
Strings: A High-Performance Distributed Shared Memory for Symmetrical
Multiprocessor Clusters

Sumit Roy and Vipin Chaudhary�

Parallel and Distributed Computing Laboratory
Department of Electrical and Computer Engineering

Wayne State University
Detroit, Michigan 48202

fsroy,vchaudg@ece.eng.wayne.edu

Abstract

This paper introduces Strings, a high performance dis-
tributed shared memory system designed for clusters of
symmetrical multiprocessors (SMPs). The distinguishing
feature of this system is the use of a fully multi-threaded
runtime system, written using POSIX threads. Strings also
allows multiple application threads to be run on each node
in a cluster. Since most modern UNIX systems can multiplex
these threads on kernel level light weight processes, appli-
cations written using Strings can use all the processors in
a SMP machine. This paper describes some of the archi-
tectural details of the system and analyzes the performance
improvements with two example programs and a few bench-
mark programs from the SPLASH-2 suite.

1. Introduction

Though current microprocessors are getting faster at a
very rapid rate, there are still some very large and com-
plex problems that can only be solved by using multi-
ple cooperating processors. These problems include the
so-calledGrand Challenge Problems, such as Fuel com-
bustion, Ocean modeling, Image understanding, and Ra-
tional drug design. There has recently been a decline in
the number of specialized parallel machines being built to
solve such problems. Instead, many vendors of traditional
workstations have adopted a design strategy wherein mul-
tiple state-of-the-art microprocessors are used to build high
performance shared-memory parallel workstations. These
symmetrical multiprocessors (SMPs) are then connected
through high speed networks or switches to form a scal-

�This research was supported in part by NSF grants MIP-9309489,
EIA-9729828, US Army Contract DAEA 32-93D004 and Ford Motor
Company grants 96-136R and 96-628R

able computing cluster. Examples of this important class
of machines include the SGI Power Challenge Array, the
IBM SP2 with multiple PowerPC based nodes, the Con-
vex Exemplar, the DEC AdvantageCluster 5000, the SUN
HPC cluster with the SUN Cluster Channel, as well as the
Cray/SGI Origin 2000 series.

Existing sequential application programs can be auto-
matically converted to run on a single SMP node through
the use of parallelizing compilers such as KAP [15],
Parafrase [22], Polaris [20] and SUIF [1]. However, us-
ing multiple nodes requires the programmer to either write
explicit message passing programs, using libraries like MPI
or PVM; or to rewrite the code using a new language with
parallel constructs eg. HPF and Fortran 90. Message pass-
ing programs are cumbersome to write and have to be tuned
for each individual architecture to get the best possible per-
formance. Parallel languages work well with code that has
regular data access patterns. In both cases the programmer
has to be intimately familiar with the application program as
well as the target architecture. The shared memory model
is easier to program since the programmer does not have
to worry about the data layout and does not have to ex-
plicitly send data from one process to another. However,
hardware shared memory machines do not scale that well
and/or are very expensive to build. Hence, an alternate ap-
proach to using these computing clusters is to provide an
illusion of logically shared memory over physically dis-
tributed memory, known as a Distributed Shared Memory
(DSM) or Shared Virtual Memory (SVM). Recent research
projects with DSMs have shown good performance, for ex-
ample IVY [16], Mirage [10], Munin [3], TreadMarks [2],
Quarks [14], and CVM [12]. This model has been shown to
give good results for programs that have irregular data ac-
cess patterns that cannot be analyzed at compile time [17],
or indirect data accesses that are dependent on the input
data-set.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

DSMs share data at the relatively large granularity of a
virtual memory page and can suffer from a phenomenon
known as “false sharing”, wherein two processes simulta-
neously attempt to write to different data items that reside
on the same page. If only a single writer is permitted, the
page may ping-pong between the nodes. A simple solution
is to “hold” on to a freshly arrived page for some time before
releasing it to another requester [10]. Relaxed memory con-
sistency models that allow multiple concurrent writers have
also been proposed to alleviate this symptom [4, 5, 2, 26].
These systems ensure that all nodes see the same data at
well defined points in the program, usually at synchroniza-
tion points. Extra effort is required to ensure program cor-
rectness in this case.

