
Exploiting Multi-level Parallelism for Homology Search using General Purpose

Processors

Xiandong Meng

Electrical and Computer Engineering

Wayne State University

MI, Detroit 48202

meng@ece.eng.wayne.edu

Vipin Chaudhary

Institute for Scientific Computing

Wayne State University

Detroit, MI 48202

vipin@wayne.edu

Abstract

New biological experimental techniques are continuing

to generate large amounts of data using DNA, RNA,

human genome and protein sequences. The quantity and

quality of data from these experiments makes analyses of

their results very time consuming, expensive and

impractical. Searching on DNA and protein databases
using sequence comparison algorithms has become one of

the most powerful techniques to better understand the

functionality of particular DNA, RNA, genome, or protein

sequence. This paper presents a technique to effectively

combine fine and coarse grain parallelism using general

purpose processors for sequence homology database
searches. The results show that the classic Smith

Waterman sequence alignment algorithm achieves super

linear performance with proper scheduling and multi level

parallel computing at no additional cost.

1. Introduction

High-throughput technologies in the field of biology

have led to an exponential growth in the amount of data

generated over the past several years that has far exceeded

the growth in processor performance. Sequence

comparison algorithms [3] based on the dynamic

programming method such as the Needleman-Wunsch [16]

and Smith-Waterman algorithms [20], provide optimal

solutions. However, they are very computationally

expensive. For this reason, heuristics based algorithms,

such as BLAST [2], FASTA [17] etc., although sub-

optimal, are widely used. The biology community would

rather use the accurate methods provided there existed

cheap and fast accurate solutions. A number of different

designs for special-purpose hardware [8][12][14][19] for

performing sequence alignments and database searching

have been proposed and implemented. Their advantage

over general-purpose computers is that they can be tailored

specifically to perform sequence comparisons at a high

speed, while the disadvantage is high cost.

The first widely used program for database similarity

searching was FASTA [17]. FASTA stands for FAST-All,

reflecting the fact that it can be used for a fast protein

comparison or a fast nucleotide comparison between a

query sequence and a large database of known sequences.

This program achieves a high level of sensitivity for

similarity searching at high speed. OSEARCH and

SSEARCH [18] are two Smith-Waterman implementations

in FASTA programs. OSEARCH is straightforward Smith-

waterman implementation. SSEARCH [18] is an

optimized implementation of Smith-Waterman algorithm

that is approximately twice as fast as OSEARCH.

However, OSEARCH is more sensitive and accurate.

Traditional approaches to sequence homology searches

using Smith-waterman algorithm on general-purpose

processor have proven to be too slow to keep up with the

current increasing rate of sequence database. Therefore,

many approaches [10] [11] [17] to parallelizing the

FASTA and SSEARCH have been investigated. In this

paper a method to combine fine grain and coarse grain

parallism among cluster nodes is presented.

This paper is structured as follows. Section 2 discusses

the sequence homology search relevant details on Smith-

Waterman algorithm, fine and coarse grain parallelism,

and scheduling. In Sections 3 and 4 we describe the

experimental infrastructure and our implementation

methodology, respectively. In Section 5 we present the

performance results. Section 6 discusses the related work.

We end with conclusions in section 7.

2. Background

In this section we present a brief background on Smith-

Waterman algorithm and the various levels of parallelism

that can be exploited in its implementation.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 15:36 from IEEE Xplore. Restrictions apply.

2.1 Smith-waterman algorithm

The Smith-Waterman algorithm [20] is perhaps the

most widely used local similarity algorithm for biological

sequence pairwise alignment. It was enhanced by Gotoh

[7]. Pairwise alignment is the alignment of two sequences.

In Smith-Waterman database searches, the dynamic

programming method is used to compare every database

sequence to the query sequence and assign a score to each

result. The dynamic programming method checks every

possible alignment between two given sequences. The two

sequences define a matrix in which every cell represents

the alignment of two specific positions in the two

sequences. The value of each cell depends on the residues

located in these positions.

Scores in the first row and column are defined as zero.

