History-based Access Control for Mobile Code

Guy Edjlali
Dept. of ECE
Wayne State University
Detroit, MI 48202

Abstract

In this paper, we present a history-based access-control mech-
anism that is suitable for mediating accesses from mobile
code. The key idea behind history-based access-control is to
maintain a selective history of the access requests made by
individual programs and to use this history to improve the
differentiation between safe and potentially dangerous re-
quests. What a program is allowed to do depends on its own
behavior and identity in addition to currently used discrim-
inators like the location it was loaded from or the identity
of its author/provider. History-based access-control has the
potential to significantly expand the set of programs that
can be executed without compromising security or ease of
use. We describe the design and implementation of Deeds,
a history-based access-control mechanism for Java. Access-
control policies for Deeds are written in Java, and can be
updated while the programs whose accesses are being medi-
ated are still executing.

1 Introduction

The integration of mobile code with web browsing creates
an access-control dilemma. On one hand, it creates a social
expectation that mobile code should be as easy to download
and execute as fetching and viewing a web page. On the
other hand, the popularity and ubiquity of mobile code in-
creases the likelihood that malicious programs will mingle
with benign ones.

To reassure users about the safety of their data and to
keep the user interface simple and non-intrusive, systems
supporting mobile code have chosen to err on the side of con-
servatism and simplicity. Depending on its source, mobile
code is partitioned into trusted and untrusted code. Code
is considered trusted if it is loaded from disk [9, 12] or if it
is signed by an author/organization deemed trustworthy by
the user [12, 30]. Untrusted code is confined to a severely re-
stricted execution environment [9] (eg, it cannot open local
files or sockets, cannot create a subprocess, cannot initiate
print requests etc); trusted code is either given access to all
available resources [30] or is given selective access based ~+

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
arc not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
vequires prior specific permission and/or a fee.

5th Conference on Computer & Communications Security

San Francisco CA USA

Copyright ACM 1998 1-58113-007-4/98/11...$5.00

Anurag Acharya
Dept. of Computer Science
University of California
Santa Barbara, CA 93106

Vipin Chaudhary
Dept. of ECE
Wayne State University
Detroit, MI 48202

user-specified access-control lists [12].

For the programs considered untrusted, these mecha-
nisms can be overly restrictive. Many useful and safe pro-
grams, such as a well-behaved editor applet from a lesser-
known software company, cannot be used since it cannot
open local files. In addition, to implement new resource-
sharing models such as global computing [6] all communica-
tion has to be routed through brokers. This significantly
limits the set of problems that can be efficiently handled by
such models. For programs considered trusted, these mod-
els can be too lax. Errors, not just malice aforethought, can
wipe out or leak important data. Combined with a suitable
audit trail, signed programs [12] do provide the ability to
take legal recourse if need be.

In this paper, we present a history-based access-control
mechanism that is suitable for mediating accesses from mo-
bile code. The key idea behind history-based access-control
is to maintain a selective history of the access requests made
by individual programs and to use this history to improve
the differentiation between safe and potentially dangerous
requests. What a program is allowed to do depends on its
own identity and behavior in addition to currently used dis-
criminators like the location it was loaded from or the iden-
tity of its author/provider. History-based access-control has
the potential to significantly expand the set of programs that
can be executed without compromising security or ease of
use. For example, consider an access-control policy that al-
lows a program to open local files for reading as long as it
has not opened a socket and allows it to open a socket as
long as it has not opened a local file for reading. Irrespective
of the source of the program, such a policy can ensure that
no disk-resident data will be leaked. Strictly speaking, this
is true iff it is possible to intercept all access requests being
made on behalf of the program — the requests made by itself
as well as the requests made on its behalf. The technique
we present in this paper is able to intercept all requests.

‘We first present some examples of history-based access-
control policies. Next, we discuss issues that have to be re-
solved for implementing history-based access-control mech-
anisms. In section 3, we describe Deeds,! an implementation
of history-based access-control for Java programs. Access-
control policies for Deeds are written in Java, and can be
installed, removed or modified while the programs whose ac-
cesses are being mediated are still executing. Deeds requires
policies to adhere to several constraints. These constraints
are checked either at compile-time by the Java compiler or
at runtime by the Deeds policy manager. We illustrate the

1Your deeds determine your destiny :)

operation of the Deeds user interface using snapshots. In
section 4.4, we examine the additional overhead imposed
by Deeds using micro-benchmarks as well as real programs.
History-based access-control is not specific to Java or to mo-
bile code. It can be used for any system that allows inter-
position of code between untrusted programs and protected
resources. In section 5, we discuss how a system similar to
Deeds can be used to mediate accesses to OS resources from
native binaries. We conclude with a description of related
work and the directions in which we plan to extend this
effort.

2 Examples

One-out-of-k: Consider the situation when you want to
allow only those programs that fall into well-marked equiva-
lence classes based on their functionality and behavior. For
example, you want to allow only programs that provide just
the functionality of a browser or an editor or a shell. A
browser can connect to remote sites, create temporary lo-
cal files in a user-specified directory, read files that it has
created and display them to the user. An editor can cre-
ate local files in user-specified directories, read/modify files
that it has created, and interact with the user. It is not
allowed to open sockets. A shell can interact with the user
and can create sub-processes. It cannot open local files, or
connect to remote sites. This restriction can be enforced by
a history-based access-control policy that:

e allows a program to connect to a remote site if and only
if it has neither tried to open a local file that it has
not created, nor tried to modify a file it has created,
nor tried to create a sub-process;

o allows a program to open local files in user-specified
directories for modification if and only if it has created
them, and it has neither tried to connect to a remote
site nor tried to create a sub-process.

e allows a program to create sub-processes if and only
if it has neither tried to connect to a remote site nor
tried to open a local file.

In effect, each program is dynamically classified into one of
three equivalence classes (browser-like, editor-like or shell-
like) based on the sequence of requests it makes. Once a
program is placed in a class, it is allowed to access only the
resources that are permitted to programs in that class.

