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Abstract  

 
New biological experimental techniques are continuing 

to generate large amounts of data using DNA, RNA, 

human genome and protein sequences. The quantity and 

quality of data from these experiments makes analyses of 

their results very time consuming, expensive and 

impractical. Searching on DNA and protein databases 
using sequence comparison algorithms has become one of 

the most powerful techniques to better understand the 

functionality of particular DNA, RNA, genome, or protein 

sequence. This paper presents a technique to effectively 

combine fine and coarse grain parallelism using general 

purpose processors for sequence homology database 
searches. The results show that the classic Smith

Waterman sequence alignment algorithm achieves super 

linear performance with proper scheduling and multi level 

parallel computing at no additional cost. 

 

1. Introduction 
 

High-throughput technologies in the field of biology 

have led to an exponential growth in the amount of data 

generated over the past several years that has far exceeded 

the growth in processor performance. Sequence 

comparison algorithms [3] based on the dynamic 

programming method such as the Needleman-Wunsch [16] 

and Smith-Waterman algorithms [20], provide optimal 

solutions. However, they are very computationally 

expensive. For this reason, heuristics based algorithms, 

such as BLAST [2], FASTA [17] etc., although sub-

optimal, are widely used. The biology community would 

rather use the accurate methods provided there existed 

cheap and fast accurate solutions. A number of different 

designs for special-purpose hardware [8][12][14][19] for 

performing sequence alignments and database searching 

have been proposed and implemented. Their advantage  

over general-purpose computers is that they can be tailored 

specifically to perform sequence comparisons at a high 

speed, while the disadvantage is high cost. 

The first widely used program for database similarity 

searching was FASTA [17]. FASTA stands for FAST-All, 

reflecting the fact that it can be used for a fast protein 

comparison or a fast nucleotide comparison between a 

query sequence and a large database of known sequences. 

This program achieves a high level of sensitivity for 

similarity searching at high speed. OSEARCH and 

SSEARCH [18] are two Smith-Waterman implementations 

in FASTA programs. OSEARCH is straightforward Smith-

waterman implementation. SSEARCH [18] is an 

optimized implementation of Smith-Waterman algorithm 

that is approximately twice as fast as OSEARCH. 

However, OSEARCH is more sensitive and accurate.  

Traditional approaches to sequence homology searches 

using Smith-waterman algorithm on general-purpose 

processor have proven to be too slow to keep up with the 

current increasing rate of sequence database. Therefore, 

many approaches [10] [11] [17] to parallelizing the 

FASTA and SSEARCH have been investigated. In this 

paper a method to combine fine grain and coarse grain 

parallism among cluster nodes is presented.  

This paper is structured as follows. Section 2 discusses 

the sequence homology search relevant details on Smith-

Waterman algorithm, fine and coarse grain parallelism, 

and scheduling. In Sections 3 and 4 we describe the 

experimental infrastructure and our implementation 

methodology, respectively. In Section 5 we present the 

performance results. Section 6 discusses the related work. 

We end with conclusions in section 7. 

 

2. Background 
 

In this section we present a brief background on Smith-

Waterman algorithm and the various levels of parallelism 

that can be exploited in its implementation.  
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2.1 Smith-waterman algorithm  

 
The Smith-Waterman algorithm [20] is perhaps the 

most widely used local similarity algorithm for biological 

sequence pairwise alignment. It was enhanced by Gotoh 

[7]. Pairwise alignment is the alignment of two sequences. 

In Smith-Waterman database searches, the dynamic 

programming method is used to compare every database 

sequence to the query sequence and assign a score to each 

result. The dynamic programming method checks every 

possible alignment between two given sequences. The two 

sequences define a matrix in which every cell represents 

the alignment of two specific positions in the two 

sequences. The value of each cell depends on the residues 

located in these positions.  

Scores in the first row and column are defined as zero. 

Entries L(i, j) in all other cells of the matrix are defined as 

the score of the best alignment ending in the position 

matching xi and yj, and are calculated using the following 

recurrences:  

 

L(i, j) =max{E(i,j), L(i-1, j-1)+s(xi, yj), F(i, j), 0}; 

where 

E( i, j)=max{ L(i, j-1)+a, E(i, j-1)+b} 

F( i, j)=max{ L(i-1, j)+a, F(i-1, j)+b} 

 

where s(xi, yj) is the score of a match or mismatch between 

xi and yj. In the above equations, a is the opened gap 

penalty and b is the extended gap penalty.  

