
Thread Migration/Checkpointing for

Type-Unsafe C Programs?

Hai Jiang and Vipin Chaudhary

Institute for Scientific Computing
Wayne State University
Detroit, MI 48202 USA
{hai, vipin}@wayne.edu

Abstract. Thread migration/checkpointing is becoming indispensable
for load balancing and fault tolerance in high performance computing
applications, and its success depends on the migration/checkpointing-
safety, which concerns the construction of an accurate computation state.
This safety is hard to guard in some languages, such as the C, whose
type-unsafe features may cause the dynamic types associated with mem-
ory segments to be totally different from the static types declared in
programs. To overcome this, we propose a novel intra-procedural, flow-
insensitive, and context-insensitive pointer inference algorithm to sys-
tematically detect and recover unsafe factors. The proposed scheme con-
ducts a thorough static analysis at compile time and inserts a minimized
set of primitives to reduce the overhead of possible dynamic checks at
run-time. Consequently, most unsafe features will be removed. Program-
mers can then code in any style, and nearly every program will be qual-
ified for migration/checkpointing.

1 Introduction

Thread migration and checkpointing has become an imperative means in redis-
tributing computation [1] and fault-tolerance for parallel computing. All such
schemes need to fetch (or construct), transfer, and re-install the computation
state. The correct execution of this three-step procedure will guarantee correct
results upon resuming work on a new machine. Since portable application-level
schemes build the state from the source code, certain type unsafe features in C
programs, such as pointer casting, structure casting with pointers, and pointer
arithmetic, may cause the dynamic types associated with memory segments to
be different from the static types declared in programs. In C, it is impossible
to acquire the actual dynamic data types from the memory blocks themselves.
This might prevent migration/checkpointing systems from getting the actual
state and may result in migration/checkpointing failure. To avoid this, most
schemes [3, 4] rely on type-safe programming styles.

? This research was supported in part by NSF IGERT grant 9987598, NSF MRI grant
9977815, and NSF ITR grant 0081696.

We have designed and implemented a thread migration/checkpointing pack-
age, MigThread [5], to migrate threads safely for adaptive parallel computing.
As an application-level approach, MigThread demonstrates good portability and
scalability. Furthermore, we have identified pointer operations and library calls
as the factors for unsafe migration/checkpointing [6]. To provide a reliable so-
lution and cover all possible cases, we extend the previous work by proposing
a novel intra-procedural, flow-insensitive, and context-insensitive pointer infer-
ence algorithm to detect unsafe pointer operations, and then systematically trace
their propagation. To reduce the complexity, this algorithm focuses on C func-
tions themselves, ignoring all flow control instruments and contexts. We argue
that with the dynamic characteristic of programs, it is not always possible to
predict the actual execution and function call path. Permutating all possibilities
is intractable. Therefore, a heuristic algorithm is essential.

At compile time, a static analysis module scans source code, identifies un-
safe operations, and calculates unsafe pointer casting closure. A complete, but
minimized closure would insert less primitives into the transformed source code.
On the other hand, at run-time, a dynamic check and update module is acti-
vated through those inserted primitives to capture the affected events. At each
migration/checkpointing point the precise thread state can be constructed, or a
warning message is issued to users to abort any un-recoverable unsafe operations,
such as illegal library calls. With this pointer inference algorithm, MigThread be-
comes practical and applicable for more real applications.

The remainder of this paper is organized as follows: Section 2 introduces the
thread migration/checkpointing package MigThread. Section 3 discusses pointer
operations in C. In Section 4, we describe the pointer inference algorithm in
detail. Some experimental results and microbenchmarks are shown in Section
5. Section 6 gives an overview of related work. Our conclusions and continuing
work are presented in Section 7.

2 Thread Migration/Checkpointing

Migration/checkpointing schemes can be classified by the levels at which they are
applied. They fall into three categories: kernel-level, user-level and application-
level [1]. Although only application-level ones support portability across hetero-
geneous platforms, they suffer from transparency and complexity drawbacks.

2.1 MigThread

MigThread is an application-level thread migration/checkpointing package [5],
designed to take advantage of the portability and scalability in heterogeneous
distributed computing environments. MigThread consists of two parts: a prepro-
cessor and a run-time support module.