Entries L(i, j) in all other cells of the matrix are defined as

the score of the best alignment ending in the position

matching xi and yj, and are calculated using the following

recurrences:

L(i, j) =max{E(i,j), L(i-1, j-1)+s(xi, yj), F(i, j), 0};

where

E(i, j)=max{ L(i, j-1)+a, E(i, j-1)+b}

F(i, j)=max{ L(i-1, j)+a, F(i-1, j)+b}

where s(xi, yj) is the score of a match or mismatch between

xi and yj. In the above equations, a is the opened gap

penalty and b is the extended gap penalty.

2.2 Fine grain, coarse grain parallelism and

scheduling

To exploit fine-grain parallelism [21], the processors

work together to compute the above L(i, j) matrix, cell by

cell. This fine-grain computation would require a very

large number of processors if a long sequence were to be

considered. The availability of SIMD vector instructions in

common processors such as the MMX SSE2 from Intel,

MMX 3Dnow! from AMD, and VIS from SUN allows

fine grain parallelism to be exploited for a single pairwise

alignment.

For coarse grain parallelism, the database is divided

into blocks of sequences. These blocks can be assigned to

the processors (workers). Coarse grain in this context

means each processor performs a selected number of

comparisons.

The objective of scheduling is to find a policy for

assigning processors to tasks so that the overall execution

time for database searching is minimal. However, any

parallel strategy represents a trade-off between reducing

communication time and improving the computational

load balance.

3. Hardware and software platform

The hardware used for the experiments is based on Intel

Xeon architecture running a distribution of NPACI Rocks

(v3.1.0) Linux cluster. The MPI layer is based on MPICH

v1.2.6 [1] with the ch_p4 device. The cluster consists of a

master node and 16 compute nodes with 100Mb Ethernet

connections between the nodes. Each node is an Intel

Pentium IV Xeon System, which has dual 2.66 GHz

processors with 2.5GB of RAM. Each node has two

processes mapped to it. All cluster nodes are identical and

have no other applications running at the time of the

experiment.

FASTA was ported onto the above Linux cluster using

the parallel MPI version (release 3.4) of SSEARCH

program, which is an open resource software and can be

download from EBI web site [5].

4. Implementation

4.1 Multi-level parallelism

The designed implementation takes advantages of

combinations of fine and coarse grain parallelism

paradigm within a parallel architecture, using general-

purpose processors. The structure of the sequence

homology searches and dynamic programming lead to

many opportunities for parallel computation. At the lowest

level, micro-parallelism techniques have been used to take

advantage of specific features of parallel architecture, e.g.,

SIMD vector instructions. At higher level, the searching of

large database leads itself to an implementation with

multiple searches distributed across separate processors.

The computing requirements for these similarity search

problems can only be tackled by using the computing

resources efficiently. The SSEARCH and OSEARCH

programs are first analyzed by Intel Vtune

 performance

analyzer. The performance reports indicate that the core of

sequence alignment algorithm normally takes more than

90% of total execution time when performing a big

database search. Parallel and distributed computing at the

cluster level along with vector computing at the instruction

level has to be utilized to create an effective solution to

overcome this computation bottleneck.

4.2 Fine grain parallelism

Intel’s Streaming SIMD Extensions 2 (SSE2)

instruction set [9] enhances the SIMD instructions

previously delivered with MMX and SSE technology. The

key benefits of SSE2 are the added support for 64-bit

double-precision floating point and for 64, 32, 16 and 8-bit

integer operations on the eight 128-bit XMM registers first

introduced with SSE.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 15:36 from IEEE Xplore. Restrictions apply.

In this paper, our implementation exploits SSE2

instructions to effectively harness the power of the

Pentium IV processor. SSE2 was introduced into the

Intel’s IA-32 architecture in the Pentium IV and Intel

Xeon processors. These extensions were introduced to

enhance the performance for advanced 3-D graphics, video

decoding encoding, and speech recognition.

We wrote the FASTA program using SSE2 intrinsics

library and compiled with Intel 8.1 C compiler on Red Hat

v8.0 Linux cluster. The instrinsics library provides a C

programming language interface to the SSE2 instructions.

All the SSE2 instructions have a corresponding C function

in the intrinsics library.

4.2.1 Vector computing along row with the query

sequence The sequentially calculated values, e.g. L, E and

F, have been grouped into a vector. The computation flows

from top row to the bottom row. Due to the

aforementioned data dependency, the vectors have to

follow this order and the internal dependency has to be

solved before moving to the next vector.