One technique that has been investigated recently to im-
prove DSM performance is the use of multiple threads of
control in the system. Multi-threaded DSMs have been de-
scribed as third generation systems [23]. Published efforts
have been restricted to non-preemptive, user-level thread
implementations [14, 24]. Since the kernel does not know
about user level threads, they cannot be scheduled across
multiple processors on an SMP. Since SMP clusters are in-
creasingly becoming the norm for High Performance Com-
puting sites, we consider this to be an important prob-
lem to be solved. This paper introducesStrings, a multi-
threaded DSM, based on Quarks. The distinguishing fea-
ture ofStringsis that it is built using POSIX threads, which
can be multiplexed on kernel light-weight processes. The
kernel can schedule these lightweight processes across mul-
tiple processors for better performance.Stringsis designed
to exploit data parallelism at the application level and task
parallelism at the runtime level. We show the impact of
some of our design choices using some example programs
as well as some benchmark programs from the SPLASH-
2 suite [25]. Though similar work has been demonstrated
with SoftFLASH [8], our implementation is completely in
user space and thus more portable. Some other research has
studied the effect of clustering in SMPs using simulations
[11]. We have shown results from runs on an actual network
of SMPs. Brazos [23] is another DSM system designed to
run on multiprocessor cluster, but only under Windows NT.
TheStringsruntime has currently been ported to Solaris 2.6,
Linux 2.1.64, and AIX 4.1.5.

The following section describes some details of the soft-
ware system. The evaluation platform and programs for the
performance analysis are described in section 3. Experi-
mental results are shown and analyzed in section 4. Section
5 suggests some direction for future work and concludes the
paper.

2. System details

The Stringsdistributed shared memory is based on the
publicly available system Quarks [14]. We briefly describe
the Quarks system and then explain the modifications car-
ried out, and new features added to createStrings.

2.1. Execution model

The Quarks system consists of a library that is linked
with a shared memory parallel program, and aserverpro-
cess running on a well known host. A program starts up and
registers itself with theserver. It then forks processes on re-
mote machines usingrsh. Each forked process in turn reg-
isters itself with theserver, and then creates aDSM server
thread, which listens for requests from other nodes. The
master process creates shared memory regions coordinated-
ordinated by theserverin the program initialization phase.
Theservermaintains a list of region identifiers and global
virtual addresses. Each process translates these global ad-
dresses to local addresses using a page table. Application
threads are created by sending requests to the appropriate
remoteDSM servers. Shared region identifiers and global
synchronization primitives are sent as part of the thread cre-
ate call. The newly created threads obtain the global ad-
dresses from the server and map them to local memory. The
virtual memory sub-system is used to enforce proper access
to the globally shared regions. The original Quarks system
used user levelCthreadsfor implementing part of the sys-
tem, but allowed only a single application thread.Strings
allows multiple application threads to be created on a single
node. This increases the concurrency level on each node in
a SMP cluster.

2.2. Kernel level threads

Threads are light-weight processes that have minimal
execution context, and share the global address space of
the program. The time to switch from one thread to an-
other is very small when compared to the context switch
required for full-fledged processes. Moreover the implicit
shared memory leads to a very simple programming model.
Thread implementations are distinguished as being user-
level, usually implemented as a library, or kernel level in
terms of light-weight processes. Kernel level threads are a
little more expensive to create, since the kernel is involved
in managing them. However, user level threads suffer from
some important limitations. Since they are implemented as
a user level library, they cannot be scheduled by the ker-
nel. If any thread issues a blocking system call, the kernel
considers the process as a whole, and thus all the threads
in it, to be blocked. Also, on a multiprocessor system,
all user level threads can only run on one processor at a

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

time. User level threads do allow the programmer to ex-
ercise very fine control on their scheduling within the pro-
cess. Kernel level threads can be scheduled by the operat-
ing system across multiple processors. Most modern UNIX
implementations provide a light-weight process interface
on which these threads are then multiplexed. The thread
package adopted forStringswas the standard Posix 1003.1c
threads as available with Solaris 2.6. Since thread schedul-
ing is handled by the kernel some parts of the system had
to be changed to ensure correctness. Multi-threading has
been suggested for improving the performance of scien-
tific code by overlapping communications with computa-
tions [9]. Previous work on multi-threaded message passing
systems has pointed out that kernel-level implementations
show better results than user level threads for a message
size greater than 4k bytes [21]. Since the page size is usu-
ally 4k or 8k bytes, it suggests that kernel threads should be
useful for DSM systems.