 

2.2 Fine grain, coarse grain parallelism and 

scheduling 
 

To exploit fine-grain parallelism [21], the processors 

work together to compute the above L(i, j) matrix, cell by 

cell. This fine-grain computation would require a very 

large number of processors if a long sequence were to be 

considered. The availability of SIMD vector instructions in 

common processors such as the MMX SSE2 from Intel, 

MMX 3Dnow! from AMD, and VIS from SUN allows 

fine grain parallelism to be exploited for a single pairwise 

alignment.  

For coarse grain parallelism, the database is divided 

into blocks of sequences. These blocks can be assigned to 

the processors (workers). Coarse grain in this context 

means each processor performs a selected number of 

comparisons.  

The objective of scheduling is to find a policy for 

assigning processors to tasks so that the overall execution 

time for database searching is minimal. However, any 

parallel strategy represents a trade-off between reducing 

communication time and improving the computational 

load balance.  

 

3. Hardware and software platform 
 

The hardware used for the experiments is based on Intel 

Xeon architecture running a distribution of NPACI Rocks 

(v3.1.0) Linux cluster. The MPI layer is based on MPICH 

v1.2.6 [1] with the ch_p4 device. The cluster consists of a 

master node and 16 compute nodes with 100Mb Ethernet 

connections between the nodes. Each node is an Intel 

Pentium IV Xeon System, which has dual 2.66 GHz 

processors with 2.5GB of RAM. Each node has two 

processes mapped to it. All cluster nodes are identical and 

have no other applications running at the time of the 

experiment. 

FASTA was ported onto the above Linux cluster using 

the parallel MPI version (release 3.4) of SSEARCH 

program, which is an open resource software and can be 

download from EBI web site [5]. 

 

4. Implementation 
 

4.1 Multi-level parallelism 
 

The designed implementation takes advantages of 

combinations of fine and coarse grain parallelism 

paradigm within a parallel architecture, using general-

purpose processors. The structure of the sequence 

homology searches and dynamic programming lead to 

many opportunities for parallel computation. At the lowest 

level, micro-parallelism techniques have been used to take 

advantage of specific features of parallel architecture, e.g., 

SIMD vector instructions. At higher level, the searching of 

large database leads itself to an implementation with 

multiple searches distributed across separate processors. 

The computing requirements for these similarity search 

problems can only be tackled by using the computing 

resources efficiently. The SSEARCH and OSEARCH 

programs are first analyzed by Intel Vtune


 performance 

analyzer. The performance reports indicate that the core of 

sequence alignment algorithm normally takes more than 

90% of total execution time when performing a big 

database search. Parallel and distributed computing at the 

cluster level along with vector computing at the instruction 

level has to be utilized to create an effective solution to 

overcome this computation bottleneck. 

 

4.2 Fine grain parallelism  
 

Intel’s Streaming SIMD Extensions 2 (SSE2) 

instruction set [9] enhances the SIMD instructions 

previously delivered with MMX and SSE technology. The 

key benefits of SSE2 are the added support for 64-bit 

double-precision floating point and for 64, 32, 16 and 8-bit 

integer operations on the eight 128-bit XMM registers first 

introduced with SSE. 
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In this paper, our implementation exploits SSE2 

instructions to effectively harness the power of the 

Pentium IV processor. SSE2 was introduced into the 

Intel’s IA-32 architecture in the Pentium IV and Intel 

Xeon processors. These extensions were introduced to 

enhance the performance for advanced 3-D graphics, video 

decoding encoding, and speech recognition.  

We wrote the FASTA program using SSE2 intrinsics 

library and compiled with Intel 8.1 C compiler on Red Hat 

v8.0 Linux cluster. The instrinsics library provides a C 

programming language interface to the SSE2 instructions. 

All the SSE2 instructions have a corresponding C function 

in the intrinsics library. 

 

4.2.1 Vector computing along row with the query 

sequence The sequentially calculated values, e.g. L, E and 

F, have been grouped into a vector. The computation flows 

from top row to the bottom row. Due to the 

aforementioned data dependency, the vectors have to 

follow this order and the internal dependency has to be 

solved before moving to the next vector.  