Keeping out rogues: Consider the situation where you
want to ensure that a program that you once killed due to
inappropriate behavior is not allowed to execute on your
machine. This restriction can be enforced, to some extent,
by a history-based access-control policy that keeps track of
previous termination events and the identity of the programs
that were terminated.

Frustrating peepers: Consider the situation where you
want to allow a program to access only one of two relations
in a database but not both. One might wish to do this if
accessing both the relations may allow a program to extract
information that it cannot get from a single relation. For
example, one might wish to allow programs to access either
a relation that contains the date and the name of medical
procedures performed in a hospital or a relation that con-
tains the names of patients and the date they last came
in. Individually, these relations do not allow a program to

39

deduce information about treatment histories of individual
patients. If, however, a program could access both relations,
it could combine the relations to acquire (partial) informa-
tion about treatment histories for individual patients. This
example can be seen as an instance of the Chinese Wall Pol-
icy [4]. To block the possibility of a hostile site being able
to deduce the same information from data provided by two
different programs it provides, programs that have opened
a socket are, thereafter, not allowed to access sensitive rela-
tions and programs that have accessed one of the sensitive
relations are, thereafter, not allowed to open sockets.

Slowing down hogs: Consider the situation where you
want to limit the rate at which a program connects to its
home site. One might wish to do this, for example, to elimi-
nate a form of denial of service where a program repeatedly
connects to its home site without doing anything else. This
can be enforced by a history-based access-control policy that
keeps track of the timestamp of the last request. It allows
only those requests that occur after a threshold period.

3 Issues for history-based access-control

Identity of programs: Associating a content-based, hard-
to-spoof identity with a program is a key aspect of history-
based access-control. That is, given any program, it should
be hard to design a substitute program for whom the identity
computation generates the same result. An important point
to note is that the code for a mobile program can come from
multiple sources (from local disk, from different servers on
the network, etc). The identity mechanism should associate
a single identity with all the code that is used by a program.
This is important to ensure that a malicious program cannot
assume the identity of another program by copying parts or
all of the program being spoofed.

Efficient maintenance of request-histories: Wallach et
al [38] mention that a collection of commonly used Java
workloads require roughly 30000 crossings between protec-
tion domains per CPU-second of execution. Given this request-
frequency, it is imperative that access-control checks on indi-
vidual requests be fast. Simple logging-based techniques are
likely to be too expensive. Fortunately, the request-history
for many useful policies can be summarized. For example,
the request-history for a policy that allows a program to
open local files for reading if it has not opened a socket and
allows it to open a socket if it has not opened a local file
for reading can be summarized by a pair of booleans - one
that records if the program has ever opened a socket and
the other that records if it has ever opened a local file.

Persistence of policies and histories: Persistent request-
histories are required to block attacks that consist of run-
ning a sequence of programs each of which makes requests
that are allowed by the access-control policy but when taken
as a whole, the complete sequence of requests violates the
constraints the policy tries to enforce.

Grouping privileges: History-based mechanisms can pro-
vide extremely fine-grain access-control. Not only is it pos-
sible to control accesses to individual objects/resources, it
is possible to differentiate between different patterns of ac-
cesses. While this allows us to expand the set of programs
that can be executed safely, this level of flexibility can be
hard to deal with. Requiring users to specify their pref-
erences at this level of detail is likely to be considered in-

SR L

trusive and therefore ignored or avoided. This problem can
alleviated to some extent by grouping acceptable patterns of
program behavior and assign intuitive names to these pat-
terns. For example, a policy that allows a program to open
no sockets, open local files for reading, to create local files
in a user-specified directory and to open a local file for mod-
ification only if it has been been created by itself. This set
of restrictions allow a simple editor to be executed and can,
jointly, be referred to as the editor policy.

Composition and fail-safe defaults: History-based access-
control policies encode acceptable patterns of program be-
havior. Different classes of programs might have different
behaviors all of which are acceptable to the user. It is, there-
fore, important to provide automatic composition of multi-
ple policies. An important point to note here is that, by de-
fault, the access-control mechanism should be fail-safe {32]
- potentially dangerous accesses should be denied unless ex-
plicitly granted.

4 Deeds: a history-based security manager for Java

In this section we describe the design and implementation
of Deeds, a history-based access-control mechanism for Java.
We first describe the architecture of Deeds. Next, we de-
scribe its current implementation and its user interface. In
section 4.4, we examine the performance of the mechanisms
provided by Deeds.

4.1 Architecture

In this subsection, we describe the architecture of Deeds.
‘We focus on the central concepts of the Deeds architecture:
secure program identity and security events.

4.1.1 Program identity

The Deeds notion of the identity of a program is based on
all the downloaded code reachable during its execution. To
achieve this, Deeds performs static linking on downloaded
programs, fetching all non-local code that might be refer-
enced. Local libraries that are part of the language imple-
mentation (e.g java.lang for Java, libc for C) are linked
in as shared libraries; a separate copy of non-system-library
code is downloaded for every application that uses it.

Deeds concatenates all non-system-library code for a down-
loaded program and uses the SHA-1 algorithm [34] to com-
pute a name for it. SHA-1 belongs to the group of algorithms
known as secure hash functions [31, 34] which take an arbi-
trary sequence of bytes as input and generate a (relatively)
short digest (160-bits for SHA-1). These functions are con-
sidered secure because it is computationally hard to con-
struct two byte-sequences which produce the same digest.
In addition, the requirement, in this case, that the byte-
sequences being compared should represent valid programs
increases the difficulty of constructing a malicious program
with the same name as a benign one.

In addition to allowing a secure hash to be computed,
static linking of downloaded code has other advantages. First,
having all the code available allows Just-in-Time compilers
to perform better analysis and generate better code. Sec-
ond, it removes potential covert channels which occur due
to dynamic linking — the pattern of link requests can be
used to pass information from a downloaded program to the
server(s) that is (are) contacted for the code to be linked.

Note that Java allows programs to dynamically load classes.

For such programs, it is not possible, in general, to statically

40

determine the set of classes that might be referenced during
the execution of the program. Deeds rejects such programs
and does not allow them to execute.