The preprocessor is designed to transform user’s source code into a format
from which the run-time support module can construct the thread state effi-
ciently. Its power can improve the “weak transparency” drawback of application-
level schemes. The thread state is moved from its original location (libraries or

kernels) and abstracted up to the language level. Therefore, the physical thread
state is transformed into a logical form to achieve platform-independence. All re-
lated information with regards to stack variables, function parameters, program
counters, and dynamically allocated memory regions, is collected into certain
pre-defined data structures. MigThread also supports user-level memory man-
agement. Therefore, both thread stacks and heaps are moved out to the user
space and handled by MigThread directly. Since the address space of a thread
could be different on source and destination machines, pointer values may be
invalid after migration/checkpointing. It is the preprocessor’s responsibility to
identify and mark pointers at the language level so that they can easily be traced
and updated later.

The run-time support module constructs, transfers, and restores thread state
dynamically. Since the preprocessor has collected enough information, thread
state is constructed promptly [5, 6]. Internally, thread stacks and heaps are re-
built, while pointers are updated. In addition, MigThread takes care of all hetero-
geneity issues, such as byte ordering, data alignment, and data/pointer resizing.

2.2 Migration/Checkpointing-Unsafe Factors

Migration/checkpointing-safety concerns precise state construction for success-
ful migration/checkpointing. Since the thread state consists of thread stacks
and heaps, heterogeneous migration/checkpointing schemes need to interpret all
memory segments precisely. They usually have difficulties in dealing with pro-
grams written in type-unsafe languages, such as C [3], where memory blocks’
dynamic types could be totally different from the types declared in the program.

Type-safe languages can avoid such type uncertainty. That is, static types
declared within a program will be the same as the dynamic types at run-time.
No type casting is allowed, and no type change occurs once programs start run-
ning. Thus, migration/checkpointing schemes can interpret contents of memory
segments accurately and build thread states correctly. But “type-safe languages”
restriction is too conservative since many programs written in such languages
might be safe for migration/checkpointing. Most schemes rely on type-safe pro-
gramming styles [3, 4]. It is impractical to rely on programmers to identify unsafe
language features and avoid using them. Major unsafe uses come from pointers
and their operations. If a pointer is cast into an integral-type variable before mi-
gration/checkpointing and cast back to a pointer variable later, a scheme might
fail to identify the real data type in the memory block statically declared as
an integral type, and miss the pointer updating procedure during the migra-
tion/checkpointing. Then, subsequent use of the pointer with invalid values can
lead to errors or incorrect results. Therefore, events generating hidden pointers
such as pointer casting are the actions we must forbid.

Another unsafe factor is third-party library calls which may leave unde-
tectable memory blocks and pointers out of the control scope. Without pre-
cise understanding, migration/checkpointing schemes will fail to determine their
existence. MigThread issues compile time warnings of the potential risks.

Table 1. Assignments in Normal Form

Assignment Explanation

x = y Direct Copy Assignment

x = &y Direct Address-of Assignment

x = ∗y Direct Load Assignment

∗x = y Indirect Copy Assignment

∗x = &y Indirect Address-of Assignment

∗x = ∗y Indirect Load Assignment

3 Pointer Operations in C

From the programming language’s point of view, only the unsafe pointer casting
is of concern for migration/checkpointing-safety. MigThread attempts to trace
all pointer casting cases and detect potential pointers in any memory location.

3.1 Data Updating Operations

When variables are initially declared, they refer to memory locations directly
or indirectly. Later on, their memory contents can be modified to hold data
with other types. According to the C syntax, memory contents can be changed
by increment and decrement statements, assignment statements, and library
calls. Since the increment and decrement statements only change the data values
instead of the types, type casting can only come from the other two manners.

Assignment statements propagate the type obligation for the left-hand side
to the right-hand side [7]. Combined with type casting, they are the major
mechanism to hide pointers in non-pointer type memory locations. To simplify
the presentation of the algorithm, normalized assignment statements are listed
in Table 1. MigThread scans a complicated assignment and breaks it into several
basic items without introducing actual temporary variables as in other analyses
[2, 7]. Table 1 only illustrates the top-level address-of operator “&” and pointer
dereference operator “*.” Both x and y may contain more of such operators
inside, and type casting qualifier “(τopt)” might be inserted ahead. Without
type casting, each memory location will use its default type declared within the
program. Otherwise, pointers can be placed in non-pointer type locations by a
special pointer casting.

Another way to change memory contents is using library calls, such as mem-
cpy(), which directly copy memory blocks from one place to another in memory
space. When they contain pointer fields, unsafe casting should be screened out.

