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Abstract

Molecular dynamics simulations are known to run
for many days or weeks before completion. In this pa-
per we explore the use of GPUs to accelerate a Lennard-
Jones-based molecular dynamics simulation of up to27000
atoms. We demonstrate speedups that exceed100x on com-
modity Nvidia GPUs and discuss the strategies that allow
for such exceptional speedups. We show that traditional
molecular dynamics simulations can be greatly improved
from a runtime of over1 day to18 minutes.

1 Introduction

Molecular dynamics simulations are used to track the
evolution of a system of particles based on the interactions
between them. It is used in physics, biology, material sci-
ences, applied mathematics and chemistry where systems
of up several million atoms are simulated for weeks or
months prior to completion. Because of the exceptionally
long compute time of MD simulations, it is a popular tar-
get for acceleration both using traditional high performance
computing techniques, as well as novel architectures [10].

The programmable graphics processor has shown
considerable promise for its use in compute-intensive simu-
lations. Their many-core SIMD design is well-suited to nu-
merical and probabilistic simulations such as Monte Carlo
and molecular dynamics [16]. With their computational
power far outpacing that of the typical CPU, and with the
recent addition of double precision floating point hardware
to GPUs, it is expected that they will become a standard
tool for high performance computing and application ac-
celeration.

Despite the computational power offered by mod-
ern graphics processors, they have traditionally been lim-
ited to the graphics domain in large part due to their lack
of programmability. Until recently, GPUs could only be
programmed through the graphics API, such as DirectX
or OpenGL. Solutions such as BrookGPU [5] provided a
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C-like compiler and runtime, but have not proven popu-
lar among programmers. Nvidia’s CUDA platform, how-
ever, has become widely used both inside and outside of
academia [11]. Like BrookGPU, CUDA, provides a C-like
compiler and runtime. However in the case of CUDA, the
compiler is nearly identical to standard C making the use
of GPUs an easier choice for application developers.

In this paper we implement a Lennard-Jones-based
molecular dynamics simulation on the Nvidia 8800 GTX
Ultra GPU using the CUDA platform. We demonstrate that
speedups exceeding 100x can be achieved on commodity
graphics hardware. As such, we make the following contri-
butions in this paper:

• Implement a highly accelerated MD simulation using
Nvidia GPUs.

• Demonstrate high performance and scalability of over
100x on standard graphics processors.

The remainder of this paper is organized as follows:
in section 2 we describe the related work and its rela-
tion to our implementation. In section 3 we provide a
brief overview of molecular dynamics simulations. In
section 3.1 we provide the necessary background on the
Nvidia 8800 GTX GPU as well as the CUDA architecture.
In section 4 we describe our MD simulation implementa-
tion and its performance results. Finally, in sections 5 and6
we provide a brief discussion and our conclusions.

2 Related Work

The use of graphics processors for molecular sim-
ulation calculations is starting to receive increasing at-
tention. Stone et al. ported some of the core calcu-
lations to an Nvidia GeForce 8800 GTX processor, and
achieved a performance of 10x-100x speedup over conven-
tional processors [15]. Andersen et al. have developed a
general-purpose molecular dynamics code that runs on the
8800GTX. They found that it runs at a speed equivalent
to the performance of a standard general-purpose parallel
code (viz., LAMMPS) running on 30 processors [2]. Liu



et al. demonstrate an accelerated CUDA-based MD simu-
lator that achieved a 15x performance improvement over
a conventional CPU [9]. Other architectures, such as the
IBM Cell have shown promise for MD simulations. Olivier
et al. implemented a GROMACS core on the Cell proces-
sor, achieving reasonable speedup [12]. Parallel molecu-
lar dynamics have also been shown to scale well on com-
modity clusters as well as the IBM Bluegene supercomput-
ers [7,8,13].

3 Background

Molecular simulations [1, 6] are used in many
branches of science and engineering, both as a tool for pre-
dictive modeling and as a means to investigate behaviors at
the nanoscale. Two basic approaches are in widespread use.
The Monte Carlo (MC) method aims to sample an ensem-
ble molecular configuration consistent with the equilibrium
distribution, without regard to any mechanical processes
that govern the true time evolution of the system. The
molecular dynamics (MD) technique is (typically) gov-
erned by Newtons laws of motion, and preserves the tem-
poral nature of the behavior. Monte Carlo methods are ap-
pealing because they permit a wide variety of non-physical
sampling techniques to be applied to improve the genera-
tion of new configuration, and because they are easier to ex-
tend to new ensembles, such as for systems at a fixed tem-
perature and pressure. Molecular dynamics is, of course,
needed if the dynamics is of interest, and MD has several
advantages of its own in terms of simplicity, sampling ef-
fectiveness, and error-checking.