4.1.2 Security events and handlers

A Deeds security event occurs whenever a request is made
to a protected resource. Examples of security events include
request to open a socket, request to open a file for reading,
request to create a file, request to open a file for modification
etc. The set of security events in Deeds is not fixed. In
particular, it is not limited to requests for operating-system
resources. Programmers can associate a security event with
any request they wish to keep track of or protect.

Handlers can be associated with security events. Han-
dlers perform two tasks: they maintain an event-history and
check whether it satisfies one or more user-specified con-
straints. If any of the constraint fails, the handler raises a
security-related exception. For example, a handler for the
security event associated with opening a socket can record
whether the program currently being executed has ever opened
a socket. Similarly, a handler for the security event associ-
ated with opening a file for reading can record whether the
program has opened a file for reading.

Multiple handlers can be associated with each event.
Handlers maintain separate event-histories. The checks they
perform are, in effect, composed using a “consensus voting
rule” — that is, one negative vote can veto a decision and at
least one positive vote is needed to approve. In this context,
a request is permitted to continue if and only if at least
one handler is present and none of the handlers raises an
exception.

Access-control policies consist of one or more handlers
grouped together. The handlers belonging to a single policy
maintain a common history and check common constraints.
For example, the editor policy mentioned earlier would con-
sist of four handlers:

e a handler for socket-creation that records if a socket
was ever created by this program. It rejects the request
if a file has been opened by this program (for reading
or writing).

e 2 handler for file-creation that associates a creator with
each file created by a downloaded program. If the file
is to be created in a directory that is included in a
list of user-specified directories, it allows the request
to proceed. Else, it rejects the request.

¢ a handler for open-file-for-read that records if a file was
ever opened for reading by this program. It rejects the
request if a socket has been created by this program.

¢ a handler for open-file-for-modification that records if
a file was ever opened for writing by this program. It
rejects the request if a socket has been created by this
program or if the file in question was not created by
this program.

Deeds allows multiple access-control policies to be simul-
taneously active. Policies can be installed, removed, or mod-
ified during execution. A policy is added by attaching its
constituent handlers to the corresponding events. For ex-
ample, the editor policy would be added by attaching its
handlers respectively to the socket-creation event, the file-
creation event, the open-file-for-read event and the open-
file-for-modification event. Policies can be removed in an

trusive and therefore ignored or avoided. This problem can
alleviated to some extent by grouping acceptable patterns of
program behavior and assign intuitive names to these pat-
terns. For example, a policy that allows a program to open
no sockets, open local files for reading, to create local files
in a user-specified directory and to open a local file for mod-
ification only if it has been been created by itself. This set
of restrictions allow a simple editor to be executed and can,
jointly, be referred to as the editor policy.

Composition and fail-safe defaults: History-based access-
control policies encode acceptable patterns of program be-
havior. Different classes of programs might have different
behaviors all of which are acceptable to the user. It is, there-
fore, important to provide automatic composition of multi-
ple policies. An important point to note here is that, by de-
fault, the access-control mechanism should be fail-safe [32]
- potentially dangerous accesses should be denied unless ex-
plicitly granted.

4 Deeds: a history-based security manager for Java

In this section we describe the design and implementation
of Deeds, a history-based access-control mechanism for Java.
We first describe the architecture of Deeds. Next, we de-
scribe its current implementation and its user interface. In
section 4.4, we examine the performance of the mechanisms
provided by Deeds.

4.1 Architecture

In this subsection, we describe the architecture of Deeds.
We focus on the central concepts of the Deeds architecture:
secure program identity and security events.

4.1.1 Program identity

The Deeds notion of the identity of a program is based on
all the downloaded code reachable during its execution. To
achieve this, Deeds performs static linking on downloaded
programs, fetching all non-local code that might be refer-
enced. Local libraries that are part of the language imple-
mentation (e.g java.lang for Java, libc for C) are linked
in as shared libraries; a separate copy of non-system-library
code is downloaded for every application that uses it.

Deeds concatenates all non-system-library code for a down-
loaded program and uses the SHA-1 algorithm [34] to com-
pute a name for it. SHA-1 belongs to the group of algorithms
known as secure hash functions [31, 34] which take an arbi-
trary sequence of bytes as input and generate a (relatively)
short digest (160-bits for SHA-1). These functions are con-
sidered secure because it is computationally hard to con-
struct two byte-sequences which produce the same digest.
In addition, the requirement, in this case, that the byte-
sequences being compared should represent valid programs
increases the difficulty of constructing a malicious program
with the same name as a benign one.

In addition to allowing a secure hash to be computed,
static linking of downloaded code has other advantages. First,
having all the code available allows Just-in-Time compilers
to perform better analysis and generate better code. Sec-
ond, it removes potential covert channels which occur due
to dynamic linking — the pattern of link requests can be
used to pass information from a downloaded program to the
server(s) that is (are) contacted for the code to be linked.

Note that Java allows programs to dynamically load classes.

For such programs, it is not possible, in general, to statically

41

determine the set of classes that might be referenced during
the execution of the program. Deeds rejects such programs
and does not allow them to execute.

4.1.2 Security events and handlers

A Deeds security event occurs whenever a request is made
to a protected resource. Examples of security events include
request to open a socket, request to open a file for reading,
request to create a file, request to open a file for modification
etc. The set of security events in Deeds is not fixed. In
particular, it is not limited to requests for operating-system
resources. Programmers can associate a security event with
any request they wish to keep track of or protect.

Handlers can be associated with security events. Han-
dlers perform two tasks: they maintain an event-history and
check whether it satisfies one or more user-specified con-
straints. If any of the constraint fails, the handler raises a
security-related exception. For example, a handler for the
security event associated with opening a socket can record
whether the program currently being executed has ever opened
a socket. Similarly, a handler for the security event associ-
ated with opening a file for reading can record whether the
program has opened a file for reading.

Multiple handlers can be associated with each event.
Handlers maintain separate event-histories. The checks they
perform are, in effect, composed using a “consensus voting
rule” — that is, one negative vote can veto a decision and at
least one positive vote is needed to approve. In this context,
a request is permitted to continue if and only if at least
one handler is present and none of the handlers raises an
exception.