3.2 Pointer Casting

Data in memory can be referenced by the following:

– Named Locations: Variables in stacks referring to unique memory locations
– Unnamed Locations: Fields within dynamically allocated memory blocks in

thread heaps do not have static names

– Pointer Dereference: For pointer p, *p indicates the content of the memory
location that p is pointing to

Pointer casting can be done directly or indirectly, and explicitly or implicitly.
For the normalized assignment statements in Table 1, if pointers are sent into
named locations, we say it happens directly. Otherwise, through unnamed loca-

tions or pointer dereference, the casting is defined as indirectly. The direct casting
of non-scalar types like structures is not permitted in ANSI C [8]. However, we
can always achieve this effect indirectly by pointer dereferencing. Structures are
flattened down into groups of scalar type members which are cast one-by-one.
Pointer casting might take place here if some members are pointers. For such
cases, we say it happens implicitly. Otherwise it happens explicitly.

Sometimes type casting might happen in locations without valid static types.
They can be created by malloc() without a real type association. Another case
might be the misalignment in data copy. Some addresses might not point to the
beginning of scalar type data after certain pointer arithmetic operations. Such
“notype” cases should be recorded for future interpretation.

4 Pointer Inference System

Compile-time analysis techniques, such as point-to and alias analyses [9], can
be classified by flow- and context-sensitivity. Flow-sensitive analysis takes into
account the order in which statements are executed whereas context-sensitive
analysis takes into account the fact that a function must return to the site of
the most recent call, and produce an analysis result for each calling context of
each function [2]. Flow and context sensitive approaches generally provide more
precise results, but can also be more costly in terms of time and/or space.

In this paper, the proposed pointer inference system for hidden/unhidden
pointer detection has the following features:

Intra-procedure : Analysis works within the function’s scope. It does not con-
sider the ripple effect of propagating unsafe pointer casting among functions.

Flow-insensitivity : Control flow constructs are ignored. We argue that it
is impossible to predict the exact execution order because of the potential
dynamic inputs for the program. Conservative solutions might be safer for
our case (pointer casting).

Context-insensitivity : We do not distinguish contexts to simplify our algo-
rithm. For larger programs the exponential cost of context-sensitive algo-
rithms quickly becomes prohibitive.

4.1 Pointer Inference Rules

After MigThread identifies the types of the left-hand and right-hand sides of as-
signments, the pointer inference system has to apply pointer inference rules,
shown in Fig. 1 and Fig. 2, to detect unsafe pointer casting. The function
typeof() is used to check the data types in variables or memory locations. The

x = y ∈ Prog
typeof(x)!= POINTER

((typeof(y)==POINTER)
||((typeof(y)!=POINTER)&&(y∈Closure)))

Pointer_Casting(x, y)

x = &y ∈ Prog
typeof(x)!= POINTER

Pointer_Casting(x, &y)

x = *y ∈ Prog
typeof(x)== SCALAR

 ((typeof(*y)==POINTER)
||((typeof(*y)!=POINTER)&&(*y∈Closure)))

Pointer_Casting(x, *y)

x = *y ∈ Prog
typeof(x)== STRUCTURE
typeof(x.α)== SCALAR

((typeof((*y). β)== POINTER)

|| ((typeof((*y). β)!= POINTER)

&& ((*y). β ∈Closure)))
offset(x.α)== offset((*y). β)

Pointer_Casting(x.α , (*y). β)

Fig. 1. Pointer inference rules for direct assignments

useful types are POINTER, SCALAR and STRUCTURE. The term Closure

concerns the Pointer Casting (PC) Closure which is an approximate super-
set of possible variables and locations holding hidden pointers, maintained by
Pointer Casting() dynamically. Structure types are flattened down into scalar
type groups whereas Union types’ activation fields are traced since it is possible
to create a pointer value under one field and then manipulate its value through
another overlaid non-pointer field of the union. Letters α and β indicate the
scalar fields which should be enclosed in PC Closure instead of entire structures
or unions.

To simplify the presentation, we do not list type casting qualifiers in pointer
inference rules, although in fact they are handled properly. At run-time, type
casting phases modify dynamic types which are not recorded in the type system,
and the dynamic type of the left-hand side determines the size of data to be
copied from the location pointed to by the right-hand side of the assignment.

4.2 Static Analysis and Dynamic Check

With the intra-procedural algorithm, our pointer inference system focuses on
functions themselves and ignores their inter-relationship for efficiency. Since it is
not guaranteed to be able to predict the actual execution path, flow- and context-
insensitive approach is adopted to avoid permutation of all possible cases.