Since the computation always needs the data from 

previous calculated row, there are two arrays to hold the L 

and E values, whose equations are listed in section 2. The 

arrays are dynamically allocated and the size of the array is 

equal to the length of the query sequence. In other words, 

the vectors have to save their intermediate results to these 

two arrays for the next row reference. 

            
4.2.2 Data padding and alignment Query sequence 

partition explores maximum parallelism along the 

computation flow. Normally the size of query sequence is 

not multiples of eight.  If these marginal data are ignored, 

the final alignment scores may not be accurate and may 

miss some important biological information. One way is to 

create a clean loop to compute the rest of several cells, but 

it returns to the slow sequential computing. Considering a 

big database with millions of residues, we still want to 

solve the marginal data with parallel method. Therefore 

data padding is applied in our technique to eliminate the 

margin interference, which overcomes the problem of 

vector partition. Therefore, our technique can be applied to 

any query sequences of any size. The experiments show 

that query sequence partition with data padding can 

achieve significant performance gain. 

In order to access the data fast, all used memories 

including arrays and score matrix are aligned on the 16-

byte boundaries. Then SSE2 instructions are able to store 

or load 128-bit memory as fast as possible. The aligned 

memory plays critical roles on the speedup of SSE2 

implementation. 

 

4.2.3 Eight-way parallel processing with 16-bit 

values Using the SSE2 instructions, a 128-bit wide integer 

register of a CPU can be divided into sixteen smaller 8-bit 

units or eight 16-bit units, where the same arithmetic or 

logical operation can be performed simultaneously and 

independently on the data in each of the individual units. 

In this way, it allows fine grain parallelism to be exploited 

for a single pair wise alignment. If we choose to divide the 

XMM registers into as many as possible, i.e., sixteen 8-bit 

units, it increases the amount of parallelism, but limiting 

the maximum alignment score to 255. For medium, larger-

sized and high similarity sequences, this limit is too 

restrictive. Therefore, we apply eight 16-bit units rather 

than sixteen 8-bit units, which increase the data accuracy 

in the range of -32768 to +32767. We believe this range is 

enough for high similarity homology searches. 

 

4.3 Coarse grain parallelism – cluster computing 
 

A cluster of workstations connected by an Ethernet 

network, is a very appropriate platform for sequence 

database searches, because of the independence between 

the different sequences in the database. The parallel 

OSEARCH, SSERACH and our SSE2 implementations 

were implemented using the MPI library. These parallel 

programs are data parallel implementations with the 

master worker approach in which one processor acts as 

master and the other processors as workers. The master 

processor reads the query, the database, and the number of 

workers, n, and splits the database into n-1 parts, which is 

distributed among the n-1 workers so as to search the 

database in parallel. After searching the database, the 

workers send the calculated scores to the master, which 

further sorts the scores and displays the alignments. The 

scalability, which is the ability to yield good performance 

with an increasing number of workers, is analyzed in the 

next section. 

 

5. Performance evaluation  
 

The performance of our parallel SSE2 implementation 

was evaluated using various query sequence lengths and 

various database sizes. All test amino acids sequences and 

databases were downloaded from the NCBI FTP site [15]. 

A set of amino acid query sequences (P07305 194aa, 

NP_001008227 398 aa, NP_033963 724 aa, NP_116653 

1760 aa) is used to test the effect of various query 

sequence sizes. Scanning a large database is time 

consuming and the most heavily used bioinformatic 

application. We select the following three databases to 

verify the performance of parallel scalability on various 

database sizes. Month.gss is 214 MB having 169486546 

residues in 298731 sequences. Nr is 891 MB having 

593787265 residues in 1798171 sequences. And patnt is 

1.55 GB having 1370828404 residues in 2365892 

sequences. 

The parallel Smith-Waterman’s running time can be 

decomposed into five primary components [4]: MPI 
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initialization, database fragment copying time, Smith-

Waterman search time, communication time, and resulting 

merging and printing time. Since we optimized Smith-

Waterman database searching part without any changes on 

other parts, the performance evaluation and comparison 

are based on this part only. 