Access-control policies consist of one or more handlers
grouped together. The handlers belonging to a single policy
maintain a common history and check common constraints.
For example, the editor policy mentioned earlier would con-
sist of four handlers:

¢ a handler for socket-creation that records if a socket
was ever created by this program. It rejects the request
if a file has been opened by this program (for reading
or writing).

e a handler for file-creation that associates a creator with
each file created by a downloaded program. If the file
is to be created in a directory that is included in a
list of user-specified directories, it allows the request
to proceed. Else, it rejects the request.

o 2 handler for open-file-for-read that records if a file was
ever opened for reading by this program. It rejects the
request if a socket has been created by this program.

e 2 handler for open-file-for-modification that records if
a file was ever opened for writing by this program. It
rejects the request if a socket has been created by this
program or if the file in question was not created by
this program.

Deeds allows multiple access-control policies to be simul-
taneously active. Policies can be installed, removed, or mod-
ified during execution. A policy is added by attaching its
constituent handlers to the corresponding events. For ex-
ample, the editor policy would be added by attaching its
handlers respectively to the socket-creation event, the file-
creation event, the open-file-for-read event and the open-
file-for-modification event. Policies can be removed in an

analogous manner by detaching the constituents handlers
from the associated events.

Deeds allows policies to be parameterized. For example,
a policy that controls file creation can be parameterized by
the directory within which file creation is allowed. Policies
that are already installed can be modified by changing their
parameters. This allows users to make on-the-fly changes to
the environment within which mobile code executes.

Deeds provides a fail-safe default [32] for every security
event. Unless overridden, the default handler for an event
disallows all requests associated with that event from down-
loaded programs. The default handler can only be overrid-
den by explicit user request — either by a dialog box or by a
profile file containing a list of user preferences.

4.2 Implementation

In this subsection, we describe the implementation of Deeds.
We focus on implementation of program identity, events,
event-histories, policies (including conventions for writing
them), and policy management.

4.2.1 Program identity

We have implemented a new class-loader for downloading
Java programs. A new instance of this class-loader is cre-
ated for every downloaded program and is used to maintain
information regarding its identity. This class-loader stati-
cally links a downloaded program by scanning its bytecode
and extracting the set of classes that may be referred to
during its execution. If the entire program is provided as a
single jar file, this is straightforward. Else, the class-loader
fetches and analyzes the non-local classes referred to and
repeats this till transitive closure is achieved. If the scan
of the bytecode indicates that the program explicitly loads
classes, the linking operation is terminated and the program
is not allowed to run.

After the linking operation is completed, the class-loader
concatenates the code for all the non-system-library classes
that are referenced by the program and uses the implementa-
tion of the SHA-1 algorithm provided in the java.security
package to compute a secure hash. The result is used as the
name of the program and is stored in the class-loader in-
stance created for this program. This name can be used
to maintain program-specific event-histories. It can also
be stored in persistent storage and loaded as a part of the
startup procedure.

4.2.2 Events and histories

Events: Two concerns guided our implementation of events:
(1) the number of events is not fixed, and (2) the num-
ber of handlers associated with individual events could be
large. We considered three alternatives. First, we could
use a general-purpose mechanism (similar to Java Beans (8]
and X [33)) to register events and handlers. The advantage
of this approach is that it uses common code to manage
all events and their associated handlers; the disadvantage is
that all handlers must have the same type-signature which
usually implies that the parameters need to be packed by
the event manager and unpacked by each handler.

Second, we could dynamically modify the bytecode of
the downloaded program to insert/delete calls to handlers
at the points where the events are generated (as dynamic
instrumentation programs [5, 15] do). To allow a user to
modify an executing policy would require us to update the

42

bytecode of running programs. We believe that the complex-
ity of such an implementation is not commensurate with its
advantages.

Finally, we could require that the handlers for each event
be managed by a different event manager. This approach al-
lows us to avoid the packing and unpacking of parameters as
each event manager is aware of the parameters correspond-
ing to its event. The disadvantage of this scheme is that
a separate event manager has to be written for each event.
However, event managers are highly stylized and can be au-
tomatically generated given a description of the event (see
Figure 1 for an example).

‘We selected the third approach for implementing secu-
rity events in Deeds. Combined with automatic generation of
event managers, this allowed us to balance the needs of effi-
ciency, implementation simplicity and ease of programming.
Examples of Deeds security events include checkRead () and
checkConnect ().2

History: Given the concern about the size of the log, we
have chosen to avoid logging as a general technique for main-
taining event-histories. Instead, we have left the decision
about how to store histories to individual policies. All poli-
cies that we considered were able to summarize event-histories
using simple data structures such as counters, booleans or
lists. Note that this decision has the potential disadvantage
that if policies do desire/need to log events, the lack of a
common logging mechanism can result in the maintenance
of duplicate logs. This can be fixed by using a selective log-
ging mechanism that logs an event only if requested to do
so by one or more handlers associated with the event.

4.2.3 Access-control policies

A Deeds access-control policy consists of the data-structures

to maintain event-histories, handlers for each of the events
that are mediated by the policy, and auxiliary variables
and operations to facilitate management of multiple poli-
cies. Concretely, an access-control policy is implemented as
a Java class that extends the AccessPolicy class shown in
Figure 2. Handlers are implemented as methods of this class
and the event-history is implemented as variables of this
class. For example, a handler for the open-file-for-reading
event could check if a socket has yet been created by the
program. If so, it could raise a GeneralSecurityException;
else, it could set a boolean to indicate that a file has been
opened for reading and return.

When a security event occurs (e.g., when checkRead is
called), control is transferred to the Deeds Security Man-
ager which determines the class-loader for the program that
caused the event using the currentClassLoader() method
provided by the Java Security Manager. This method re-
turns the class-loader corresponding to the most recent oc-
currence on the stack of a method from a class loaded using
a class-loader. Since a new instance of the class-loader is
created for every downloaded program and since this in-
stance loads all non-system-library classes for the program,
currentClassLoader() always returns the same class-loader
every time it is called during the execution of a program.
This technique safely determines the identity of the program
that caused the security event.