2.3. Shared memory implementation

Shared memory in the system is implemented by using
the UNIX mmapcall to map a file to the bottom of the
stack segment. Quarks used anonymous mappings of mem-
ory pages to addresses determined by the system, but this
works only with statically linked binaries. With dynami-
cally linked programs, it was found that due to the pres-
ence of shared librariesmmapwould map the same page
to different addresses in different processes. While an ad-
dress translation table can be used to access opaquely shared
data, it is not possible to pass pointers to shared memory this
way, since they would potentially address different regions
in different processes. An alternate approach would be to
preallocate a very large number of pages, as done by CVM
and TreadMarks, but this associates the same large overhead
with every program, regardless of its actual requirements.

Themprotectcall is used to control access to the shared
memory region. When a thread faults while accessing a
page, a page handler is invoked to fetch the contents from
the owning node.Stringscurrently supports sequential con-
sistency using an invalidate protocol, as well as release con-
sistency using an update protocol [5, 14]. The release con-
sistency model implemented in Quarks has been improved
by aggregating multiple diffs to decrease the number of
messages sent.

Allowing multiple application threads on a node leads to
a peculiar problem with the DSM implementation. Once
a page has been fetched from a remote node, its contents
must be written to the corresponding memory region, so the
protection has to be changed towritable. At this time no
other thread should be able to access this page. User level
threads can be scheduled to allow atomic updates to the re-
gion. However, suspending all kernel level threads can po-

tentially lead to a deadlock, and would also reduce concur-
rency. The solution used inStringsis to map every shared
region to two different addresses. It is then possible to write
to the ‘secondary region’, without changing the protection
of the primary memory region.

2.4. Polled network I/O

Early generation DSM systems used interrupt driven I/O
to obtain pages, locks etc. from remote nodes. This can
cause considerable disruption at the remote end, and pre-
vious research tried to overcome this by aggregating mes-
sages, reducing communication by combining synchroniza-
tion with data, and other such techniques [19].Stringsuses
a dedicated communication thread, which monitors the net-
work port, thus eliminating the overhead of interrupt driven
I/O. Incoming message queues are maintained for each ac-
tive thread at a node, and message arrival is announced us-
ing condition variables. This prevents wasting CPU cycles
with busy waits. A reliable messaging system is imple-
mented on top of UDP.

2.5. Concurrent server

The original QuarksDSM serverthread was an iterative
server that handled one incoming request at a time. It was
found that under certain conditions, lock requests could give
rise to a deadlock between two communicating processes.
Stringssolves this by forking separate threads to handle
each incoming request for pages, lock acquires and barrier
arrivals. Relatively fine grain locking of internal data struc-
tures is used to maintain a high level of concurrency while
guaranteeing correctness when handling multiple requests.

2.6. Synchronization primitives

Quarks provides barriers and locks as shared memory
primitives. Stringsalso implements condition variables for
flag based synchronization. Barriers are managed by the
master process, and every application thread sends an ar-
rival message to the manager. Dirty pages are also purged
at this time, as per Release Consistency Semantics [5].

Lock ownership is migratory with distributed queues.
For multiple application threads, only one lock request is
sent to the current owner, the subsequent ones are queued
locally, as are incoming requests. The current implemen-
tation does not give any preference to local request, which
guarantees progress and fairness, though other research has
shown such optimizations to work well in practice [24].

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

Program Parameters
FFT 1048576 points
LU-c 2048� 2048, block size 128
LU-n 512� 512, block size 32
WATER-sp 4096 molecules
RADIX 1048576 integers
WATER-n2 4096 molecules
MRI 14 frequency points, PHANTOM image
MATMUL 1024� 1024 doubles, 16 blocks

Table 1. Problem Sizes

3. Performance analysis

We evaluated the performance ofStringsusing programs
from the SPLASH-2 benchmark suite [25]. These pro-
grams have been written for evaluating the performance of
shared address-space multiprocessors and include applica-
tion kernels as well as full fledged code. We show per-
formance results for Fast Fourier Transform (FFT), LU de-
composition with contiguous blocks (LU-c) as well as non-
contiguous blocks (LU-n), the two versions of water ie. spa-
tial (WATER-sp) and nsquared (WATER-n2) and radix sort
(RADIX). Additionally we show results for matrix multipli-
cation (MATMUL) and a real application, a program for de-
blurring images from Magnetic Resonance Imaging (MRI).
The problem sizes are shown in Table [1]. All other param-
eters were left at their default value.