 

5.1 Experiment results 
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Figure 1:  Speedup of SSE2 Smith-waterman 

on 32-processor Linux cluster 
 

We present a series of results that detail the homology 

searches parallel speedups vs. the number of processes 

used by the three programs. We first begin with the 

analysis of the OSEARCH, which sets a baseline for the 

analysis of the performance in the other programs. The 

speedups of SSEARCH and our parallel SSE2 Smith-

Waterman are compared to OSEARCH. Overall, we see 

that short query and small database cause the performance 

to degrade. Performance is better overall, when the long 

query sequence and large sequence database are used. Our 

parallel SSE2 implementation can obtain additional three 

times performance gain compared to SSEARCH, and six 

times as compared to OSEARCH.  

Figure 1 speedup curves show the performance of a 

single query sequence of length 1760 amino acids searched 

against a 214MB database. The workers (processors) range 

from 1 up to 32. Compared to OSEARCH and SSEARCH, 

the SSE2 implementation has very good scalability on 32-

processor Linux cluster. A speedup of 143 using 32 

workers compared to the sequential OSEARCH program is 

obtained. The total searching time is 38 seconds using 32 

workers. 

Figure 2 shows the performance of query sequences 

with various lengths of amino acids searched against a 

214MB database using 32 workers. The speedups of our 

SSE2 implementation obtained are 43, 61, 80 and 143 for 

the queries of lengths 194, 398, 724, and 1760 amino 

acids, respectively. The results clearly illustrate that the  
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Figure 2:  Speedup of various query sequence 
length on 32-processor Linux cluster 

 

long sequences could be more effectively searched using 

the parallel SSE2 Smith-Waterman algorithm on 32 

workers. 

Speedup of Various Worker and Database Sizes
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Figure 3:  Speedup of various database sizes and 
workers on 32-processor Linux cluster 

 
 Query sequence of length 194 amino acids was 

searched against a 214MB, 891MB and 1.55 GB database 

with 16 and 32 workers. The above performance bar chart 

shows that speedup increases from 30 to 41 on 16 workers 

and from 43 to 60 on 32 workers with the database 

increase. While searching a specific query sequence 

against size varied databases using parallel SSE2 Smith-

Waterman, better speedup was observed with larger 

database size. 

Our parallel SSE2 Smith-Waterman implementation 

produces exactly the same outputs as those computed by 

OSEARCH, which is higher quality than SSEARCH, with 

big time saving and no additional hardware cost. 
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6. Related work on parallel sequence 

alignment 
 

A group of fine-grained parallel designs on special-

purpose hardware for performing sequence alignments and 

database searching have been proposed and implemented. 

estrel [12] is a 512-element linear parallel processor with 

8-bit, SIMD processing elements. The single-board system 

was designed and built with particular emphasis on 

efficient high-throughput sequence analysis. Performance 

of the Smith-Waterman was reported at being 20 times 

faster than 433 MHz DEC Alpha series 21164. Yamaguchi 

and Maruyama [22] achieved high speed homology search 

using FPGA (Field Programmable Gate Array). They 

reported a time of 34 seconds for comparing a query of 

2,048 elements with a database of 64 million, which is 330 

times faster than a desktop with a 1 GHz Pentium III. 

Schmidt et.al. [19], use two new massively parallel 

architectures. The first architecture is built around a PC-

cluster linked by network and fine-grained parallel Systola 

1024 processor boards connected to each node. The second 

architecture is the Fuzion 150, a new parallel computer 

with a linear SIMD single array of 1535 processing 

elements on a single chip. Both architectures provide high 

throughput solutions at a good price performance ratio. 

Six-fold speedup of Smith-Waterman sequence database 

search using parallel processing on common 

microprocessors using MMX was reported [11].  Lander 

et. al. [13] implemented the algorithm on a CM-2 SIMD 

machine. 

Parallel FASTA [17], parallel SSEARCH [18] are 

examples of coarse grain parallelism.  

 

7. Conclusion and future work 
 

We presented a new implementation of the Smith-

Waterman algorithm that combines fine grain and coarse 

grain parallelism and multi-level scheduling and achieved 

a speedup of 143 on a cluster of 16 dual-CPU Pentium IV 

Xeons. This was six times faster than the currently 

available parallel implementations on a general purpose 

CPU cluster.  

Our future work includes the impact of using faster 

networking technologies and different multi-level 

scheduling schemes on the speed up of the Smith-

Waterman algorithm. We are also looking at 

implementations across multiple grids, making scheduling 

more important in efficient implementations.  
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