Molecular simulations are conducted using a wide va-
riety of system sizes, with numbers of atoms ranging from
dozens to millions, depending on the problem of interest
and the available resources. The core of the calculation is
the computation of distances between pairs of atoms, and
subsequently the forces and/or energies that they exert on
each other. These energies are represented by a simple for-
mula, for example the Lennard-Jones (LJ) potential:
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Hereu is the mutual energy experienced by two atoms
separated by a distancer, andσ andε are model parame-
ters representing the size of the atoms and the strength of
their interaction, respectively. Typically the LJ model is
used to represent the non-bonded interactions, i.e., those
interactions between atoms that are not directly bonded to
each other (for which their interaction is represented by an-
other simple model potential). The force exerted by the
atoms on each other is given by the gradient of the poten-
tial: F = −∇u. The total energy and force are determined,
in principle, by summing over all pairs. In practice, inter-
actions are considered only with atoms in the local vicinity

of a given atom, as determined by cell partitioning and/or
by keeping lists of neighboring atoms. Also, in most cases
periodic boundary conditions are applied such that the sim-
ulated system is surrounded by replicas of itself, and inter-
actions are then taken between the nearest images of any
pair of atoms. The Lennard-Jones potential can be cal-
culated without taking square roots, which in some plat-
forms can be an expensive operation. Commonly models
will also incorporate partial electric charges to represent
the electrostatic interactions. The corresponding energies
are computed using Coulombs law, which necessitates the
calculation of the square root. Additionally the interac-
tions described by these models are very long ranged, with
strong interactions felt for distances much larger than the
size of the simulated system. Ewald sums and related tech-
niques must be applied to treat these interactions appropri-
ately [1,6].

A common approach to the parallelization of molec-
ular simulations involves a decomposition in which indi-
vidual processors are assigned a given region of space, or
a given set of atoms. This decomposition can be used for
both MD and MC simulations. MC can be parallelized in
a more complete way by conducting independent simula-
tions on separate processors with results that can be av-
eraged after all are complete. MD simulations cannot be
fully parallelized in this sense, at least if the aim is to
generate information about the long-time behavior of the
system (“long-time” in MD simulations today corresponds
to about 1 microsecond or more of physical dynamics, al-
though strong efforts are now being made to reach the mil-
lisecond time scale [4, 14]). Apart from a few specialized
instances, there is little recourse for parallelization ofthe
dynamical behavior of an MD simulation—a microsecond
can be reached only by running a nanosecond simulation
1000 times longer.

The molecular dynamics code we use in this pa-
per is quite elementary. It simulates a system of atoms
(monatomic molecules) governed by the Lennard-Jones
potential described in Equation 1. At each time step, the
force is calculated between each pair of atoms within a cut-
off distance taken to be half the simulation box length. The
net force on each atom is used in conjunction with New-
ton’s equation of motion to propagate the system forward in
time. The integration is performed using a velocity-Verlet
algorithm. No cell or neighbor lists were used as part of
the computation, so at each step distances are computed
between each pair, and those beyond the cutoff do not con-
tribute to the energy or forces.

3.1 CUDA and the NVIDIA 8800 Architecture

In this section, we briefly summarize the architectural
details of NVIDIA GeForce 8800 GTX GPU which was
used in our tests and the challenges in realizing the com-
puting power of GPUs. The 8800 GTX is composed 16



multiprocessors with each multiprocessor composed of 8
stream processors resulting in a total of 128 stream proces-
sors. The 8800 GTX has 768 MB of DRAM memory along
with read only constant and texture memory. Because the
global memory space is not cached, proper memory access
patterns must be followed in order to achieve maximum
memory bandwidth. Reads from constant memory and tex-
ture memory are cached, however. Each multiprocessor has
16 KB of on-chip memory that is shared between all stream
processors within a single multiprocessor.

Each multiprocessor can concurrently execute up to
768 threads; however, in practice this number will be
limited by the number of registers and amount of shared
memory used by a thread block. Threads are partitioned
into thread blocks of up to 512 threads, with each thread
uniquely identified by a thread ID. A thread block can
also be specified as a 2 dimensional or 3 dimensional ar-
ray of arbitrary size with each thread being identified by a
2 or 3 component index(threadIdx.x, threadIdx.y, and
threadIdx.z). ThethreadIdx variable is automatically
assigned by the CUDA runtime and need not be declared
by the programmer.