3.1. Evaluation environment

Our experiments were carried out so as to show how var-
ious changes in the system impact performance. The runs
were carried out on a network of four SUN UltraEnterprise
Servers, connected using a 155 Mbs ForeRunnerLE 155
ATM switch. The first machine is a 6 processor UltraEn-
terprise 4000 with 1.5 Gb memory. Theserverprocess was
always run on this machine. Two other machines are 4 pro-
cessor UltraEnterprise 3000s, with 0.5 Gb memory each.
These three machines all use 250 MHz UltraSparc proces-
sors. The last machine is also a 4 processor Enterprise 3000,
with 0.5 Gb memory, but using 167 MHz UltraSparc pro-
cessors. Since all runs were carried out on the same plat-
form, we do not expect our results to be qualitatively af-
fected by this slight load imbalance.

For each case, the following runs were carried out:

P16T1-KT: sixteen processes, four per machine, with a
single application thread per process. The runtime uses
kernel threads.
This is the base case and approximates the typi-
cal environment used in previous work on DSMs
eg. TreadMarks has been studied on ATM networked

DECstation-5000/240s [2],CVM results were pre-
sented on the IBM SP-2 [13].

P4T4-KT: four processes, one per machine with four ap-
plication threads per process. Kernel threads are used
throughout. Multiple application threads can be sched-
uled across processors in this case, and multiple re-
quests can be handled by theDSM serverthread.

P4T4-UT: same as above, but using user level threads.
This was approximated by allowing only the default
process level contention for the threads. These were
then constrained to run on a single processor per node.

P4T4-KT-SIGIO: four processes, one per machine with
four application threads per process with signal driven
I/O. Instead of using polling, incoming messages gen-
erate a SIGIO signal, and a signal handler thread then
processes the request.

P4T4-KT-SS: four processes, one per machine with four
application threads per process. Compared to the
P4T4-KT case, theDSM server thread is changed to
handle all requests sequentially, except for lock re-
quests. As already mentioned, this was required to
avoid a deadlock problem in the original Quarks run-
time.

In every case, Release Consistency model was used.

3.2. SPLASH-2 programs

The data access patterns of the programs in the
SPLASH-2 suite have been characterized in earlier research
[11, 26]. FFT performs a transform ofncomplex data points
and requires three all-to-all interprocessor communication
phases for a matrix transpose. The data access is regular.
LU-c and LU-n perform factorization of a dense matrix.
The non-contiguous version has a single producer and mul-
tiple consumers. It suffers from considerable fragmentation
and false sharing. The contiguous version uses an array of
blocks to improve spatial locality. WATER-sp evaluates the
forces and potentials occurring over time in a system of wa-
ter molecules. A 3-D grid of cells is used so that a pro-
cessor that owns a cell only needs to look at neighboring
cells to find interacting molecules. Communication arises
out of the movement of molecules from one cell to another
at every time-step. Radix performs an integer radix sort and
suffers from a high-degree of false sharing at page granu-
larity during a permutation phase. WATER-n2 solves the
same problem as WATER-sp, though with a less efficient
algorithm that uses a simpler data-structure.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

3.3. Image deblurring

The application tested is a parallel algorithm for deblur-
ring of images obtained from Magnetic Resonance Imaging.
Images generated by MRI may suffer a loss of clarity due
to inhomogeneities in the magnetic field. One of the tech-
niques for removing this blurring artifact is the demodula-
tion of the data for each pixel of the image using the value
of the magnetic field near that point in space. This method
consists of acquiring a local field map, finding the best fit to
a linear map and using it to deblur the image distortions due
to local frequency variations. This is a very computation
intensive operation and has previously been parallelized us-
ing a message passing approach [18]. Each thread deblurs
the input image around its chosen frequency points and then
updates the relevant portions to the final image. Since these
portions can overlap, each thread does the update under the
protection of a global lock.

3.4. Matrix multiplication

The matrix multiplication program uses a block-wise
distribution of the resultant matrix. Each application thread
computes a block of contiguous values, hence there is no
false sharing.

4. Results

The overall execution times are shown in Figure 1, with
results normalized to the total execution time of theP16T1-
KT case. The data is separated into the time for:

Page Fault: the total time spent in the page-fault handler
is adjusted for multiple overlapping faults on the same
node.

