un
respectively, when the image size~as we have chosen! is
much larger than the number of processors used.

7 Appendix A: The Pseudo Code for the
Sequential Algorithm

This appendix describes the sequential algorithm for c
nected component labeling. We use an easy to underst
pseudo PASCAL/C for representation.

Global Declarations
integer labelnum50;
integer joint50;
rep *newrep, *oldrep, *end;
objects *oldobj, *stack@int#@int#;
2087Optical Engineering, Vol. 37 No. 7, July 1998
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component *compos;
end Global Declarations
procedure COMPONENT~!
begin

INITIALIZE ~!;
while not~EOF! do

MAKELISTS~!;
CONNECTIONS~!;
REGIONS~!;
CHANGELABEL~!;
JOIN~!;
oldrep→repnext5newrep→repnext;
newrep→repnext5end;

od
PRINTOUT~comps!;

end COMPONENT;
procedure INITIALIZE ~!
begin

CREATOBJ~oldobj!;
CREATREP~oldrep!;
CREATREP~end!;
end→left5end→right5MAXCOLS12;
oldrep→repnext5end;
CREATREP~newrep!;
newrep→repnext5end;

end INITIALIZE;
procedure CREATREP~temp!
begin

temp→object5NULL;
temp→repnext5NULL;

end CREATREP;
procedure CREATOBJ~temp!
begin

temp→start5temp→end5NULL;
temp→label511labelnum;
temp→touch5false;
temp→objnext5NULL;

end CREATOBJ;
procedure MAKELISTS~!
begin

read~row, numrep!;
nrep5newrep;
for (i51; i<numrep; i11) do

CREATREP~temp!;
nrep→repnext5temp;
nrep5temp;
read~left, right!;
nrep→left5left;
nrep→right5right;
nrep→row5row;

od
nrep→repnext5end;

end MAKELISTS;
procedure CONNECTIONS~!
begin

joint50;
nrep5newrep→repnext;
while(oldrep→repnextÞend) do

orep5oldrep→repnext;
while(nrep→right<orep→right) do
2088 Optical Engineering, Vol. 37 No. 7, July 1998
if CONNECTED~nrep, orep!
then

orep→object→touch5true;
nrep→object→label
5orep→object→label;

nrep5nrep→repnext;
od
if CONNECTED~nrep, orep! then

orep→object→touch5true;
nrep→object→label5

orep→object→label;
if
CONNECTED~nrep, orep→repnext!
then

stack@11joint#@1#5
orep→object→label;
stack@joint#@2#5
orep→repnext→object→label;
LABELLING ~orep→object,

orep→repnext→object!;
oldrep→repnext5orep→repnext;
orep→repnext5orep→object→end;
orep→object→end5orep;
if (orep→object→start55NULL) then

orep→object→start5orep;
od

end CONNECTIONS;
procedure REGIONS~!
begin

pobj5oldobj;
while(pobj→objnextÞNULL) do

obj5pobj→objnext;
if (obj→touch) then

pobj5obj;
obj→touch5false;

else
dummy5compos;
while(dummy→compnextÞNULL) do

dummy5dummy→compnext;
od
new→comp5obj→end;
dummy→compnext5new;
pobj→objnext5obj→objnext;

od
end REGIONS;
procedure CHANGELABEL~!
begin

for~p5joint; p>1; joint22! do
LABELLING ~stack@p#@1#, stack@p#@2#!;

od
nrep5newrep→repnext;
while(nrepÞend) do

if (nrep→object55NULL) then
CREATOBJ~obj!;
nrep→object5obj;
obj→leftmost5nrep;
obj→objnext5oldobj→objnext;
oldobj→objnext5obj;
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else
nrep→object5
nrep→object→leftmost→object
if (nrep→object→leftmost55NULL)

then nrep→leftmost5nrep;
nrep5nrep→repnext

od
end CHANGELABEL;
procedure JOIN~!
begin

obj5oldobj→objnext;
pobj5oldobj;
while (objÞNULL) do

obj→touch5false;
if (obj55obj→leftmost→object) then

pobj5obj;
else

obj→start→repnext5obj→leftmost
→object→end;
obj→leftmost→object→end5obj→end;
pobj→objnext5obj→objnext;

obj5pobj→objnext;
od

end JOIN;
procedure LABELLING ~p, q!
begin

if ~p→leftmost→object→label
,q→leftmost→object→label!
then

q→leftmost5p→leftmost;
q→label5p→leftmost→object→label;

else
p→leftmost5q→leftmost;
p→label5q→leftmost→object→label;

end LABELLING;
procedure CONNECTED~p, q!
begin

if ~~p→left<q→right11!AND
(p→right>q→left21)!
then

return~true!;
else

return~false!;
end CONNECTED;

8 Appendix B: Evaluating Communicational
Complexities

8.1 Unidirectional Mesh

For the sake of simplicity, we assume thatq52x, for some
xPN.

Ur5O$n/p@1111~212!1~4141414!

1¯~q21!terms#%

5O$n/q2@1120
•20121

•21122
•22

1¯12r~2r21!#%.
From these two expressions we can evaluate the valuer
since

1121221231¯12r215q2121⇒r 5 log~q/2!.

Thus,

Ur5O$n/q2@11~11221241¯122r !22r #%

5O$n/q2@11~22r 1221!/322r #%

5O$n/q2@11~q221!/32q/2#%

5O$n/p@11~p21!/32p1/2/2#%

5O~n/32n/2p1/212n/3p!.

It is easy to see thatUc5p1/2Ur .

8.2 Bidirectional Mesh

For the sake of simplicity, we assume thatq52x, for some
xPN.

Br5O$n/p@1121~414!1~8181818!

1¯q/2terms#%

5O@n/q2~1121
•20122

•21123
•221¯12r

•2r 21!#.

From these two expressions we can evaluate the valuer
since

1121221231¯12r 215q/221⇒r 5 log~q/2!.

Thus,

Br5O@n/q2~11211231251¯122r 21!#

5O$n/q2@11~22r 1221!/3#%

5O$n/q2@11~q221!/3#%

5O$n/p@~p12!/3#%

5O~n/312n/3p!.

It is easy to see thatBc5p1/2Br .
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