Once the class-loader corresponding to the currently ex-
ecuting program has been determined, the Deeds Security
Manager invokes the event manager corresponding to event

2Readers familiar with Java will recognize that all the checks()
methods are security events.

public class checkReadManager implements EventManager {
private static HandlerCheckRead hdlr = new HandlerCheckRead();

public static void checkRead(FileDescriptor fd,DClassLoader cl)
throws GeneralSecurityException {
for (int i=0;i<hdlr.size;it++)
hdlr.policy(i).checkRead(fd,cl);
}

public static void checkRead(String file,DClassLoader cl)
throws GeneralSecurityException {
for (int i=0;i<hdlr.size;i++)
hdlr.policy(i).checkRead(file,cl);
}

public static void checkRead(String file,Object context,DClassLoader cl)
throws GeneralSecurityException {
for (int i=0;i<hdlr.size;i++)
hdlr.policy(i).checkRead(file,context,cl);
}
}

Figure 1: Example of an event manager class. Managers for other events would share the same structure but would replace
checkRead by name the of the particular event. Some administrative details have been left out of the example; these details
are common to all event managers.

-

specified as ¢ ‘FileI0.checkRead’’ or ‘ “*.checkRead’’.
The former expression specifies only the checkRead
event defined in the FileID package whereas the lat-
ter specifies all checkRead events irrespective of the
package they have been defined in. This specifica-
tion is needed as Java'’s hierarchical namespace al-
lows multiple methods with the same name to exist
in different regions of the namespace. Since a secu-
rity event is implemented by a method in a subclass
of EventManager and since every package can have its
own security events, the possibility of name clashes
is real. For example, a library to perform file I/O,

being processed (e.g., checkReadManager in Figure 1). The
event manager maintains the set of handlers associated with
the event and invokes the handlers in the order they were
attached to the event. If any of the handlers throws an
exception, it is propagated to the caller; the remaining han-
dlers are not invoked.

Deeds policies are expected to adhere to several con-
straints. These constraints are checked either at compile-
time by the Java compiler or at runtime by the Deeds policy
manager. These constraints are:

o Handler methods must include a throws GeneralSecu-

rityException clause and must have the same name
as the security event that they are intended for. The
type signature for a handler method must be the same
as the type signature of the security event it handles
except for one additional argument - the class-loader.
See Figure 1 for an illustration.

A handler method must have the same number of vari-
ants as the security event that it is intended for. For
example, a checkRead event has three variants — check-
Read(FileDescriptor f£d), checkRead(String file),
and checkRead(String file, Object context). Han-
dlers for this event must have three variants. See Fig-
ure 1 for an illustration.

Parameters of a policy must be explicitly identified.
Each parameter must have a default value and a doc-
umentation string,.

The vector targetEvents specifies which events the
handlers in this policy are to be attached to. The spec-
ification is in the form of a regular expression which
is matched against fully-qualified names. For exam-
ple, the target events for a checkRead handler could be

and a library to interact with a database could both
wish to create a checkRead event. Since packages are
independently developed, extensible systems, such as
Deeds, cannot assume uniqueness of event names.

Each policy must be accompanied by its source code
and the name of the file containing the source code
should be available as a member of the class imple-
menting the policy. We believe that availability of
source code of a policy is important to instill confi-
dence in its operation and its documentation.

4.2.4 Policy manager

The Deeds policy manager makes extensive use of the Java
reflection mechanism [17]. This mechanism allows Java code
to inspect and browse the structure of other classes. The
policy manager uses reflection to: (1) identify methods that
are to be used as handlers (they are declared public void
and throw the GeneralSecurityException); (2) identify pa-
rameters and their types; (3) initialize and update param-
eters; and (4) extract specification of the events that the
handlers are to be attached to. In addition, it performs sev-

43

FRR e e i R

public String name

public Vector parameters
public Vector targetEvents
public String srcFileName

public abstract void
public abstract void

}
}

3
.
r
.
»

abstract synchronized public class AccessPolicy {

//
//
//

i 1/
// these functions have to be provided by every policy
public abstract String documentation();
saveHistoryToDisk();
restoreHistoryFromDisk();

public Policy(String name) {

name of policy instance
policy parameters

source file location

Figure 2: Skeleton of the AccessPolicy class. The synchronized keyword ensures that at most one handler is updating the

event-history at any given time.

eral administrative checks such as ensuring that all policy
instances have unique names.

The policy manager is also responsible for ensuring that
policies are persistent. It achieves this by storing the pa-
rameters for each policy instance on stable storage and using
them to re-install the policy when the environment is reini-
tialized (on startup). It also periodically saves the event-
history on stable storage.

4.3 User interface

The Deeds user interface comes up only on user request and
is used for infrequent operations such as browsing/loading/-
installing policies. In this section, we describe the function-
ality of the user interface and present snapshots.

Browsing/viewing/loading policies: The Deeds user in-
terface allows users to browse the set of available policies,
to view documentation and source code for these policies
and to create instances of individual policies. Note that
every policy is required to have documentation (via the
documentation() method) and access to its own source code
(via the srcFileName member). In addition, every parame-
ter has associated documentation which can be viewed. To
load a parameterized policy, users need to specify values
for all the parameters of the policy. Note that every pa-
rameter has a default value which is displayed. The Deeds
policy manager uses the Java reflection mechanism to figure
out the type of the parameters for display and parsing pur-
poses. These functions of the user interface are illustrated in
figures 3 and 4. In Figure 3, a policy is selected by clicking
on its name and operations are selected using the buttons.
Browsing and loading of individual policies is illustrated in
Figure 4.

Installing/uninstalling policies: The Deeds user inter-
face allows users to install loaded policies as well as to re-
move currently installed policies. For an illustration, see
Figure 3. A loaded policy can be installed using the Install
Policy butfon, and an installed policy can be removed using

3Note that individual policies are free to save the event-history as
frequently as they wish.

44

the Uninstall Policy button.

Checkpointing event-histories: Deeds allows user to check-
point the current state of the event-histories for all policies
using the Save Settings button (see Figure 3).