Lock: the time spent to acquire a lock.

Barrier Wait: the time spent waiting on the barrier after
completing Release Consistency related protocol ac-
tions.

Compute: this includes the compute time, as well as some
miscellaneous components like the time spent sending
diffs to other nodes, as well as the startup time.

The execution time for LU-c, LU-n, WATER-sp, and
WATER-n2 can be seen to be dominated by the cost of syn-
chronization events ie. barriers and locks. This is primarily
due to the use of the release consistency model, which re-
quires that all modifications to writable pages be flushed at
synchronization points in the code. We are currently look-
ing at improving the performance of this part of the system.

It can be seen that using multiple application threads on
top of kernel threads can reduce the execution time in most

FFT LU−c LU−n WATER−sp RADIX WATER−n2 MRI MATMUL
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P16T1−KT/P4T4−KT/P4T4−UT/P4T4−KT−SIGIO/P4T4−KT−SS

Compute
Barrier Wait
Lock
Page Fault

Figure 1. Execution Time Normalized to
P16T1-KT

Program Bytes Messages Avg. Size
FFT 36 M 7578 4.7k
LU-c 56 M 9516 5.8k
LU-n 10 M 2686 3.7k
WATER-sp 20 M 24045 831
RADIX 13 M 2825 4.6k
WATER-n2 13 M 95008 136
MRI 4 M 1319 3.0k
MATMUL 11 M 2553 4.3k

Table 2. Traffic per node

case by up to 50 % as compared to using multiple processes.
The primary reason is due to the reduction in the number
of page faults, as can be seen in Figure 2. When multiple
threads on a node access the same set of pages, they need to
be faulted in only once.

Applications with a high computational component, like
LU-c, RADIX, and MATMUL illustrate the problem with
using only user-level threads. Each compute bound thread
competes for the same processor of each machine, leading
to very inefficient utilization. This can also be seen by the
larger average barrier cost in case of MATMUL, since the
first arriving thread has to wait for the remaining threads to
finish computing.

The behavior of signal driven I/O compared to polled I/O
can be explained by referring to Table 2. The overhead of
signal generation becomes apparent as soon as the message
size drops below 4 k bytes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

FFT LU−c LU−n WATER−sp RADIX WATER−n2 MRI MATMUL
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P16T1−KT/P4T4−KT/P4T4−UT/P4T4−KT−SIGIO/P4T4−KT−SS

Fault Count

Figure 2. Page Fault Count Normalized to
P16T1-KT

Program Concurrent Server Iterative Server
FFT 4626 9
LU-c 7027 9
LU-n 2079 9
WATER-sp 20050 90
RADIX 1905 39
WATER-n2 90784 30456
MRI 815 16
MATMUL 1373 12

Table 3. Threads Created per Node

Table 3 shows that the concurrent server creates large
number of threads for servicing DSM requests. The itera-
tive server creates threads only for handling lock requests,
the difference in counts is essentially due to paging activ-
ity and barrier calls. The advantage of using a concurrent
DSM servercan be seen from the times taken for each pro-
tocol event, as shown in Figures 3, 4 and 5. The latency per
event increases in general if an iterative server is used. This
is particularly pronounced for the time per page fault. As
expected, the lock time is almost the same, since both ap-
proaches use the same implementation. The discrepancy in
RADIX is likely due to the fact that locks are used for flag
based synchronization and there is a load imbalance. The
barrier times are not affected markedly, which is expected,
since at that time all the threads are idle anyway.

FFT LU−c LU−n WATER−sp RADIX WATER−n2 MRI MATMUL
0.0

5.0

10.0

15.0

20.0

25.0

ms

P16T1−KT/P4T4−KT/P4T4−UT/P4T4−KT−SIGIO/P4T4−KT−SS

Page Fault

Figure 3. Page Fault Time

Additional runs were carried out with varying number of
application threads to look at speed-up results.

P1T1-KT: one process, on the UltraEnterprise 4000, ie.
the sequential case.

P4T1-KT: four processes, one per machine, with a single
application thread per process.

P4T2-KT: four processes, one per machine, with two ap-
plication threads per process.

P4T4-KT: four processes, one per machine, with four ap-
plication threads per process.

The results for LU-c, LU-n, MRI, and MATMUL are
shown Figure 6. It can be seen that in most cases the exe-
cution time drops to half whenever the number of applica-
tion threads is doubled. This also supports the notion of us-
ing multiple threads to increase the utilization of such SMP
clusters.