Since the computation always needs the data from

previous calculated row, there are two arrays to hold the L

and E values, whose equations are listed in section 2. The

arrays are dynamically allocated and the size of the array is

equal to the length of the query sequence. In other words,

the vectors have to save their intermediate results to these

two arrays for the next row reference.

4.2.2 Data padding and alignment Query sequence

partition explores maximum parallelism along the

computation flow. Normally the size of query sequence is

not multiples of eight. If these marginal data are ignored,

the final alignment scores may not be accurate and may

miss some important biological information. One way is to

create a clean loop to compute the rest of several cells, but

it returns to the slow sequential computing. Considering a

big database with millions of residues, we still want to

solve the marginal data with parallel method. Therefore

data padding is applied in our technique to eliminate the

margin interference, which overcomes the problem of

vector partition. Therefore, our technique can be applied to

any query sequences of any size. The experiments show

that query sequence partition with data padding can

achieve significant performance gain.

In order to access the data fast, all used memories

including arrays and score matrix are aligned on the 16-

byte boundaries. Then SSE2 instructions are able to store

or load 128-bit memory as fast as possible. The aligned

memory plays critical roles on the speedup of SSE2

implementation.

4.2.3 Eight-way parallel processing with 16-bit

values Using the SSE2 instructions, a 128-bit wide integer

register of a CPU can be divided into sixteen smaller 8-bit

units or eight 16-bit units, where the same arithmetic or

logical operation can be performed simultaneously and

independently on the data in each of the individual units.

In this way, it allows fine grain parallelism to be exploited

for a single pair wise alignment. If we choose to divide the

XMM registers into as many as possible, i.e., sixteen 8-bit

units, it increases the amount of parallelism, but limiting

the maximum alignment score to 255. For medium, larger-

sized and high similarity sequences, this limit is too

restrictive. Therefore, we apply eight 16-bit units rather

than sixteen 8-bit units, which increase the data accuracy

in the range of -32768 to +32767. We believe this range is

enough for high similarity homology searches.

4.3 Coarse grain parallelism – cluster computing

A cluster of workstations connected by an Ethernet

network, is a very appropriate platform for sequence

database searches, because of the independence between

the different sequences in the database. The parallel

OSEARCH, SSERACH and our SSE2 implementations

were implemented using the MPI library. These parallel

programs are data parallel implementations with the

master worker approach in which one processor acts as

master and the other processors as workers. The master

processor reads the query, the database, and the number of

workers, n, and splits the database into n-1 parts, which is

distributed among the n-1 workers so as to search the

database in parallel. After searching the database, the

workers send the calculated scores to the master, which

further sorts the scores and displays the alignments. The

scalability, which is the ability to yield good performance

with an increasing number of workers, is analyzed in the

next section.

5. Performance evaluation

The performance of our parallel SSE2 implementation

was evaluated using various query sequence lengths and

various database sizes. All test amino acids sequences and

databases were downloaded from the NCBI FTP site [15].

A set of amino acid query sequences (P07305 194aa,

NP_001008227 398 aa, NP_033963 724 aa, NP_116653

1760 aa) is used to test the effect of various query

sequence sizes. Scanning a large database is time

consuming and the most heavily used bioinformatic

application. We select the following three databases to

verify the performance of parallel scalability on various

database sizes. Month.gss is 214 MB having 169486546

residues in 298731 sequences. Nr is 891 MB having

593787265 residues in 1798171 sequences. And patnt is

1.55 GB having 1370828404 residues in 2365892

sequences.

The parallel Smith-Waterman’s running time can be

decomposed into five primary components [4]: MPI

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 15:36 from IEEE Xplore. Restrictions apply.

initialization, database fragment copying time, Smith-

Waterman search time, communication time, and resulting

merging and printing time. Since we optimized Smith-

Waterman database searching part without any changes on

other parts, the performance evaluation and comparison

are based on this part only.

5.1 Experiment results

Speedup of Simth-Waterman Algorithm

1

51

101

151

1 2 4 8 16 32

Number of Workers

S
p

e
e

d
u

p OSEARCH

SSEARCH

SSE2 S-W

Figure 1: Speedup of SSE2 Smith-waterman

on 32-processor Linux cluster

We present a series of results that detail the homology

searches parallel speedups vs. the number of processes

used by the three programs. We first begin with the

analysis of the OSEARCH, which sets a baseline for the

analysis of the performance in the other programs. The

speedups of SSEARCH and our parallel SSE2 Smith-

Waterman are compared to OSEARCH. Overall, we see

that short query and small database cause the performance

to degrade. Performance is better overall, when the long

query sequence and large sequence database are used. Our

parallel SSE2 implementation can obtain additional three

times performance gain compared to SSEARCH, and six

times as compared to OSEARCH.