Browsing/setting default handlers: Deeds provides a
fail-safe default for every security event. Unless overridden,
the default handler for an event disallows all requests as-
sociated with that event from downloaded programs. The
default handler can only be overridden by explicit user re-
quest — either by a dialog box or by a profile file containing a
list of user preferences. The Deeds user interface allows users
to browse and set default handlers for all security events.

4,4 Performance evaluation

There are two ways in which Deeds can impact the per-
formance of downloaded code whose accesses it mediates.
First, it can add an overhead to each request for protected
resources. Second, it can increase the startup latency as it
requires fetching, loading, linking and hashing of all non-
system-library code before the program can start execut-
ing. In this section, we evaluate the performance impact
of Deeds. All experiments were performed on a Sun E3000
with 266MHz UltraSparc processors and 512MB memory.

To determine the overhead of executing Deeds security-
event handlers, we used a microbenchmark which repeatedly
opened and closed files. A security event was triggered on
the request to open a file. We varied the number of handlers
from zero to ten. Each handler was identical (but distinct)
and implemented the editor policy described earlier in this
paper. It maintains two booleans, one that tracks if the
program has ever tried to create a socket and the other that
tracks if the program has ever tried to open a file. Each time
it is invoked, it updates the file-opened boolean and checks
the socket-opened boolean.

Table 1 presents the results. It shows that even with ten
handlers, the overhead of Deeds security event handlers is
less than 5%. Amnother point to note is that without any
handlers, that is, when the infrastructure added to support
security event handlers is not used, the overhead is less than
1%.

To evaluate the impact on startup latency, we compared

Security Manager Interface

Close | Load Policy

Loaded Policies
|Browser

Save Settings | Unload Policy

Shell Script
FB! Backdoor

View/Modify Loaded Policy {leakage Conirol

Install Policy

Installad Policies

View/Modify Installed Policy JEditor

Uninstall Policy

Figure 3: Graphical interface to the Deeds Security Manager

Lealféiéré Con

trol POlICYi

apply| Done |

Leakage Control Policy
Source Code i

Documentation |

Name

iFoo Leakage Control

Allowed Read/write |i/tmp/* Parameter Information |
Allowed Connection lI*.foo.edu *bar.edu l Parameter information |

Figure 4: Graphical interface for loading a policy

the time it takes to load, analyze and link complete Java ap-
plications using the Deeds class-loader to the time it takes
to load just the first file using existing class-loaders. In both
cases, all the files were local and were in the operating-
system file-cache. For this experiment, we selected seven
complete Java applications available on the web. The appli-
cations we used were: (1) news-server, the Spaniel News
Server [36] which manages and serves newsgroups local to
an organization; (2) jlex, the JLex [23] lexical analyzer;
(3) dbase, the Jeevan [22] platform-independent, object-
oriented database; (4) jawavedit, the JaWavedit audio file
editor [21] with multi-lingual voice synthesis, signal pro-
cessing, and a graphical user interface; (5) obfuscator, the
Hashjava [14] obfuscator for Java class files; (6) javacc, the
JavaCC [20] parser generator; and (7) editor, the WingDis
editor [40].

Table 2 presents results for the latency experiments. As
expected, the additional startup latency increases with the
number of files as well as the total size of the program. Note
this does not represent an increase in end-to-end execution
time. Existing class-loaders already parse the bytecodes of
class files as a part of the Java verification process; signed
applets require computation of a similar hash function. In-
stead, the increase in startup latency is caused by moving

45

the processing for all the class files before the execution be-
gins. We expect that, once downloaded, programs of this
size and these types (lexer/parser generators, editors, news
server, database etc) will be reused several times. In that
case, the program can be cached as a whole (instead of in-
dividual files) and the additional startup latency has to be
incurred only once.

5 Discussion

History-based access-control for native binaries: History-

based access-control is not specific to Java or to mobile
code. It can be used for any system that allows interpo-
sition of code between untrusted programs and protected
resources. Several operating systems (Solaris, Digital Unix,
IRIX, Mach and Linux) allow users to interpose user-level
code between an executing program and OS resources by
intercepting system calls. This facility is usually used to
implement debuggers and system call tracers. It has also
been used to implement a general-purpose code interposi-
tion mechanism [24], a secure environment for helper ap-
plications used by browsers to display files with different
formats [11] and a user-level file system [1]. It is also well-

Number of handlers 0 1 2

3

4 5 6 7 8 9 | 10

Percent overhead 07|18 2.6

2.4

2913542394341 (43

Table 1: Overhead of Deeds security event handlers. The overhead was measured using a microbenchmark which repeatedly
opened and closed files. Each handler was identical (but distinct) and implemented the editor policy.

Application newsserver | jlex | dbase | jawavedit | obfuscator | javacc | editor

Number of classes 24 40 104 125 144 81 212
Total code size (KB) 120 289 514 508 483 578 979
First class size (KB) 5 1 11 2.5 4 7 1.5
Loading classes 0.2s 0.3s | 0.5s 0.9s 1.0s 0.8s 1.3s
Parsing bytecodes 0.1s 0.1s | 0.2s 0.5s 0.5s 0.4s 1.2s
Hashing bytecodes 0.1s 0.5s | 0.7s 1.1s 1.4s 2.65 2.9s
Additional latency 0.4s 0.9s 14s 2.5s 2.9s 3.8s 5.6s

Table 2: Breakdown of additional startup latency incurred by Deeds.

suited for implementing a Deeds-like history-based access-
control mechanism to mediate access to OS resources from
native binaries.

Pre-classified program behaviors: The one-out-of-k pol-
icy described in section 2 classifies program behaviors in an
on-line manner. A program gets classified as a browser, an
editor, or a shell depending on whether it has connected
to a remote site, has opened local files for modification, or
has created a sub-process. To be able to do this for a wide
variety of program behaviors, the policy that does the clas-
sification and subsequent management of privileges has to
contain code to handle all these behaviors. An alternative
scheme would be to allow program-providers to label their
programs with pre-classified behavior patterns and to allow
the users to specify which behaviors they would like to per-
mit. The policies governing individual behaviors could be
added/deleted as need be. While this scheme would require
agreement on the labeling scheme, it is no more complex
than the MIME-types-based scheme that is already in use for
displaying/processing different data formats. This scheme is
similar to program-ACLs and related defenses proposed for
trojan-horse attacks [25, 39)].

