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Abstract. The tomographic reconstruction for cone-beam geometries
is a computationally intensive task requiring large memory and com-
putational power to investigate interesting objects. The analysis of its
parallel implementation on widely available clusters of SMPs requires an
extension of the original LogP model to account for the various communi-
cation channels, called LogSMP. The LogSMP model is used in analyzing
this algorithm, which predicts speedup on a cluster of 4 SMPs using 10
Mbps, 100Mbps, and ATM networks. We detail the measurement of the
LogSMP parameters and assess the applicability of LogSMP modeling to
the cone-beam tomography problem. This methodology can be applied
to similar problems involving clusters of SMPs.

1 Introduction

Tomographic reconstruction from projections using computed tomography (CT)
is the non-invasive measure of structure from external measurements. The in-
formation obtained describes both internal and external shapes and material
densities. This is particularly useful when one cannot make internal measure-
ments on the object of study for a variety of reasons. These reasons might be
cost, no known non-invasive technique, or no physical means to make internal
measurements.

With cone-beam CT, a set of two-dimensional (2D) planar projections, con-
sisting of Nu × Nv pixels, are acquired at equal angles around the object. These
projections are filtered and backprojected into a volume of Nx ×Ny ×Nz voxels.
Let Nθ be the number of projections acquired. Cone-beam tomography sys-
tems are useful in assessing microstructure of biomedical and industrial objects.
Tomography applications continue to grow into areas such as reverse engineer-
ing, quality control, rapid prototyping, paleontology, geology, and nondestructive
testing. Cone-beam tomography systems offer greater scanner efficiency and im-
age quality, but require much more computing [1]. To improve reconstruction
time, a parallel algorithm was developed using the MPI library for communica-
tions [2,3]. The parallel algorithm is based on the serial algorithm by Feldkamp
[4]. We have optimized this algorithm for a cluster of SMPs.
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This processing requires roughly O(N4) time to reconstruct an image volume
of N3 voxels. For large image volumes, the reconstruction time on a serial com-
puter far exceeds the acquisition time. This is of particular importance as the
desire to resolve more detail in larger fields-of-view has demanded increased im-
age sizes. Objects are routinely reconstructed into image volumes of 5123 voxels
and a strong desire to use 7683, 10243, and larger volumes in the future.

The original LogP model [5] was extended to clusters of SMPs, called
LogSMP. The LogSMP model is used in analyzing the parallel cone-beam recon-
struction algorithm to predict speedup on a cluster of 4 SMPs using 10Mbps,
100Mbps, and 155Mbps ATM networks. We detail the measurement of the
LogSMP parameters and assess the applicability of LogSMP modeling to the
cone-beam tomography problem.

2 LogSMP Model

The LogP model characterizes a homogeneous parallel architecture with bulk pa-
rameters and assumes no specific topology [5]. This model contains 4 parameters:
the communications latency L, the processor overhead required for sending or
receiving messages o, the bandwidth/minimum gap between successive messages
g, and the number of processors P .

When using a cluster of SMPs, one must account for the differences in intra-
and inter- SMP communications. The LogSMP model accounts for this addi-
tional communication channel. For this discussion, assume there are q SMPs
and let SMP1 contain the root node. Let Pi be the number of processors on
the ith SMP, such that

∑q
i=1 Pi = P . Since Pi processors are on the ith node,

their intra-communication is governed by the LogP parameters for that channel,
namely gi, Li, and oi. The SMPs can communicate with each other as dictated
by the LogP parameters for the inter-communications channel, namely g0, L0,
and o0. In the degenerate case where there is only one processor on the ith SMP,
the parameters gi, Li, and oi are of no consequence. The g values are based on
the fastest processor in a heterogeneous environment. This is shown in Fig. 1.

3 Parameter Measurements

Modeling performance involves assessing several timings when using the LogSMP
models. The network speed relative to processor speed is a vital part of the
modeling. The parameter g, in instructions/byte, measures the number of in-
structions which can be processed in the time to send one byte of information
between two processors. Processor speed and communications speed can be used
to derive g. In addition, network latency and overhead must be measured.