Figure 1 speedup curves show the performance of a

single query sequence of length 1760 amino acids searched

against a 214MB database. The workers (processors) range

from 1 up to 32. Compared to OSEARCH and SSEARCH,

the SSE2 implementation has very good scalability on 32-

processor Linux cluster. A speedup of 143 using 32

workers compared to the sequential OSEARCH program is

obtained. The total searching time is 38 seconds using 32

workers.

Figure 2 shows the performance of query sequences

with various lengths of amino acids searched against a

214MB database using 32 workers. The speedups of our

SSE2 implementation obtained are 43, 61, 80 and 143 for

the queries of lengths 194, 398, 724, and 1760 amino

acids, respectively. The results clearly illustrate that the

Speedup of Various Query Sequence

1

51

101

151

194 398 724 1760

Length of Query Sequences

S
p

e
e
d

u
p

 o
n

 3
2
 w

o
rk

e
rs

OSEARCH

SSEARCH

SSE2 S-W

Figure 2: Speedup of various query sequence
length on 32-processor Linux cluster

long sequences could be more effectively searched using

the parallel SSE2 Smith-Waterman algorithm on 32

workers.

Speedup of Various Worker and Database Sizes

1

11

21

31

41

51

61

71

21
4M

B(1
6)

89
1M

B(1
6)

1.
55

G
B
(1

6)

21
4

M
B(3

2)

89
1M

B(3
2)

1.
55

G
B
(3

2)

Database Size(Workers)

S
p

e
e

d
u

p OSEARCH

SSEARCH

SSE2 S-W

Figure 3: Speedup of various database sizes and
workers on 32-processor Linux cluster

 Query sequence of length 194 amino acids was

searched against a 214MB, 891MB and 1.55 GB database

with 16 and 32 workers. The above performance bar chart

shows that speedup increases from 30 to 41 on 16 workers

and from 43 to 60 on 32 workers with the database

increase. While searching a specific query sequence

against size varied databases using parallel SSE2 Smith-

Waterman, better speedup was observed with larger

database size.

Our parallel SSE2 Smith-Waterman implementation

produces exactly the same outputs as those computed by

OSEARCH, which is higher quality than SSEARCH, with

big time saving and no additional hardware cost.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 15:36 from IEEE Xplore. Restrictions apply.

6. Related work on parallel sequence

alignment

A group of fine-grained parallel designs on special-

purpose hardware for performing sequence alignments and

database searching have been proposed and implemented.

estrel [12] is a 512-element linear parallel processor with

8-bit, SIMD processing elements. The single-board system

was designed and built with particular emphasis on

efficient high-throughput sequence analysis. Performance

of the Smith-Waterman was reported at being 20 times

faster than 433 MHz DEC Alpha series 21164. Yamaguchi

and Maruyama [22] achieved high speed homology search

using FPGA (Field Programmable Gate Array). They

reported a time of 34 seconds for comparing a query of

2,048 elements with a database of 64 million, which is 330

times faster than a desktop with a 1 GHz Pentium III.

Schmidt et.al. [19], use two new massively parallel

architectures. The first architecture is built around a PC-

cluster linked by network and fine-grained parallel Systola

1024 processor boards connected to each node. The second

architecture is the Fuzion 150, a new parallel computer

with a linear SIMD single array of 1535 processing

elements on a single chip. Both architectures provide high

throughput solutions at a good price performance ratio.

Six-fold speedup of Smith-Waterman sequence database

search using parallel processing on common

microprocessors using MMX was reported [11]. Lander

et. al. [13] implemented the algorithm on a CM-2 SIMD

machine.

Parallel FASTA [17], parallel SSEARCH [18] are

examples of coarse grain parallelism.

7. Conclusion and future work

We presented a new implementation of the Smith-

Waterman algorithm that combines fine grain and coarse

grain parallelism and multi-level scheduling and achieved

a speedup of 143 on a cluster of 16 dual-CPU Pentium IV

Xeons. This was six times faster than the currently

available parallel implementations on a general purpose

CPU cluster.