The static analysis at compile time is the actual process that applies the
pointer inference rules to the source code. Pointer Casting (PC) Closure is a
conservative superset of hidden pointer locations, which is implemented in a
red-black tree and used as a clue to insert run-time check primitives. After
local variables and types are identified, the static analysis uncovers questionable

*x = y ∈ Prog

typeof(*x)== SCALAR
 ((typeof(y)==POINTER)

||((typeof(y)!=POINTER)&&(y∈Closure)))

Pointer_Casting(*x, y)

*x = y ∈ Prog
typeof(*x)== STRUCTURE
typeof((*x).α)== SCALAR
((typeof(y. β)== POINTER)

|| ((typeof(y. β)!= POINTER)

&& (y. β ∈Closure)))
offset((*x).α)== offset(y. β)

Pointer_Casting((*x).α , y. β)

*x = &y ∈ Prog
typeof(*x)!= POINTER

Pointer_Casting(*x, &y)

*x = *y ∈ Prog
typeof(*x)== SCALAR

 ((typeof(*y)==POINTER)
||((typeof(*y)!=POINTER)&&(*y∈Closure)))

Pointer_Casting(*x, *y)

*x = *y ∈ Prog
typeof(*x)== STRUCTURE
typeof((*x).α)== SCALAR

((typeof((*y). β)== POINTER)

|| ((typeof((*y). β)!= POINTER)

&& ((*y). β ∈Closure)))
offset((*x).α)== offset((*y). β)

Pointer_Casting((*x).α , (*y). β)

Fig. 2. Pointer inference rules for indirect assignments

assignments by their components on the left-hand side (LHS) and right-hand side
(RHS), and suspicious library calls by their parameters. These items could be
global variables, local variables in stacks, global/local memory locations in heaps,
and function/library calls. They have to be extracted out and applied against
the pointer inference rules. If LHS is not in PC Closure and unsafe pointer
casting happens in RHS, LHS will be inserted into PC Closure. If the generated
PC Closure is not empty, a primitive is appended after each memcpy() and
structure casting case to detect possible implicit pointer casting.

At run-time, the dynamic check section is activated by the primitives in-
serted at compile time. Another red-black tree is maintained to record actual
unsafe pointer casting variables and locations, from which MigThread can de-
cide whether it is safe to conduct migration/checkpointing. This pointer infer-
ence system contains both detection and recovery functionalities. Another op-
tion is to only maintain a simple detection strategy for minimal overhead by
only determining whether unsafe pointer casting has occurred. PC Closure is
not created by enumerating all possibilities as above. If pointer casting occurs,
migration/checkpointing will abort even though its effect is removed later. This
option is useful for large programs since a recovery system could be quite com-
plicated. Users can choose this option in MigThread.

0

5

10

15

20

25

1 2 3 4 5 6 7

Program
S

ta
ti

c
A

n
al

ys
is

 T
im

e
(M

ill
is

ec
o

n
d

s)

116.482

FFT lu-c lu-n matmult ocean-c radix KS

Fig. 3. Execution time of Pointer Inference Algorithm

4.3 Complexity

The space complexity of our pointer inference is O(Nprog), where Nprog is the size
of the input programs. The major time complexity is in calculating the PC Clo-
sure, which is maintained on a red-black tree with maximum number of related
assignment nodes Nasn, including large scalar and structure type assignments
since these types are large enough to contain pointers. If the execution order of
these assignments is the same as the order in the program, the best case will
be achieved: O(Nasn ∗ logNasn). But if these two orders are completely opposite
(one is the reverse of the other), we will get the worst case: O(Nasn

2
∗ logNasn).

To avoid it, we establish a threshold: after parsing repeats a certain number of
times, we just append corresponding primitives after each related assignment.
That means, instead of calculating the smallest PC Closure, we just take a bigger
one. This will leave the extra overhead to the dynamic check whose complexity
is simply O(Nasn ∗ logNasn). Therefore, major overhead can be avoided.

5 Experimental Results and Microbenchmarks

Our testing platform is an Intel Pentium 4 with 1.7GHz CPU, 384MB of RAM,
and 700MB of swap space. To evaluate the overall pointer inference algorithm,
we apply it to some programs, such as FFT, lu-c, lu-n, ocean-c and radix from
the SPLASH-2 suite, matrix multiplication, and KS from the Pointer-Intensive
Benchmark Suite [10]. Among them, most static analysis overheads are around
15 milliseconds, except the one for large ocean-c application which consumes
116 milliseconds, as shown in Fig. 3. Since this one-time cost is at compile time
and is still relatively small compared to the application’s execution time, the
overhead of static analysis overhead is minimal.