Although an individual thread block is limited to 512
threads, multiple identical thread blocks executing identical
kernels may be batched together into a grid of blocks. Thus,
the total number of threads that can be launched in a single
kernel invocation is much larger than the 512 thread limita-
tion. Each block can be uniquely identified by its block ID.
For blocks of 2 or 3 dimensions, they can be uniquely iden-
tified by a 3 component index (blockIdx.x, blockIdx.y, and
blockIdx.z). Dimensions of the block grid,gridDim and
dimensions of the block,blockDim are also available as
three-component indexes and allow for unique thread iden-
tification over the entire grid of thread blocks.

In order to achieve full occupancy of the GPU a ker-
nel must be restricted to use only 10 registers. Therefore a
major challenge to developing software for CUDA-enabled
GPUs is to minimize register usage. By minimizing the
number of registers per-kernel, CUDA is able to maximize
the number of simultaneously executing threads. A higher
occupancy indicates a greater number of active threads per
multiprocessor, and can help to mask latency during global
memory loads. Threads in the same thread block can share
data through the on chip shared memory and synchronize
their execution. Synchronization and communication is not
available between thread blocks.

4 Implementation and Performance Results

GPU tests were performed on a machine consisting
of a 3.0 GHz AMD Athlon 642 processor with 8 GB RAM
and 2 NVIDIA 8800 GTX Ultra GPUs. The sequential MD
tests were taken on identical hardware. A single GPU was
used for our GPU performance analysis. The output of the

simulation is the final position of each atom in the system
(tested up to 27,000 atoms). Correctness of each simulation
was confirmed to within three decimal places.

Our GPU implementation is split into two kernels:
a position/velocities kernel, and a force/velocities kernel.
The split-kernel design is used in order to provide a sim-
ple barrier between position updates and force calculation,
with the velocity calculations split between both kernels.
The velocity computations are split between both kernels
as it is based on the force of the previous and current itera-
tion.

Because the Nvidia CUDA platform provides only
limited synchronization and thread spawning costs are
quite low, we elected to construct the MD algorithm in
two parts for simplicity. Other synchronization techniques
could be implemented that would allow a single kernel de-
sign to be used. However, as our speedups (to follow) show,
it is not clear that the additional programming burden of
such an approach would yield noticeable improvement.

We utilize 8192 active threads, the maximum number
of threads supported given our register requirements (16
multiprocessors of 512 threads each). For any simulation
size, each thread is responsible for updating the position,
force, and velocity of a single atom. For larger simula-
tions with atoms > 8192 we over-subscribe the number
of threads allowed on the architecture. In case of over-
subscription, batches of8192 threads are executed. Both
kernels are called repeatedly within a loop operating on the
host. The loop controls the numbers of simulation steps
and is user-controlled.

In Algorithm 1 we provide pseudocode for our GPU
implementation of the MD simulation. The GPU kernels
are expressed in lines 6-8 and 10-13 of the algorithm. As
can be seen, the force kernel (lines 10-13) is the more com-
putationally expensive of the two kernels, requiringatoms

additional iterations. We next describe the GPU-specific
optimizations that were used to accelerate our MD simu-
lation. In the figures to follow, we show results for 1000
steps in each simulation.

The first major optimization applied to the GPU ker-
nels is the use of coalesced memory. Memory coalescing is
a technique by which non-sequential and short global mem-
ory reads are combined into more efficient and larger se-
quential global memory reads. This allows the GPU hard-
ware to more efficiently traverse the global memory. Reads
by consecutive threads in a warp are combined by the GPU
hardware into several, wider memory reads of up to 384
bits each. Consecutive 32-bit reads that are issued simul-
taneously are automatically merged into multiple 384-bit
reads in order to efficiently saturate the memory bus. The
neighboring x coordinates of the atoms lie close together
and threads operate on this x coordinate in order, leading to
coalesced reads for nearly every access to the global mem-
ory. The memory has been laid out in such a way that all
the values for the x coordinates of the atoms lie close to



Figure 1: Illustration of non-coalesced memory (top) and coalesced memory (bottom).

Algorithm 1 Pseudo-code for GPU molecular dynamics
simulation.

1: Initialize the position, velocity, and force of atoms
2: Allocate memory for the atoms on the GPU
3: Transfer force, velocity, and position data to GPU
4: for all stepsdo
5: Launch position GPU kernel
6: Update head atom positions
7: Half-update head atom velocity based

on previous force
8: Zero head atom forces
9: Launch force GPU kernel

10: for all atomsdo
11: Compute force exerted by atom on

head atom if within cutoff distance
12: end for
13: Complete update of head atom velocity

based on current force
14: end for
15: Transfer data from GPU to CPU

each other, followed by the values of the y coordinates, fol-
lowed by the values for the z coordinates (see Figure 1 for
an illustration).

