
An Adaptive Data Prefetching Scheme for Biosequence
Database Search on Reconfigurable Platforms

Xiandong Meng

Department of Electrical and Computer Engineering
Wayne State University

5050 Anthony Wayne Dr., Detroit, MI 48202
(001) 313-577-6592

meng@ece.eng.wayne.edu

Vipin Chaudhary
Computer Science & Engineering

NYS Ctr. Of Excellence in Bioinformatics & Life Sc
University at Buffalo, SUNY

Buffalo, NY 14260

vipin@buffalo.edu

ABSTRACT
Searching on DNA and protein databases using sequence
comparison algorithms has become one of the most powerful
techniques to better understand the functionality of particular
biological sequences. However, the requirements to process the
biological data exceed the ability of general-purpose processor.
The core of sequence alignment algorithm was implemented as
fine-grained parallel architecture that was running on a
commercial-off-the-shelf (COTS) FPGA board, where
supercomputer performance has been achieved. However,
reconfigurable computing platforms have utilized a PCI bus as
the communications channel, limiting the communication speed
between the host processor and the FPGA. This communication
bottleneck often offsets the application speedup enabled by
FPGA. In this paper we present an adaptive data prefetching
scheme to avoid reconfigurable coprocessor stalls due to data
unavailability through profiling techniques and quantitative
analysis. Experimental results satisfied time constraints with
various query sequences and show that we can effectively
eliminate a major portion of data access penalty.

Categories and Subject Descriptors
J.3 [Computer Application]: Life and Medical Sciences –
Biology and genetics

General Terms
Algorithms, Design, Performance

Keywords
FPGA, DMA, data prefetching, Smith-Waterman algorithm

1. INTRODUCTION
The amount of biological sequences available in databases has
been growing exponentially over the past several years.

Biosequence database searches based on FPGA reconfigurable
hardware platforms [4] have gained popularity recently and
tremendous speedup has been reported as compared to a
standard desktop PC. However, the data communication
between the PCI-based FPGA board and the host system with
the large volume of data involved in this kind of application
limits the performance. We have developed an adaptive parallel
data prefetching scheme for the execution of Smith-Waterman
sequence database searches to alleviate the communication
bottleneck thereby leading to substantial performance
improvement.

A number of parallel designs [2,3,4] for performing sequence
analysis have been developed. Solutions based on PCI-based
FPGAs that are flexible to plug into a PC hold great potential to
boost communication performance using our proposed adaptive
data prefetching scheme.

2. DESIGN AND IMPLEMENTATION
2.1 Execution Profile Analysis
The total execution time of FPGA biosequence database search
can de decomposed into three primary parts: database sequences
loading time on the host machine, Smith-Waterman processing
time on FPGA, and other time including FPGA initialization,
data setting, communication latencies and printing result. In
order to analyze how each part contributes to the total program
execution time, we studied the timing profile by comparing
various query sequences to a 1 GB of the nr protein database
[5], which contains 936,896,903 characters in 2,739,534
sequences. The measurements were taken on a 1.9 GHz Pentium
IV processor with 768 MB memory, and an ADP-WRC-II
FPGA PCI-board with a Xilinx Virtex II XC2V6000 from [1].
The board contains 119 affine PEs and accepts the query
sequence up to 1,420 characters. Based on measurements, we
conclude that the database sequence loading time and other time
are constant and independent of the query sequence size.

2.2 Data Prefetching Scheme
The data transfer requires low latency and high bandwidth to
ensure that the communication does not affect the processing
time. Biological sequence search on a PCI-based FPGA board
requires database sequences to be stored in an application buffer
of the host machine, and then transferred to the FPGA board for
processing, because the amount of on-board memory is usually
very limited. Loading sequence database, especially the large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

140

volume of biological sequences, in memory of host machine
causes significant performance drawbacks.