The detailed information that migration/checkpointing systems can acquire
is shown in Table 2 and Fig. 4. The term shorter indicates smaller sized data
types, such as char and integer, which normally are not big enough to hold
pointer values, and the term longer represents larger data types, such as long and
double, which can encompass pointers. The terms struct and pointer indicate
the structure and pointer types in C. The dir and ind concern values that can
be copied into left-hand side directly and indirectly, respectively. The notype

Table 2. Assignment statement analysis test (unsafe cases in parentheses)

Line Total shorter longer struct pointer no- mem-
Program

No. Asn. dir ind dir ind dir ind dir ind type cpy

FFT 1058 183 (0) 113 (0) 3 (0) 68 (0) 1 (0) 0 (0) 0 (0) 4 (0) 0 (0) 0 (0) 0 (0)

lu-c 1051 227 (0) 154 (0) 0 (0) 58 (0) 1 (0) 0 (0) 0 (0) 14 (0) 0 (0) 0 (0) 0 (0)

lu-n 829 132 (0) 64 (0) 0 (0) 58 (0) 1 (0) 0 (0) 0 (0) 9 (0) 0 (0) 0 (0) 0 (0)

matmult 418 43 (0) 30 (0) 0 (0) 6 (0) 1 (0) 0 (0) 0 (0) 6 (0) 0 (0) 0 (0) 0 (0)

ocean-c 5255 1946 (0) 917 (0) 0 (0) 613 (0) 3 (0) 0 (0) 0 (0) 410 (0) 3 (0) 0 (0) 0 (0)

radix 1017 218 (0) 152 (0) 0 (0) 44 (0) 1 (0) 0 (0) 0 (0) 21 (0) 1 (0) 0 (0) 0 (0)

KS 755 169 (0) 29 (0) 0 (0) 15 (0) 7 (0) 4 (0) 0 (0) 84 (0) 30 (0) 0 (0) 0 (0)

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4

Assignment Type

N
um

be
rs

 o
f

A
ss

ig
nm

en
ts

FFT
lu-c
lu-n
matmult
ocean-c
radix
KS

917 616 413

shorter longer struct pointer

Fig. 4. Major features of benchmark programs

counts other random type assignments, and the memcpy shows the number of
memcpy() system calls. The numbers in parentheses indicate the number of
unsafe pointer casting instances. In this experiment, the shorter types are used
slightly more than longer types. Both of them are used much more frequent than
pointer types, which is the dominant factor in KS. Finally, structure casting
rarely takes place.

Fortunately, among these benchmark programs, no unsafe pointer casting
occurs. One major reason is that these programs come from well-known bench-
mark suites which are primarily created by professionals and type safety rules in
C are followed restrictively. But in practice, we cannot count on programmers to
achieve this. The pointer inference algorithm has to be applied to deal with the
worst case so that programmers can work in any coding style without affecting
migration/checkpointing functionality.

To evaluate the dynamic check at run-time, a microbenchmark program is
used to investigate the maintenance of PC Closure which is the major operation
to register/unregister variables and memory addresses. Fig. 5 illustrates different
overheads when PC Closure is saved in a red-black tree with variant numbers
of members. The operations with memory addresses normally take more time
because they require extra time to convert addresses. Even so, their total cost is
about 5-7 microseconds whereas the overhead for variables is just 2-4 microsec-
onds. Since these run-time overhead values are small and increase very slowly as
PC Closure expands, the cost of the dynamic check is negligible.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10
O

ve
rh

ea
d

(M
ic

ro
se

co
nd

s)

Log (Number of Already Registered Items)

Reg by names
Unreg by names

Reg by addrs
Unreg by addrs

Fig. 5. Microbenchmark Results

6 Related Work

Among application-level migration/checkpointing schemes, the Tui system [3]
discusses the safety issue, mainly from the point of view of type safety, without
providing an effective mechanism about how to prevent it from happening or
fixing it once it happens. Another package, SNOW [4], simply declares that it
works only for “migration-safe” programs without further explanation or defini-
tion of “migration safety”. Both of the above packages rely on programmers to
avoid any unsafe cases during migration. Our previous work [6] identified some
migration-unsafe features in C without providing a systematic solution.