In Listings 1 and 2 we provide examples of non-
coalesced vs. coalesced memory accesses. Our mem-
ory layout within the GPU implementation of the posi-
tion updating kernel follows the pattern described in Fig-
ure 1 and Listing 2. The code has been optimized to
use memory coalescing using the valuesidx andnatoms.
idx represents the thread ID produced by evaluating
blockIdx.x ∗ blockDim.x + threadIdx.x whilenatoms
represents the number of atoms in the system.

Our second major optimization occurs in the force
GPU kernel. In this case we were able to achieve signif-
icant speedup by placing the coordinates of the head atom
(the atom whose velocity, force, and position, a thread is re-
sponsible for computing and are referenced in Algorithm 1)
directly into registers rather than accessing the head atom

from the main memory. As we show, each thread accesses
its head atomsatom times at each force kernel invocation.
At the end of the force kernel, we update main memory
with the values stored in the registers. This enhancement
increased the number of registers used by the force com-
putation kernel from 10 to 16 registers while reducing the
number of threads that can be run concurrently on a mul-
tiprocessor from 768 threads to 512 threads. The result is
a reduction in the GPU occupancy from 100% to 67%. In
Figure 2 we present the performance results due to our op-
timization of register usage. As can be seen, the use of reg-
isters to store the highly accessed head atoms results in sig-
nificant performance improvements of up to 3.71x over the
initial GPU implementation. While the best performance
is often achieved with the highest possible GPU utilization,
in this case we show that through a careful balance of reg-
ister usage we can reduce the occupancy while drastically
increasing performance.
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Figure 2: Improvements in speedup due to register opti-
mization.

In Figure 3 we present the overall performance re-
sults with varying cutoff distances. Because the simula-
tion operates in reduced units to correspond to atoms of



for (n = 0; n<natoms; n++)
for (i = 0; i<3; i++)

position [n][i] += deltat *
velocity [n][i] + deltat*deltat *
force [n][i] * 0.5;

Listing 1: Original loop

for (n = 0; n<natoms; n = n + blockDim.x *
gridDim.x)

for (i = 0; i<3; i++)
position [n + natoms*i + idx] +=
deltat * velocity [n + natoms*i + idx]
+ deltat * deltat *
force [n + natoms*i + idx] * 0.5;

Listing 2: Coalesced loop

arbitrary size, we compute box sizes and cutoffs in terms
of the atomic diameter of the simulation. We refer to the
atomic diameter asσ. While the sequential execution time
increases for increasing cutoff values, the execution time
on the GPU remains nearly constant. This results in im-
proved speedup for increasing box sizes, varying between
a speedup of 74.77x for a cutoff distance of10σ and 98.04x
for a cutoff distance of20σ.
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Figure 3: Performance for varying cutoff distance for a sys-
tem of 8000 atoms with box size40σ.

In Figure 4 we present the overall results of our
MD simulation for varying simulation sizes (number of
atoms). Our results include all performance enhancement
and optimizations described in this paper. From Figure 4
we observe a maximum speedup of 104.07x for a system
of 15625 atoms. As can be seen, we achieve increas-
ing speedups through15625 atoms before leveling off to
100.19x at27, 000 atoms.

5 Discussion

As we have shown, numerical simulations such as
molecular dynamics are well-suited to manycore parallel
architectures such as the GPU. However, the exceptional
performance of GPUs can only be realized through proper
memory management. Basic strategies, such as memory
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Figure 4: Speedup for varying numbers of atoms.

coalescing, yield major performance improvements with
minimal programming effort. More advanced techniques,
such as mapping highly used variables to registers may
also yield improvements as we showed in Figure 2. How-
ever, pinning highly accessed data to registers is only use-
ful in cases where a limited number of data items are ac-
cessed many times. Further, significant programming effort
is needed in order to balance the register usage per-kernel
with the number of threads needed to achieve significant
performance improvement. In our case we were able to
vastly improve performance by reducing the overall GPU
utilization from 100% to 67%. In our case we were able
to significantly reduce main memory accesses at the cost
of several registers per thread. In cases where the number
of main memory accesses cannot be significantly reduced
through an increase in register usage, performance may not
substantially improve.

6 Conclusion

In this paper we have shown that a typical Lennard-
Jones-based molecular dynamics simulation will map nat-
urally onto the manycore architecture of the Nvidia GPU
using the CUDA platform. While modest performance im-
provement can be achieved through a naive port of the al-



gorithm to the GPU, we have shown that a speedup of over
100x can be achieved through detailed analysis of the algo-
rithm and its memory access patterns. Our next goal is to
apply similar techniques to molecular dynamics packages
such as GROMACS [3].
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