Our future work includes the impact of using faster

networking technologies and different multi-level

scheduling schemes on the speed up of the Smith-

Waterman algorithm. We are also looking at

implementations across multiple grids, making scheduling

more important in efficient implementations.

References

[1] Argonne National Laboratory. MPICH – A portable

implementation of MPI. http: wwwunix.mcs.anl.gov mpi mpich.

[2] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and

Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.215,

(1990), 403-410

[3] Chaudhary, V., F. Liu, X. Meng, V. Matta, A. Nambiar, G.

Yadav, and L. T. Yang, “Parallel Implementations of Local

Sequence Alignment: Hardware and Software”, in Parallel

Computing in Bioinformatics and Computational Biology,

Editor: Albert Zomaya, John Wiley and Sons, 2005 (to appear).

[4] Darling, A. E., Carey L., Feng W., "The Design,

Implementation, and Evaluation of mpiBLAST", ClusterWorld

Conference&Expo in conjunction with the 4th International

Conference on Linux Clusters: The HPC Revolution 2003, June

2003.

[5] EBI FASTA Programs download

ftp: ftp.ebi.ac.uk pub software unix fasta

[6] Grate, L., Diekhan, M., Dahle, D. and Hughey, H. Sequence

Analysis With the estrel SIMD parallel Processor.Pacific

Symposium on Biocomputing 2001 pp.263-74

[7] Gotoh, O. An improved algorithm for matching biological

sequences J. Mol.Biol.(1982) 162, 705-708

[8] Hughey, R. Parallel hardware for sequence comparison and

alignment. (1996) Comput. Appl. Biosci. 12, 473-479

[9] IA-32 Intel Architecture Software Developer’s Manual

Volume 1: Basic Architecture

[10] Janaki, C. and Joshi, R. R., Accelerating comparative

genomics using parallel computing in Silico Biology 3, 0036

(2003); ©2003, Bioinformation Systems e.V.

[11] Rogens, T. and Seeberg, E., Six-fold speed-up of Smith-

Waterman sequence database searches using parallel processing

on common microprocessors. Bioinformatics, 16, (2000), 699-

706.

[12] Grate, L., Diekhan, M., Dahle, D. and Hughey, H. Sequence

Analysis With the estrel SIMD parallel Processor.Pacific

Symposium on Biocomputing 2001 pp.263-74

[13] Lander, E., Mesirov, J.P. and Taylor W., Protein sequence

comparison on a data parallel computer. Proc. Of 1988

International conference on parallel processing pp. 257-263

[14] Meng, X. and Chaudhary, V., Bio-Sequence Analysis with

Cradle’s 3SoC Software Scalable System on Chip In Proceedings

of the ACM Symposium on Applied Computing (SAC) SAC’04,

March 14-17, 2004, Nicosia, Cyprus.

[15] NCBI DATABASE Download

http: www.ncbi.nlm.nih.gov Ftp index.html

[16] Needleman, S. and Wunsch, C. A general method applicable

to the search for similarities in the amino acid sequence of two

sequences. . J. Mol. Biol., 48(3), (1970), 443-453

[17] Pearson, W. R., Rapid and sensitive sequence comparison

with FASTP and FASTA, Methods Enzymol. 183: 63-98, 1990.

[18] Pearson, W.R. Searching protein sequence libraries:

comparison of the sensitivity and selectivity of the Smith-

waterman and FASTA algorithms. Genomics, 11, 635-650

[19] Schmidt, B., Schroder, H. and Schimmler, M. Massively

Parallel Solutions for Molecular Sequence Analysis, International

Parallel and Distributed Processing Symposium: IPDPS

Workshops (2002), p. 0186

[20] Smith, T.F. and Waterman, M.S. Identification of common

molecular subsequences. J. Mol. Biol., 147, (1981), 195-197

[21] Trelles, O. On the Parallelization of Bioinformatic

Application. Briefings in Bioinformatics (2001), vol.2, 2

[22] Yamaguchi Y., Maruyama, T. High Speed Homology

Search with FPGA. Pacific Symposium on Biocomputing 2002

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 22, 2008 at 15:36 from IEEE Xplore. Restrictions apply.