Modern optimizing compilers and program comprehension tools adopt alias
analyses to compute pairs of expressions (or access paths) that may be aliased,
and points-to analyses to compute a store model using abstract locations [9, 2,
7]. Steensgaard presented a linear-time points-to analysis which contains stor-
age shape graphs to include objects with internal structure and deals with the
arbitrary use of pointers [9]. Andersen defined a points-to analysis in terms
of constraints and constraint solving [11]. Yong, et al., developed an “offset”
approach to distinguishing fields of structures in pointer analysis and makes
conservative approximations efficiently [8]. Wilson and Lam proposed a context-
sensitive pointer analysis algorithm which is based on a low-level representation
of memory locations to handle type casts and pointer arithmetic in C programs
[12]. None of these can deal with pointer casting efficiently.

To deal with the unsafe type system in C, CCured [13] seeks to rule out all
safety violations by combining type inference and run-time checking. Cyclone
compiler performs a static analysis on source code, and inserts run-time checks
into the compiled output at places where the analysis cannot determine that an
operation is safe [14]. MigThread applies a lightweight pointer analysis to solve
a different problem: detecting unsafe pointer casting effectively.

7 Conclusions

To overcome the restriction in existing migration/checkpointing schemes where
programmers have to write type-safe programs, we have presented an intra-

procedural, flow-insensitive, and context-insensitive pointer inference algorithm,
a lightweight pointer analysis, which conducts static analysis to predict possible
harmful dynamic types and inserts run-time checks to detect hidden pointers so
that the correct thread state can be constructed for migration/checkpointing.
Experiments on real applications indicate that the overhead of this scheme is
minimal. To reduce overhead, it can be configured to only detect the occurrence
of unsafe pointer castings without tracing dynamic types although this might
abort migration/checkpointing too conservatively.

This algorithm ensures correct migration/checkpointing whereas other schemes
leave the uncertainty to application users. The following research is to provide a
full-fledged support for third-party libraries whose procedural calls can introduce
undetectable hidden pointers and memory blocks. Therefore, pointer inference
algorithms can reach beyond ANSI C.

Acknowledgements

We thank John P. Walters and anonymous reviewers for their helpful comments.

References

1. Milojicic, D., Douglis, F., Paindaveine, Y., Wheeler, R. and Zhou, S., Process
Migration, ACM Computing Surveys, 32(8) (2000) 241-299

2. Rugina, R. and Rinard, M., Pointer Analysis for Multithreaded Programs, Proc.
of the Conf. on Program Language Design and Implementation (1999) 77-90

3. Smith, P. and Hutchinson, N., Heterogeneous process migration: the TUI system,
Tech rep 96-04, University of British Columbia (1996)

4. Chanchio, K. and Sun, X., Data Collection and Restoration for Heterogeneous
Process Migration, Proc. of Int’l Parallel and Dist. Processing Symp. (2001) 51–51

5. Jiang H. and Chaudhary V., Compile/Run-time Support for Thread Migration,
Proc. of Int’l Parallel and Distributed Processing Symp. (2002) 58-66

6. Jiang H. and Chaudhary V., On Improving Thread Migration: Safety & Perfor-
mance, Proc. of the Int’l Conf. on High Performance Computing (2002) 474-484

7. Chandra, S. and Reps, T. W., Physical Type Checking for C, Proc. of Workshop
on Program Analysis for Software Tools and Engineering (1999) 66-75

8. Yong, S. H., Horwitz, S. and Reps, T. W., Pointer Analysis for Programs with
Structures and Casting, Proc. of the Conference on Programming Language Des-
ignand Implementation (1999) 91-103

9. Steensgaard, B., Points-to Analysis by Type Inference of Programs with Structures
and Unions, Proc. of the Int’l Conf. on Compiler Construction (1996) 136-150

10. Pointer-Intensive Benchmark Suite, Computer Science Department, University of
Wisconsin, Madison, http://www.cs.wisc.edu/ austin/ptr-dist.html

11. Andersen, L. O., Program Analysis and Specialization for the C Programming Lan-
guage, PhD thesis, Dept. of Computer Science, University of Copenhagen (1994)

12. Wilson, R. P. and Lam, M. S., Efficient Context-Sensitive Pointer Analysis for C
Programs, Proc. of the Conf. on Programming Language Design and Implementa-
tion (1995) 1-12

13. Necula, G. C., McPeak, S. and Weimer, W., CCured: type-safe retrofitting of legacy
code, ACM Symp. on Principles of Programming Languages (2002) 128-139

14. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J. and Wang, Y., Cyclone:
A safe dialect of C, USENIX Annual Technical Conference (2002) 275-288