We designed and implemented a double buffering parallel
implementation using DMA on FPGA board and Pthread on
host machine. The idea of double buffering strategy is to
transfer database sequences into one intermediate application
buffer in the background, where the processing can be
completed in the other application buffer utilizing the full FPGA
power. Once processing is done in a local buffer, the FPGA
coprocessor sends results back to the host and receives new
sequences from the buffer, which has been filled by host
machine, and starts computation immediately with the least idle
time. Our implementation takes advantage of DMA transfers,
which are performed by the PCI device for large blocks of data,
between host CPU and FPGA board. Application software
running on the host system can control the DMA engines for the
rapid data transfer and processing to and from the FPGA using
send/receive threads, at the same time, host software creates
additional thread to load database sequences into application
buffers to overlap computation with communication. Thus, the
transformation overlaps the data communication time with the
computation time in parallel loops to effectively hide the latency
of the database sequence transfer time.

2.3 Adaptive Data Prefetching
The scheduling solution is able to resolve the unbalance
between loading and processing time by providing more flexible
prefetching mechanism, such as, the adaptive prefetching buffer
size. Since the proportions of database loading and FPGA
processing time keep changing with the varied query inputs, the
choice of how to select a proper buffer size for data transfer
could be critical to performance. A static or improper buffer size
may decrease performance and bring additional communication
overhead to the system. A data prefetching scheme would be
ineffective unless a proper buffer size is selected.

In order to exploit the seamless transformation between loading
and processing, we designed and implemented a query-based
data prefetching adaptation algorithm based on the length of the
query sequence. The idea is that the short query would require
small buffers to overcome database loading delay, and the long
query sequence would require large buffers. The communication
overhead would be eliminated as much as possible when buffer
size reaches a certain point.

3. SUMMARY AND CONCLUSIONS
The database buffer loading time by host machine should be
fairly close to FPGA processing time. The prefetching buffer
size required to compare a query sequence to a database of
sequences on a single FPGA board is given as:

Snumber = λ × g(ceil(m / (N+1))) × 1000

where
S is the prefetching buffer size in the number of database
sequences,
λ is the coefficient of host machine speed,
m is the size of query sequence,
N is the number of PEs,
g(x) is a stair function for buffer size based on our experiments,

and is summarized as:
()














≤≤
≤≤

=
=
=

=

127,210
64,200

3,190
2,180
1,170

x
x

x
x
x

xg

The worst performances were observed at the boundaries, i.e.,
buffer sizes of 10,000 and 250,000 respectively, due to
additional overhead such as frequent switching between small
buffers or filling out a very large buffer. However, these side
effects are entirely eliminated by applying our adaptive scheme.

Overrall Performace Comparison

0

20

40

60

80

100

120

119 714 1420
Length of Query Sequence

Sp
ee

du
p PC Processing

FPGA Without Data Prefetching

FPGA With Data Prefetching

Figure 1. Speedups of Adaptive Data Prefetching

Figure 1 shows the performance gains with various query
sequences searched against a 1 GB database. While using the
adaptive data prefetching on FPGA, we achieved a 42% overall
performance increase on a short query sequence of length 119
over without data perfecting; 21% and 16% improvement for
query sizes of 714 and 1420, respectively. For performance
comparison, the speedups were 62, 100, and 110 over the PC
performance.

Techniques to reduce communication latencies become essential
for achieving high FPGA utilization. We have implemented a
software data prefetching scheme by exploiting the overlap
between computation and communication. Our approach of
dynamically determining the size of prefetched data has been
shown to be very effective for reducing the communication
latency.

4. ACKNOWLEDGMENTS
We thank Progeniq for providing the FPGA software.

5. REFERENCES
[1] Alpha-Data, http://www.alpha-data.com
[2] Meng, X. and Chaudhary, V. Bio-Sequence Analysis with

Cradle’s 3SoC Software Scalable System on Chip In
Proceedings of the ACM SAC SAC’04, March 14-17,
Nicosia, Cyprus, 2004

[3] Meng, X. and Chaudhary, V. Exploiting Multi-level
Parallelism for Homology Search using General Purpose
Processors, in proceedings of the ICPADS, Fukuoka,
Japan, 20-22 July 2005

[4] Oliver, T., Schmidt, B. and Maskell, D. Hyper Customized
Processors for Bio-Sequence Database Scaning on FPGAs,
IEEE Transactions on Circuits and Systems II, Vol. 52, No.
12, pp. 851-855, 2005

[5] Progeniq Pte. Ltd., http://www.progeniq.com

141