Joint-authorization: Commercial applications, such as
contracts and purchase orders, may require multiple autho-
rizations since the organization may wish to reduce the risk
of malfesance by dispersing trust over several individuals.
History-based access-control policies can be used to imple-
ment joint-authorization [37] or k-out-of-n-authorizations [3].
For example, a policy may require that three out of five
known individuals must make the same request within the
last T units of time for the request to be granted; else the
request is denied. In this case, the history consists of the
requests that have been made in the last T units of time.

6 Related work

The primary problem for access-control mechanisms for mo-
bile code is to be able to differentiate between different pro-
grams executing on behalf of the same user and to provide
them with different privileges based on their expected be-
havior and/or potential to cause damage. A similar problem
occurs in the context of trojan-horse programs and viruses.

46

To deal with such programs, several researchers have devel-
oped mechanisms to limit the privileges of individual pro-
grams based on their expected behavior [10, 25, 26, 27, 28,
39]. Karger [25] uses information about file extensions and
behavior of individual programs to determine the set of files
that a program is allowed to access (eg. a compiler invoked
on x.c is only allowed to create x.{o,u,out}). Lai [28] re-
places the inference mechanism by an explicit list of files ac-
cessible by a program. Wichers et al [39] associate program-
ACLs with each file thereby limiting the set of programs
that can access each file. King [26] uses a regular-expression-
based language to specify the set of objects each operation
can access. Ko et al[27] use a language based on predicate
logic and regular expressions to specify the security-relevant
behavior of privileged programs and propose to use this
specification for intrusion detection. All these approaches
assume that the set of programs to be run are fixed and their
behaviors are known. The mobile code environment is dif-
ferent as the set of programs that will execute is inherently
unknown. History-based access-control is able to classify
programs in an on-line manner and to thereafter execute
them within an environment with appropriate privileges.
For example, the one-out-of-k policy dynamically classifies
downloaded programs into one of three classes: browsers,
editors and shells.

The use of secure hash functions to derive a content-
based name for software has been proposed by Hollingsworth
et al [16]. They propose to use these names for configuration
and version management of large applications and applica-
tion suites (such Microsoft Office).

An important feature of Deeds is its capability to in-
stall and compose multiple user-specified policies. Several
researchers have proposed languages to allow users to spec-
ify access-control policies and frameworks to compose these
policies [3, 13, 18, 19]. Three of them [13, 18, 19], propose
logic-based declarative languages and use inference mecha-
nisms of various sorts to compose policies. Blaze et al [3]
propose a language that contains both assertions and pro-
cedural filters and use a mechanism similar of that used in
Deeds to implement composition. Access-control policies for
Deeds are entirely procedural. Furthermore, they can be
updated while the programs whose accesses are being con-
trolled are still executing.

Two research groups have recently proposed constraint

languages for specifying security policies temporal aspects.
Simon& Zurko [35]} propose a language for specifying tempo-
ral constraints such as HasDone, NeverDid, NeverUsed and
SomeoneFromEach for separation of duty in role-based en-
vironments. These predicates correspond to summaries of
event-histories in Deeds terminology.

Mehta&Sollins [29] have independently proposed a con-
straint language for specifying simple history-based access-
control policies for Java applets. This work was done in
parallel with ours [7). The approach presented in their pa-
per has two major limitations. First, they use the domain
name of the server that provides the applet as its identi-
fier. This assigns the same identifier to all applets from the
same host. In addition, it is vulnerable to DNS spoofing at-
tacks. They suggest that this problem can be fixed by using
the identity of the author/supplier of an applet as its name.
This assigns the same identifier to all applets from a single
author/supplier and results in a single merged history. It
is not clear how such a merged history would be used as
the predicates and variables in their language are applet-
specific. Even if each supplier provides only one applet, this
is a viable solution only if all the classes referenced by the
applet are provided in a single jar file or are required to be
signed by the same principal. Otherwise, it is possible for
a malicious server that is able to spoof IP addresses to in-
tercept intermediate requests for dynamically linked classes
and provide malicious substitutes. The second limitation of
their approach is that it provides a small and fixed number
of events. This limits the variety and power of the policies
that can be developed.

The event model used in Deeds is similar to that used
in the SPIN extensible operating system [2]. An interesting
feature of SPIN is the use of dynamic compilation to improve
the performance of event dispatching [5). If the performance
of event dispatching becomes a problem for Deeds (eg. if
individual events have a large number of handlers) we can
use a similar technique.

7 Current status and future directions

Deeds is currently operational and can be used for stand-
alone Java programs. We are in the process of identifying
a variety of useful patterns of behaviors and evaluating the
performance and usability of Deeds in the context of these
behaviors.

In the near term, we plan to develop a history-based
mechanism for mediating access to OS resources from na-
tive binaries. We also plan to explore the possibility of using
program labels to indicate pre-classified behaviors and au-
tomatic loading/unloading of access-control policies to sup-
port this.

In the longer term, we plan to explore just-in-time binary
rewriting to insert event generation and dispatching code
into downloaded programs. This would allow users to create
new kinds of events as and when they desire. Currently, new
kinds of events are created only by system libraries.

Acknowledgments

We would like to thank anonymous referees for their insight-
ful comments which helped improve the presentation of this
paper.

References

[1] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.
Extending the operating system at the user level: the
Ufo global file system. In Proceedings of the 1997
USENIX Annual Technical Conference, 1997.

{2] B. Bershad, S. Savage, P. Pardyak, E. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Exten-
sibility, safety and performance in the spin operating
system. In Proc of the 15th ACM Symposium on Oper-
ating System Principles, pages 26784, 1995.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
trust management. In Proc of the 17th Symposium on
Security and Privacy, pages 164-73, 1996.

[4] D. Brewer and M. Nash. The Chinese Wall Security
Policy. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy, 1989.