5. Conclusions

Though the performance of each implementation can be
seen to depend on the data sharing and communication pat-
tern of the application program, some general trends can be
observed. While going from theP16T1-KTbase case to
P4T4-KTthe performance in general improves. This is pri-
marily the result of using multiple kernel threads to reduce
the cost of page-faults, lock acquisition and barriers. The
P4T4-KT-SIGIOruns show that using a dedicated commu-
nication thread to poll for incoming messages is a preferred

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

FFT LU−c LU−n WATER−sp RADIX WATER−n2 MRI MATMUL
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P16T1−KT/P4T4−KT/P4T4−UT/P4T4−KT−SIGIO/P4T4−KT−SS

Lock Time

Figure 4. Time spent per Lock Acquisition,
Normalized to P16T1-KT

alternative to signal driven I/O. Though previous research
has tried to use user-level thread packages to improve the
performance of DSM systems, MATMUL and MRI clearly
show that kernel threads provide far better performance.
The concurrentDSM serverapproach reduces the latencies
for page-faults by allowing multiple requests to be handled
concurrently. However the overall impact is not very high
since the execution time is dominated by the barrier time in
most applications.

When compared to message passing programs, addi-
tional sources of overhead for traditional software DSM
systems have been identified to include separation of data
and synchronization, overhead in detecting memory faults,
and absence of aggregation [6]. Researchers have attempted
to use compiler assisted analysis of the program to reduce
these overheads. Prefetching of pages has been suggested
by a number of groups for improving the performance of
TreadMarks, by saving the overhead of a memory fault
[19, 17]. This technique sacrifices the transparency of a
page oriented DSM, but can be incorporated in paralleliz-
ing compilers. InStrings, a faulting thread does not block
the execution of other application threads on the same pro-
cess, hence the benefit of prefetching is not expected to be
very large. Asynchronous data fetching was also identified
to be a source of performance improvement [7]. In our sys-
tem, the dedicatedDSM serverand communication thread
together hide the consistency related actions from the appli-
cation threads.

Overall using kernel threads seems promising, especially

FFT LU−c LU−n WATER−sp RADIX WATER−n2 MRI MATMUL
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

P16T1−KT/P4T4−KT/P4T4−UT/P4T4−KT−SIGIO/P4T4−KT−SS

Wait Time

NO BARRIERS

Figure 5. Time spent per Barrier Call, Normal-
ized to P16T1-KT

for regular programs with little false sharing. Additional
work needs to be done to identify the sources of overhead in
the barrier implementation, since this dominates the execu-
tion time in most cases. Our current work is to improve the
performance of the release consistency protocol. However
for many applications, we have shown that using kernel-
threads makes a significant difference in performance.

Acknowledgments

We would like to thank the anonymous reviewers, whose
helpful comments shaped the final version of this paper. We
also thank Padmanabhan Menon for providing the shared
memory version of his MRI code.

References

[1] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C.-W.
Tseng. The SUIF Compiler for Scalable Parallel Machines.
In Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, February 1995.

[2] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaeonopoel. TreadMarks: Shared
Memory Computing on Networks of Workstations.IEEE
Computer, pages 18–28, February 1996.

[3] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Dis-
tributed Shared Memory Based on Type-Specific Memory
Coherence. InProceedings of the 1990 Conference on Prin-
ciples and Practice of Parallel Programming, pages 168–
176, New York, 1990. ACM, ACM Press.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

LU−c LU−n MRI MATMUL
0

0.2

0.4

0.6

0.8

1

P4T1−KT/P4T2−KT/P4T4−KT

Compute
Barrier
Lock
Page Fault

Figure 6. Execution Time Normalized to P1T1-
KT

[4] B. N. Bershad and M. J. Zekauskas. Midway: Shared
Memory Parallel Programming with Entry Consistency for
Distributed Memory Multiprocessors. Technical Report
CMU-CS-91-170, Carnegie Mellon University, Pittsburgh,
PA 15213, September 1991.

[5] J. B. Carter. Design of the Munin Distributed Shared Mem-
ory System.Journal of Parallel and Distributed Computing,
1995.

[6] A. L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel. Evalu-
ating the Performance of Software Distributed Shared Mem-
ory as a Target for Parallelizing Compilers. InProceed-
ings of International Parallel Processing Symposium, April
1997.