For the experiments, a cluster of four Sun Enterprise SMPs, each running
SunOS 5.6, was used. The first had six 250MHz nodes and 1.5GB total RAM.
This machine was used for processors 1–6 in the experiments. The other three
SMPs each had four 250MHz processors with 0.5GB total RAM on each SMP.
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Fig. 1. In a cluster of q SMPs, the LogSMP parameters consists of the LogP parameters
are required for intra- and inter- SMP communication. Each SMP can be considered a
subgroup with a particular local root processor in addition to the overall root processor

Either a 10Mbps Ethernet, 100Mbps Ethernet, or a 155Mbps ATM link was
used for the communication. These architectures will be designated wsu10,
wsu100, and wsuATM in this discussion. Version 1.1 of the MPICH implemen-
tation of MPI was used.

The processors performance was analyzed by measuring execution time of
problems of size N and one processor and timing the backprojection steps. The
times were then compared to the single processor model floating point operations.
The processor speed was determined to be 45.1 million floating point operations
per second using an independent benchmarking program. Results from this are
consistent with other benchmarking programs.

Communications speed and overhead was measured using round trip point-
to-point passing of messages having various power of 2 sizes from 0 to 4MB in
length. The MPI routines MPI Send and MPI Recv were used. For each message
size, 1000 trials were measured to reduce the variance in the estimate.

The parameter g was determined by dividing the processor performance,
measured in instructions per second, by the communications speed, measured in
bytes per second. While the value g will in general be a function of the message
size, the model presented uses the peak value. The resulting values are 0.587,
3.31, 4.59 and 39.2 cycles for the SMP, wsuATM, wsu100, and wsu10 respectively.
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The latencies were 91.2, 89.1, 90.3, and 91.5 cycles for the SMP, ATM, 100Mbps
Ethernet, and 10Mbps Ethernet respectively. In each case the processor overhead
was assumed to be 0.1% of the communication time.

The overhead for starting a parallel MPI program was also determined.
For each network, the influence on the number of nodes used in the compu-
tation was determined by running a parallel program which terminated imme-
diately upon startup. A program consisting of MPI Init followed immediately
by MPI Finalize was used. The time to execute this program was repeated ten
times for 1 through 18 processors. The times from using 1 through 10 processors
was fit to a line and used to predict startup times in the model. The time in-
creases by about 0.5 seconds per processor for the wsu10, wsu100, and wsuATM
networks. The variation and magnitude in startup time varies significantly once
more than ten processors (more than 2 SMPs) are used.

Another significant factor in the total time required is due to reading raw
projectional data and writing the final reconstructed image. The amount of data
read is 2NθNuNv bytes, or for the simplified problem of size N , the total amount
is πN3 bytes. For writing the final data, 2N3 bytes are written. The times for
input and output were empirically measured and incorporated into the model.

4 LogSMP Model for the Parallel Cone-Beam Algorithm

A voxel driven approach is taken where the volume is distributed over the pro-
cessors and each projection is sent to every processor. Each processor sees every
projection, but only a small subset of the reconstructed voxels. The total mem-
ory required for this implementation is approximately equal to the total number
of voxels, which is just the product of the volume dimensions and the bytes
required for each voxel (4), namely 4NxNyNz. The voxel data is not replicated
on each processor, so individual memory requirements are not as demanding.
Another advantage of this method is that the data is acquired in a serial fashion
and processing could be done in concert with acquisition.

The parallel algorithm utilizes a master processor which does all I/O and es-
sentially dictates the tasks performed by the other processors. While parallel I/O
is sometimes available, the algorithm requires the final reconstructed data to be
explicitly sent back to the master processor. The MPI library is initialized using
MPI Init. MPI assigns each processor in the communication group a unique id.
The number of other processes in the group is also available. All processes are
initially only part of the MPI COMM WOLD process group. An MPI communicator
is then created for each SMP containing all processes on that SMP. Another
communicator is created containing the root nodes of each SMP communicator
group.