[5] C. Chambers, S. Eggers, J. Auslander, M. Philipose,
M. Mock, and P. Pardyak. Automatic dynamic compi-
lation support for event dispatching in extensible sys-
tems. In Workshop on Compiler Support for Systems
Software, 1996.

[6] B. Christiansen, P. Cappello, M. Ionescu, M. Neary,
K. Schauser, and D. Wu. Javelin: Internet-based par-
allel computing using Java. In Proceedings of the 1997
ACM Workshop on Javae for Science and Engineering
Computation, 1997.

[7] G. Edjlali, A. Acharya, and V. Chaudhary. History-
based access control for mobile code. Technical report,
University of California, Santa Barbara, 1997.

{8] R. Englander. Developing Java Beans. O'Reilly & As-
sociates, 1997.

[9] J. Fritzinger and M. Mueller. Java security. Technical
report, Sun Microsystems, Inc, 1996.

[10] T. Gamble. Implementing execution controls in Unix.
In Proceedings of the 7th System Administration Con-
ference, pages 237-42, 1993.

f11] 1. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A
secure environment for untrusted helper applications:
confining the wily hacker. In Proceedings of the 1996
USENIX Security Symposium, 1996.

[12] L. Gong. New security architectural directions for Java.
In Proceedings of IEEE COMPCON’97, 1997.

[13] C. Gunter and T. Jim. Design of an application-level se-
curity infrastructure. In DIMACS Workshop on Design
and Formal Verification of Security Protocols, 1997.

[14] The HashJava code obfuscator. Available from 4thPass
Software,810 32nd Avenue South, Seattle, WA 98144%.

[15] J. Hollingsworth, B. Miller, and J. Cargille. Dy-
namic program instrumentation for scalable perfor-
mance tools. In SHPCC, 1994.

[16] J. Hollingsworth and E. Miller. Using content-derived
names for caching and software distribution. In Proceed-
ings of the 1997 ACm Symposium on Software Reusabil-
ity, 1997.

4 http://www.sbktech.org/hashjava.html

47

[17] C. Horstmann and G. Cornell. Core Java 1.1, volume I
- Fundamentals. Sun Microsystems Press, third edition,
1997.

[18] T. Jaeger, A. Prakash, and A. Rubin. Building systems
that flexibly control downloaded executable context. In
Proc of the 6th Useniz Security Symposium, 1996.

[19] S. Jajodia, P. Samarati, V. Subrahmanian, and
E. Bertino. A unified framework for enforcing multiple
access control policies. In Proc. ACM SIGMOD Int’l.
Conf. on Management of Data, pages 474-85, 1997.

[20] The JavaCC parser generator. Available from Sun Mi-
crosystems Inc. 901 San Antonio Road, Palo Alto, CA
94303 USA®.

[21] The JaWavedit Audio File Editor. Available from Flo-
rian Bomers’ web site®.

[22] The Jeevan object-oriented database. Available from
W3apps Inc., Ft. Lauderdale, Florida’.

[23] The JLex lexical analyzer genmerator. Available
from the Department of Computer Science, Princeton
University®.

{24] M. Jones. Interposition agents: Transparently interpos-
ing user code at the system interface. In Proceedings of

the 14th ACM Symposium on Operating System Prin-
ciples, 1993.

[25] P. Karger. Limiting the damage potential of the discre-
tionary trojan horse. In Proceedings of the 1987 IEEE
Syposium on Research in Security and Privacy, 1987.

[26] M. King. Identifying and controlling undesirable pro-
gram behaviors. In Proceedings of the 14th National
Computer Securily Conference, 1992.

[27] C. Ko, G. Fink, and K. Levitt. Automated detection
of vulnerabilities in privileged programs by execution
monitoring. In Proceedings. 10th Annual Computer Se-
curity Applications Conference, pages 134—44, 1994.

[28] N. Lai and T. Gray. Strengthening discretionary access
controls to inhibit trojan horses and computer viruses.
In Proceedings of the 1988 USENIX Summer Sympo-
sium, 1988.

[29] N. Mehta and K. Sollins. Extending and expanding the
security features of Java. In Proceedings of the 1998
USENIX Security Symposium, 1998.

{30] Microsoft Corporation. Proposal
for Authenticating Code Via the Internet, Apr 1996.
http://www.microsoft.com/intdev/security/authcode.

[31] R. Rivest. The MD5 message-digest algorithm. RFC
1321, Network Working Group, 1992.

[32] J. Saltzer and M. Schroeder. The protection of infor-
mation in computer systems. Proceedings of the IEEE,
63(9):1278-1308, Sep 1975.

[33] R. Scheifler and J. Gettys. X Window System : The
Complete Reference to Xlib, X Protocol, Iccem, XIfd.
Butterworth-Heinemann, 1992.

5http://www.suntest.com/JavaCC

S http://rummelplatz.uni-mannheim.de/ boemers/JaWavedit
7 http://www.w3apps.com

8http://www.cs.princeton.edu/ appel/modern/java/JLex

48

[34] Secure hash standard. Federal Information Processing
Standards Publication, FIPS, PUB 180-1, April 1995.

{35] R. Simon and M. Zurko. Separation of duty in role-
based environments. In Proceedings of the IEEE Com-
puter Security Foundations Workshop’97, 1997.

[36] The Spaniel News Server.
Software®.

[37] V. Varadharajan and P. Allen.
authorization schemes.
30(3):32—45, 1996.

[38] D. Wallach, D. Balfanz, D. Dean, and E. Felten. Ex-
tensible security architecture for Java. In SOSP 16,
1997.

[39] D. Wichers, D. Cook, R. Olsson, J. Crossley,
P. Kerchen, K. Levitt, and R. Lo. PACL’s: an access
control list approach to anti-viral security. In USENIX
Workshop Proceedings. UNIX SECURITY I, pages 71—
82, 1990.

[40] The WingDis Editor. Available from Win§Soft Corpo-
ration, P.O.Box 7554, Fremont, CA 94537%°.

Available from Spaniel

Joint actions based
Operating Systems Review,

http://www.searchspaniel.com/newsserver.html
Opitp:/ /www.wingsoft.com/javaeditor.shtml