[7] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. An
Integrated Compile-Time/Run-Time Software Distributed
Shared Memory System. InASPLOS-VII Proceedings, vol-
ume 24, pages 186–197, Cambridge, Massachusetts, Octo-
ber 1996. ACM.

[8] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy.
SoftFLASH: Analyzing the Performance of Clustered Dis-
tributed Virtual Shared Memory. InASPLOS-VII Pro-
ceedings, volume 24, pages 210–220, Cambridge, Mas-
sachusetts, October 1996. ACM.

[9] E. W. Felten and D. McNamee. Improving the Performance
of Message-Passing Applications by Multithreading. InPro-
ceedings of the Scalable High Performance Computing Con-
ference, pages 84–89, April 1992.

[10] B. Fleisch and G. Popek. Mirage: A Coherent Distributed
Shared Memory Design. InProceedings of the 14th ACM
Symposium on Operating System Principles, pages pp. 211–
223, New York, 1989. ACM.

[11] D. Jiang, H. Shan, and J. P. Singh. Application Restructuring
and Performance Portability on Shared Virtual Memory and
Hardware-Coherent Multiprocessors. InProceedings of the

6th ACM Symposium on Principles and Practice of Parallel
Programming, pages 217 – 229, Las Vegas, 1997. ACM.

[12] P. Keleher.CVM: The Coherent Virtual Machine. University
of Maryland, CVM Version 2.0 edition, July 1997.

[13] P. Keleher and C.-W. Tseng. Enhancing Software DSM for
Compiler-Parallelized Applications. InProceedings of In-
ternational Parallel Processing Symposium, August 1997.

[14] D. Khandekar.Quarks: Portable Distributed Shared Mem-
ory on Unix. Computer Systems Laboratory, University of
Utah, beta edition, 1995.

[15] Kuck & Associates, Inc., Champaign, IL 61820.KAP User’s
Guide, 1988.

[16] K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems.ACM Transactions on Computer Systems,
7(4):321–359, November 1989.

[17] H. Lu, A. L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepol. Compiler and Software Distributed Shared
Memory Support for Irregular Application. InProceedings
of the Symposium on the Principles and Practice of Parallel
Programming,, 1997.

[18] P. Menon, V. Chaudhary, and J. G. Pipe. Parallel Algorithms
for deblurring MR images. InProceedings of ISCA 13th
International Conference on Computers and Their Applica-
tions, March 1998.

[19] R. Mirchandaney, S. Hiranandani, and A. Sethi. Improv-
ing the Performance of DSM Systems via Compiler Involve-
ment. InProceedings of Supercomputing 1994, 1994.

[20] D. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu,
S. Weatherford, and K. Faigin. Polaris: A New-Generation
Parallelizing Compiler for MPPs. Technical Report 1306,
Univ. of Illinois at Urbana-Champaign, CSRD, June 1993.

[21] S.-Y. Park, J. Lee, and S. Hariri. A Multithreaded Message-
Passing System for High Performance Distributed Comput-
ing Applications. InProceedings of the IEEE 18th Interna-
tional Conference on Distributed Systems, 1998.

[22] C. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L.
Lee, B. P. Leung, and D. A. Schouten. Parafrase-2: An Envi-
ronment for Parallelizing, Partitioning, Synchronizing, and
Scheduling Programs on Multiprocessors. InProceedings of
the International Conference on Parallel Processing, pages
39–48, St. Charles, August 1989.

[23] E. Speight and J. K. Bennett. Brazos: A Third Generation
DSM System. InProceedings of the First USENIX Windows
NT Workshop, August 1997.

[24] K. Thitikamol and P. Keleher. Multi-threading and Remote
Latency in Software DSMs. InProceedings of the 17th In-
ternational Conference on Distributed Computing Systems,
1997.

[25] S. C. Woo, M. Ohara, E. Torri, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. InProceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 24–36,
June 1995.

[26] Y. Zhou, L. Iftode, J. P. Singh, K. Li, B. R. Toonen,
I. Schoinas, M. D. Hill, and D. A. Wood. Relaxed Con-
sistency and Coherence Granularity in DSM Systems: A
Performance Evaluation. InProceedings of the 6th ACM
Symposium on Principles and Practice of Parallel Program-
ming, pages 193 – 205, Las Vegas, June 1997.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:29 from IEEE Xplore. Restrictions apply.