For the case of N = Nx = Ny = Nz = Nu = Nv, the number of projections
Nθ should be π

2 N , and thus the complexity of the problem is O(N4). N can also
serve as an upper bound when N is the maximum of those parameters. Using
this simple model it becomes easier to study the effects of N , P , and g on the
theoretical speedup.
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In addition to computation requirements, a major nontrivial aspect of the
problem is the data size required. For example, an acquisition of 804 views of
5122 images with 16 bit integer pixels is needed to create a 5123 volumetric data
set with 32 bit floating point voxels. The use of 32 bit floating point voxels is
required to provide sufficient accuracy in the result. The memory requirement
to store the entire volume is 512MB, which is currently feasible on SMPs, but
even more so on a collection of SMPs.

The time required to perform a reconstruction can be expressed as

T = T0 + Ti + Tr + Tf + Tc + Tb + Tg + Tw (1)

where T0 is the MPI startup time, Ti is the initialization time, Tr is the time to
read a projection from disk, Tf is the time to filter a projection, Tc is the time
to communicate the filtered projection from the root processor to the others
for backprojection, Tb is the time to backproject a filtered projection, Tg is
the time required to gather the reconstructed volume to the root processor for
subsequent scaling and writing. and Tw is the time to write the reconstructed
volume to disk. In general, these times are functions of processor speed, network
bandwidth and latency, and the number of processors used. T0, Tr, and Tw are
measured empirically as a function of P as described below.

The algorithm consists of repeated asynchronous sends of the filtered pro-
jections from the root node a single node in each SMP, and synchronous broad-
casts occur from that node to all others in that SMP. The root node also
accounts for the filtering time and reduces the number of voxels to backpro-
ject by the corresponding amount. In this algorithm times can be modeled as
follows. Ti = 7NuNv is the initialization time and consists of memory alloca-
tion, and precomputation of values required for weighting the projectional data.
Tf = Nθ(NuNv(3 + 18 log2(2Nu))) is the time required to filter a projection on
the root processor. Tb = Nθ(NyNx(13 + 12Nz))/P is the time required to back-
project on P processors. Tg = (P1 − 1)4Ny(NxNzg1 + L1)(1 + o1)/P + (P −
P1)4Ny(NxNzg0 +L0)(1+ o0)/P where the first expression is gathering on root
SMP, and second expression is gathering from remote (non-root) SMPs.

Tc = Nθ(4(P0−1)(NuNvg0+L0)(1+o0)+
P0max
i=1

4(Pi−1)(NuNvgi+Li)(1+oi)) (2)

where the first expression corresponds to inter-SMP communication and the
second corresponds to intra-SMP communication. Where it is assumed that Pi,
Li, oi, and gi are the LogP parameters for ith SMP and P0, L0, o0, and g0 are
the LogP parameters corresponding to communications between SMPs.
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5 Results and Discussion

Data sets of size N = 32, 64, 128, 256, and 512 were simulated and reconstructed
using both systems described above. The number of processors varied from one
to the maximum available, 18. Each run was repeated three times to average any
deviations and to help identify any outliers. The time to complete the execution
was measured using the UNIX time command. While time is precise to the
nearest tenth of a second, that is sufficient precision when total times ranges
from several minutes to several hours. Speedups were modeled for each value of
N based on the measured LogSMP parameters.
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Fig. 2. 10Mbps ethernet
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Fig. 3. 100Mbps ethernet
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Fig. 4. 155Mbps ATM

The cluster of SMPs was connected via 10Mbps ethernet, 100Mbps ether-
net, and then ATM. For each case the reconstruction algorithm was timed and
speedup as a function of the number of processors was computed. The speedups
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corresponding to the model are plotted along with the empirical data in Fig. 6–8.
Recall that the first SMP has six processors and the other three each have four
processors. Using 10Mbps ethernet, a maximal speedup of 7.89 was achieved
for a problem size of 512 and using 14 processors. Using 100Mbps ethernet, a
speedup of 14.8 was achieved for a problem size of 512 and using 18 processors.
Using ATM, a speedup of 15.2 was achieved for a problem size of 512 and using
18 processors.

The speedup is nearly linear when P < 6, since g ≈ 1. As P increases to force
inter-SMP communication, a piecewise continuous behavior is observed and well
modeled. By properly accounting for the parameters for each communications
channel, an accurate prediction of speedup was obtained. We found the LogSMP
model can take into account differences in communication costs and can be easily
used to model performance when using clusters of SMPs. This methodology can
be applied to similar problems involving large multi-dimensional data sets.
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